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Abstract

Drug repurposing is a strategy for identifying new uses of approved or investigational drugs
that are outside the scope of the original medical indication. Even though many repurposed
drugs have been found serendipitously in the past, the increasing availability of large vol-
umes of biomedical data has enabled more systemic, data-driven approaches for drug can-
didate identification. At National Center of Advancing Translational Sciences (NCATS), we
invent new methods to generate new data and information publicly available to spur innova-
tion and scientific discovery. In this study, we aimed to explore and demonstrate biomedical
data generated and collected via two NCATS research programs, the Toxicology in the 21st
Century program (Tox21) and the Biomedical Data Translator (Translator) for the applica-
tion of drug repurposing. These two programs provide complementary types of biomedical
data from uncovering underlying biological mechanisms with bioassay screening data from
Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined
from the Translator towards drug repurposing. 129 chemical clusters have been generated
and three of them have been further investigated for drug repurposing candidate identifica-
tion, which is detailed as case studies.

Introduction

Drug discovery is an expensive area of research and development in terms of both time and
financial resources. The time frame for developing new treatments can range from 3 to 20
years and the associated costs can reach tens of billions of dollars [1]. Drug repurposing is a
strategy for identifying new uses for approved or investigational drugs that are outside the
scope of the original medical indication [2]. Even though many repurposed drugs have been
found serendipitously in the past [3, 4], more systemic and data-driven approaches for drug
candidate identification are becoming increasingly prominent. Given advancements in
computational technology and science, the amount of biomedical data has recently exploded,
thereby offering tremendous opportunities for supporting drug repurposing, from the design
of clinical studies to improving understanding of how to target molecular mechanisms to
modulate disease processes. With the mission of National Center of Advancing Translational
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Sciences (NCATS), turning research observations into health solutions through translational
science, diverse types of biomedical data have been generated and accumulated in the past
decade through multiple biomedical programs and initiatives managed by the NCATS. The
effort includes the Toxicology in the 21st Century program (Tox21) [5] and NCATS Biomedi-
cal Data Translator (Translator) [6], which provides complementary types of data from bioas-
say screening data to pathophysiology (i.e., the study of abnormal changes in body functions
that are the causes, consequences, or concomitants of disease processes [7]) related data
including objective signs and symptoms of disease, drug effects, and intervening types of bio-
logical data, has been selected and applied in this study. Tox21 established a library of around
10,000 compounds, containing roughly 3,700 approved and investigational drugs and 5,200
environmental chemicals [8]. The Tox21 library has been screened against over 70 in-vitro
assays (e.g., assays to identify compounds that interfere with nuclear receptor signaling or
stress response pathways). All data and detailed assay descriptions with target annotations are
publicly available (https://tripod.nih.gov/tox/pubdata/) and PubChem database [9]. Most of
these assays cover targets/pathways related to nuclear receptor signaling (NR, 55.90%), stress
response (SR, 11.80%), cytotoxicity (8.80%), and other toxicity-related targets/pathways
(23.50%). Data from Tox21 has been systematically preprocessed and performed quality con-
trol (QC, verifying the data quality) for toxicology applications [10-12], thereby providing a
valuable source as biological activity data and can therefore be used for drug repurposing. Bio-
medical Data Translator (“Translator”) is a multi-institution effort to develop a distributed
computational reasoning and knowledge exploration system [6]. Translator has integrated
over 250 knowledge sources, including highly curated biomedical databases such as Compara-
tive Toxicogenomics Database (CTD) [13], ontologies such as Mondo, the Monarch Disease
Ontology [14], and multiple NCATS owned resources, i.e., Genetic And Rare Diseases Infor-
mation Center (GARD) [15], Pharos [16]. With heterogenous types of biomedical data and
reasoning mechanisms implemented within Translator, it is thus a valuable resource of scien-
tific evidence to be explored for supporting various types of biomedical applications [17, 18],
including drug repurposing [19].

Prominent studies have introduced and explored the use and integration of heterogeneous
types of biomedical data for drug repurposing applications. Santamaria et al developed DIS-
NET, a knowledge base with a large complex network that stores information about diseases,
symptoms, genes, and drugs extracted from different public sources [20]. DISNET has been
applied to uncover novel patterns and associations and leads to hypotheses for new drug
repurposing case studies [21], including COVID-19 [22]. Peyvandipour et al introduced a sys-
tems biology approach for drug repurposing by building a drug-disease network with all inter-
actions between drug targets and disease-related genes in the context of all known signaling
pathways [23]. Gao et al introduced KG-Predict, a knowledge graph of more than one million
associations for 61 thousand entities from various genotypic and phenotypic databases, for
drug repurposing [24]. Zeng et al [25] constructed a biomedical knowledge graph with main
types of data from various resources including DrugBank, Supertarget, etc. for supporting
drug repurposing. Zhu et al developed an integrative knowledge graph named NCATS GARD
Knowledge Graph (NGKG), with rare diseases from GARD as a backbone and various rare
disease related resources [15]. The Board Drug Repurposing Hub (BDRH) was aimed at man-
ual curating a collection of 4,704 compounds, experimentally confirming their identifies, and
annotating them with literature-reported targets [26]. The Illuminating the Druggable
Genome (IDG) program has collected and organized information about protein targets, repre-
senting the most common druggable targets with an emphasis on understudied proteins. IDG
manages two resources including the Target Central Resource Database (TCRD) collating het-
erogeneous gene/protein datasets and Pharos [16] providing interfaces to access data from
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TCRD [16]. In this study, we explored the BDRH and Pharos to obtain chemical/drug and dis-
ease associations, and applied the NGKG along with data from Translator to validate drug
repurposing results. Meanwhile, the advanced computational techniques, like machine learn-
ing, deep learning has been actively applied to learn patterns in biomedical data related to
drugs and then link them to support the discovery of alternative uses of drugs [27-29]. We
clustered Tox21 chemical compounds by using the Self Organizing Map (SOM) [30] and hier-
archical clustering algorithm [31], which laid out the foundation of drug candidate identifica-
tion from those clusters of chemicals.

In this study, we used bioassay screening data from Tox21 to identify clusters of drugs
with similar biological activities for novel drug repurposing candidate discovery, then we
explored data from the NGKG and Translator to identify direct or indirect scientific evi-
dence for validation. More specifically, we present stepwise methods for candidate discov-
ery, including chemical compound clustering, gene annotations for clustered chemicals and
gene enrichment analysis for enriched gene identification for each cluster, from where we
were able to find novel genes to each cluster in the Methods section; then followed by case
studies to prove the novel genes identified from the above steps and infer new associations
to diseases via the identified genes by exploring biomedical data from the NGKG and
Translator.

Methods & materials

In this study, we utilized bioassay screening data from Tox21 to identify drug repurposing can-
didates and validated them with scientific evidence mined from the Translator ecosystem and
the NGKG. The overview of the method is shown in Fig 1.
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Fig 1. Overview of the drug repurposing framework.

https://doi.org/10.1371/journal.pone.0289518.9001
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Table 1. Examples of in-vitro bioassays used in the Tox21 program.

qHTS Assay Assay Target
tox21-ahr-pl Identifies small molecule that activate the aryl hydrocarbon receptor (AhR) signaling
pathway

tox21-apl-agonist-pl | Identifies small molecule agonists of the AP-1 signaling pathway

tox21-ar-bla-agonist- | Identifies small molecule agonists of the androgen receptor (AR) signaling pathway

pl

tox21-are-bla-p1 Identifies small molecule agonists of the antioxidant response element (ARE) signaling
pathway

tox21-car-agonist-pl | Identifies small molecule agonists of the constitutive androstane receptor (CAR) signaling
pathway

tox21-tshr-agonist-pl | Identifies small molecule agonists of the thyroid stimulating hormone receptor (TSHR)
signaling pathway

https://doi.org/10.1371/journal.pone.0289518.t001

Tox21 data preparation

The Tox21 10K compound library contains ~10,000 (8,971 unique) substances, including
drugs, pesticides, consumer products, food additives, industrial chemicals, cosmetics, etc. [32].
The qHTS data used in this analysis was generated by screening the Tox21 10K library against
78 in vitro assays (examples of bioassays are given in Table 1 and a complete list can be found
on the public Tox21 website [33]). Compound activity scores are reported using the curve
rank metric, which is valued between -9 and 9 determined by several features of the primary
concentration-response curve including potency, efficacy, and quality. A large positive curve
rank represents strong activation while a large negative curve rank represents strong inhibition
of the assay target. Of the 8,971 substances in the original dataset, 7,170 had curve rank data
across all the Tox21 in-vitro bioassays and only those compounds with activity data were used.

Tox21 compound clustering

We hypothesized that compounds with similar biological activity profiles may share similar
targets or modes of action. We clustered 7,170 compounds in the Tox21 10K library based on
their bioassay screening data by applying the self-organizing map (SOM) model, which has
been proved useful to model the Tox21 10K chemical profiles for in vivo toxicity prediction
and mechanism characterization [10]. Specifically, we fit a SOM model with the bioassay data
as input using the Kohonen package in R, [34] and a pairwise Euclidean distance metric.

Because the numbers of compounds within the SOM clusters were not equally distributed,
which could negatively impact the subsequent gene enrichment analysis, we merged small
SOM clusters with the number of compounds less than fifteen, using hierarchical clustering of
the SOM centroids. The hierarchical clustering was performed using the “complete” agglomer-
ation method based on Pearson correlation coefficients between SOM cluster centroids. This
approach merged small SOM clusters with adjacent SOM clusters that showed highest
similarity.

Identifying gene targets enriched in each cluster

Collecting gene annotations. To collect known gene targets for 7,170 Tox21 chemicals,
we harnessed publicly available associations between chemicals and genes from Pharos [16]
and the Board Drug Repurposing Hub (BDRH) [26]. Pharos and the BDRH provide compre-
hensive and complementary chemical and gene associations, which describes in the Results
section. We first mapped Tox21 chemicals to Pharos and the BDRH based on InchIKeys
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Table 2. A contingency table for gene target enrichment analysis.

Compounds targeting the gene Compounds targeting other genes
Within the cluster a b
Outside the cluster c d

a: number of compounds targeting the gene within the cluster.
b: number of compounds targeting the gene outside the cluster.
c: number of compounds targeting other genes within the cluster.

d: number of compounds targeting other genes outside the cluster.

https://doi.org/10.1371/journal.pone.0289518.t1002

which were converted from SMILES generated for each Tox21 chemicals with RDKit [35].
Notably, only the main component with the longest SMILES string in each compound struc-
ture was applied for InChIKey conversion and the first 14 characters in the InChIKey as the
primary key was used for chemical mapping. This step ensured that salts and stereo chemistry
were removed for chemical mappings. Once the chemicals mapped, we retrieved gene annota-
tions for those mapped chemicals from Pharos and the BDRH.

Gene target enrichment analysis and pathway enrichment analysis. After obtaining the
associated gene target(s) for chemicals from the above step, we performed gene target enrich-
ment analysis to identify gene targets enriched in each cluster. A contingency table was created
to calculate gene frequency inside or outside a certain cluster (see Table 2 for the gene target
enrichment use case). Significance of gene enrichment in a cluster was evaluated using one-
tailed Fisher’s exact test [36], followed by multiple testing corrections with the Bum class
implemented in Bioconductor/ClassComparison [37]. In the following analyses, we selected
enriched genes in a cluster using a false discovery rate (FDR) cutoff of 1%.

Evidence based drug repurposing. The Translator leverages integrated data from over
250 knowledge sources including highly curated biomedical data and derived clinical data [6],
which represents various types of data, such as Disease, SmallMolecule, ClinicalFinding, Cell,
etc. and the corresponding relationships including treats, gene_associated_with_condition,
has_phenotype, has_target in Biolink model [38]. Given such big biomedical data integrated
and presented in KGs within the Translator, it illustrates great opportunities to support evi-
dence based drug repurposing. More specifically, the enriched genes were identified for each
cluster, thus we aimed at identifying novel associations among enriched genes and chemicals
and possible related diseases by accessing the Translator, particularly ARAX [39], a Translator
tool. We selected three clusters for discovering potential drug repurposing candidates, which
describes in case studies.

Results
Clustering results

Chemicals from the Tox21 library were grouped into 142 clusters based on their bioassay activ-
ity profile similarity (i.e., the curve ranks) using the SOM algorithm. The complete clustering
results can be found in the S2 Data. The SOM clustering results are shown in Fig 2. Clusters
with more chemicals shown in dark yellow or red dots in the counts plot, are nearly inactive
against most of the bioassays. The distribution of clusters based on the number of compounds
is shown in Fig 3, where we can find that most clusters are associated with a small number of
compounds, less than 50. Thus, we further merged the small clusters based on hierarchical
clustering (see Methods).
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Counts plot

Fig 2. SOM clustering results. The dot denotes a cluster of chemicals, and the color of dots corresponds to the size of
the clusters (clusters with more chemicals shown in dark yellow or red dots).

https://doi.org/10.1371/journal.pone.0289518.9002

After hierarchical clustering applied over the SOM clusters, we merged 24 highly correlated
SOM clusters with less than 15 compounds based on Pearson Correlation Coefficient. For
example, we merged the cluster #117 with cluster #105 via hierarchical clustering. We retained
the cluster number 105 since #105 containing more compounds than #117. After merging, 129
clusters remained, and gene enrichment analysis was then performed on these clusters. The
complete clustering results can be found in the S1 Data.

To validate the performance of clustering algorithms, we examined chemical similarity
among those clusters. We obtained an average Tanimoto coefficient of 0.099 for more than 24

Number of compounds in each cluster
(mean=50, median=32)

400 1

300 1
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N
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Fig 3. Distribution of the SOM clusters based on the number of compounds.

https://doi.org/10.1371/journal.pone.0289518.g003
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(41.4%) (38.6%)

million unique chemical pairs across all clusters, and the average is almost doubled when we
looked at the intra-cluster coefficient of 0.171. Although the overall Tanimoto coefficient is
low given the diversity of Tox21 chemical compounds, it indicates those chemicals within the
clusters are more structurally similar than between clusters.

Gene target enrichment and pathway enrichment analysis

Of the 7,170 chemical compounds with bioassay data, we generated SMILES for 7,030 com-
pounds and the corresponding InChiKeys for 7,017 compounds. We identified a total of 1,001
unique genes that could target 1,535 compounds from Pharos, and 1,303 unique genes for
1,346 compounds from the BDRH. By combining these two sets, we mapped 1,829 distinct
compounds associated with 1,629 unique genes. 1,318 or 72% of these 1,829 compounds are
FDA approved drugs, 600 are procured from the EPA, and 470 are procured from the NTP.
Fig 4 shows overlaps of genes (Fig 4a) and chemical compounds (Fig 4b) from Pharos and the
BDRH. Clearly more gene targets were obtained from the BDRH than Pharos (Fig 4a), and
more compounds from Pharos than the BDRH (Fig 4b). The complete compound and gene
relationships can be found in the supplemental materials.

Once we obtained associated genes for chemicals from each cluster, we performed enrich-
ment analysis against the 129 clusters, testing the overrepresentation of gene target associa-
tions with compounds present in each cluster. Of those 129 clusters, 120 clusters had one or
more enriched genes based on the p-value cutoff value of 0.0086, as calculated by the Bum
class (see Methods). The number of enriched gene targets for each cluster varies from 1 to 65,
with a mean of eight targets. Fig 5 shows the distribution of the number of enriched genes
across drug clusters.

We then analyzed pathways associated with these enriched gene targets. To establish a
global trend of enrichment of biological pathways within clusters, we compared our results to
a pathway enrichment analysis of random drug targets grouped within clusters of the same
size of the actual data. We found a much larger number of enriched pathways in the actual
data than in the randomized data, confirming that compounds targeting similar pathways are
clustered by our method (Fig 6).

a. Gene comparison b. Chemical compound comparison

1052 - 294

675 628
(57.5%)  (16/1%)

(26.4%)

Pharos BDRH

Fig 4. Overlap in genes and compounds between Pharos and the BDRH. a) more gene targets were found in the BDRH than via Pharos; b)
Pharos had more compounds than BDRH.

https://doi.org/10.1371/journal.pone.0289518.9004
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Fig 5. Distribution of the number of enriched gene targets for each cluster.
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Fig 6. Comparing pathway analysis p values in randomized gene target clusters (left) versus pathway analysis p values from the
actual Tox21 drug clusters (right).

https://doi.org/10.1371/journal.pone.0289518.9g006
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Drug repurposing candidate identification

We validated clusters of drugs from the above steps with evidence derived from the Translator
and the NGKG in an effort to evaluate the utility of the clusters for drug repurposing. Three
clusters were selected for investigation.

Case study 1. We found that cluster #1 is a GPCR-enriched cluster, of the 32 compounds
in cluster #1, 27 compounds were associated with at least one of the enriched GPCR targets.
Enriched pathways in this cluster included “Monoamine GPCRs” (Holm-adjusted p = 4.26e-
75), “Amine ligand-binding receptors” (Holm-adjusted p = 3.43e-71) and “GPCRs, other”
(Holm-adjusted p = 1.43e-08). G-protein-coupled receptors (GPCRs) are transmembrane pro-
teins that reside on cell surfaces. They can detect molecules outside the cell and activate cellular
responses. GPCRs are important drug targets, and about 1/3 to 1/2 of all marketed drugs act
by binding to GPCRs [40].

In this case study, we aimed to validate whether GPCR gene targets in these clusters have
potential associations to the compounds in cluster #1, particularly for those compounds with-
out annotated genes identified from Pharos and the BDRH. Among the five compounds with-
out annotated genes in this cluster, three are FDA approved drugs, Fabesetron, Ftormetazine
and Difeterol. We next investigated whether these drugs had potential associations with any
GPCR targets by exploring Translator as well as the NGKG.

Fabesetron is a serotonin receptor antagonist that was developed for chemotherapy-
induced emesis in the 2000s, but clinical development was terminated in phase II due to
reported side-effects [41]. As a member of GPCR family, HTR4 is related to Fabesetron was
identified via Translator. Furthermore, additional GPCR genes were found via inference by
adding one intermediate node (a wild node) between Fabesetron and GPCR genes as a query
graph. Ftormetazine is a derivative of the phenothiazine class of antipsychotic drugs that act
on the muscarinic cholinergic system; it is associated with Selective Serotonin Reuptake Inhib-
itors (SSRIs), and is a SSRI related antidepressant, which has been approved by querying the
NGKG. Lastly, we found that Difeterol, an antihistamine used as an OTC drug in Japan
(https://www.genome.jp/entry/D09748), is a subclass of Histamine-1 Receptor Antagonist via
Translator. Details about those findings are listed in Fig 7. Collectively, these findings provide
further support for cluster #1 as being primarily comprised of drugs related to GPCR-targeting
that could be repurposed for diseases that involve GPCR targets.

Case study 2. Cluster #2 is enriched with kinase targeting compounds. Enriched pathways
associated with cluster 2 include “Signaling by ERBB2 in Cancer” (Holm-adjusted p = 0.045),
“PI3K events in ERBB2 signaling” (Holm-adjusted p = 0.013), and “GRB2 events in ERBB2 sig-
naling” (Holm-adjusted p = 0.013). According to OMIM [42] and Orphanet [43], one gene
among eleven enriched genes in this cluster, ERBB2 and associated pathways are linked with a
wide range of cancers, including lung adenocarcinoma, gastric cancer, glioblastoma, and ovar-
ian cancer. We first attempted to identify potential associations between ERBB2 and the com-
pounds in the cluster via Translator. Out of nineteen compounds in this cluster, Posaconazole
(PubChem:468595) is an antifungal, and can treat or prevent fungal infections, especially in
people with weak immune systems. Further, we found associations between ERBB2 and Posa-
conazole through different intermediate drug nodes, which present drug-drug interaction
with Posaconazole, shown in Fig 8.

Given the associations between Posaconazole and ERBB2 (Fig 8), and ERBB2 and glioblas-
toma (from OMIM), we hypothesized that Posaconazole might be repurposed for glioblas-
toma, which was further supported by the Translator, shown in Fig 9. Concomitantly,
numerous studies have suggested there are strong relationships from azoles such as Posacona-
zole as a potential treatment option for glioblastoma [44-46], although the mechanisms by
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Fig 7. Gene-compound association discovery for the GPCR enriched cluster #1.

https://doi.org/10.1371/journal.pone.0289518.9007

which azoles inhibit glioblastoma cell growth have yet to be elucidated. The impact of Posaco-
nazole on glioblastoma tumor survival in both in vivo and in vitro studies, combined with its
status as a previously approved anti-fungal treatment, have led to a phase 0 clinical trial test of
Posaconazole in glioblastoma [47].
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Case study 3. For cluster #105, we scanned through 25 compounds without gene annota-
tions out of 36 compounds, to identify any potential associations between those compounds
and enriched genes. One of these compounds, Kaempferol, which is a chemical found in fruits
and vegetables and might reduce cancer risks and development [48], presents strong associa-
tions with DPP4, 1 of 17 enriched genes by querying Translator (Fig 10). Meanwhile we found
319 DPP4 correlated diseases, including COVID-19 (see the resulting graph at https://arax.
ncats.io/?r=65921). Furthermore, we looked for inferred paths linking Kaempferol to any dis-
eases via DPP4 and another gene target based on the route of “Kaempferol-gene-DPP4-Di-
sease”. Search results (accessible at https://arax.ncats.io/?r=65933) highlight the association
between Middle East respiratory syndrome and DPP4 [49]. By synthesizing the above identi-
fied findings/associations, we concluded that Kaempferol might be used for the treatment of
COVID-19. Supporting our hypothesis, Kaempferol has been reported to show anti-SARS--
CoV-2 activity in vitro [50-52].

Discussion

In this study, we demonstrated the use of NCATS in-house biomedical data for generating rel-
evant hypotheses towards drug repurposing. Tox21 applies standard protocols to manage 10K

glioblastoma

IRINOTECAN MDM2 brain Neoplastic Cell glioma

POSACONAZOLE

Fig 9. Associations between Posaconazole and Glioblastoma, the details can be found at https://arax.ncats.io/?r=116621.

https://doi.org/10.1371/journal.pone.0289518.g009
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Fig 10. Associations between Kaempferol and DPP4, the details can be found at https://arax.ncats.io/?r=65916.
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compounds of which 3,700 FDA approved and investigational drugs across 70 different bioas-
says and produced a robust set of screening data for toxicology applications. Translator aggre-
gates diverse biomedical resources and inference engines for supporting various biomedical
applications. Pharos provides facile access to various types of data surrounding any targets.
The NGKG integrates comprehensive biomedical data pertinent to GARD rare diseases. Each
of these resources provide complementary information to supplement different aspects of the
present drug repurposing pipeline. We clustered Tox21 compounds based on their in vitro
bioassay activity profiles uncovered underlying shared molecular mechanisms that provide
key information to identify repurposed drug candidates. Pharos was applied to identify associ-
ated gene targets for Tox21 chemical compounds. We explored the Translator and the NGKG
to identify scientific evidence for validating drug repurposing candidates. Although we were
able to apply those resources to find potential candidates, which are illustrated in the case stud-
ies, we acknowledged the limitations of those resources and proposed extension accordingly.
One caveat regarding the Tox21 bioassays is that the targets represented by these assays are not
very diverse focusing primarily on two toxicity-related areas, i.e., nuclear receptor signaling
and stress response. Thus, as the next step, we will include additional bioassay data, such as,
PubChem Bioassay. Translator has capability of mining its underlying aggregated data to
uncover hidden biomedical insight, however the current process of uncovering hidden associ-
ations/evidence is mainly relied on manual assessment and interpretation from a great number
of inferred results. We manually reviewed and filtered the meaningful associations generated
by the Translator for the presented three case studies. To automate this process, we will work
closely with the Translator team on result organizing and ranking. Pharos and the BDRH were
applied for gene and chemical association retrieval, from where associated genes have been
obtained for about 26% (1,829) Tox21 compounds. As a proof-of-principle study, we did not
extend the mapped genes with additional resources since our goal was to demonstrate feasibil-
ity of the pipeline for supporting drug repurposing. In the future, we will include more
resources to expand the annotated gene list for Tox21 compounds to enhance the ability of
gene enrichment analysis.

Tox21 compounds were clustered using SOM supplemented with hierarchical clustering
based on shared biological activities based on bioassay screening data. By performing chemical
structure similarity comparison and pathway enrichment analysis, we confirmed that
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chemicals are more structurally related within the clusters than outside the clusters based on
their chemical structures, and compounds targeting similar pathways are clustered by our clus-
ter method. Together, the findings confirmed that the relationships between compounds, gene
target, and diseases, along with structural data, could be harnessed from existing data sources
such as Tox21 and be used to inform the identification of drug repurposing candidates. Future
work aims to identify the biochemical and structural properties exhibited by these compounds
as features to construct predictive models that can potentially evaluate a given compound’s
level of association to a rare disease.

We performed three case studies to demonstrate the capability of our pipeline for drug
repurposing by utilizing NCATS in-house data. We identified the compounds in cluster #1 are
GPCR-targeting which has been proved with scientific evidence identified from the Translator.
The drugs in this cluster can potentially be repurposed for diseases that involve GPCR targets.
We also found that Posaconazole, an antifungal drug might be repurposed for glioblastoma,
which is in phase 0 clinical trial; and Kaempferol, a natural flavanol might be used for COVID-
19. As a proof-of-concept, only three clusters were selected for investigation, as a next step, we
will study more clusters from the rest of 126 clusters with consultation of subject matter
experts (SMEs). All those findings can serve as initial validation of our approach and will be
turther evaluated by conducting biological experiments, which will be planned for the next
step.
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