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Abstract

Drug repurposing is a strategy for identifying new uses of approved or investigational drugs

that are outside the scope of the original medical indication. Even though many repurposed

drugs have been found serendipitously in the past, the increasing availability of large vol-

umes of biomedical data has enabled more systemic, data-driven approaches for drug can-

didate identification. At National Center of Advancing Translational Sciences (NCATS), we

invent new methods to generate new data and information publicly available to spur innova-

tion and scientific discovery. In this study, we aimed to explore and demonstrate biomedical

data generated and collected via two NCATS research programs, the Toxicology in the 21st

Century program (Tox21) and the Biomedical Data Translator (Translator) for the applica-

tion of drug repurposing. These two programs provide complementary types of biomedical

data from uncovering underlying biological mechanisms with bioassay screening data from

Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined

from the Translator towards drug repurposing. 129 chemical clusters have been generated

and three of them have been further investigated for drug repurposing candidate identifica-

tion, which is detailed as case studies.

Introduction

Drug discovery is an expensive area of research and development in terms of both time and

financial resources. The time frame for developing new treatments can range from 3 to 20

years and the associated costs can reach tens of billions of dollars [1]. Drug repurposing is a

strategy for identifying new uses for approved or investigational drugs that are outside the

scope of the original medical indication [2]. Even though many repurposed drugs have been

found serendipitously in the past [3, 4], more systemic and data-driven approaches for drug

candidate identification are becoming increasingly prominent. Given advancements in

computational technology and science, the amount of biomedical data has recently exploded,

thereby offering tremendous opportunities for supporting drug repurposing, from the design

of clinical studies to improving understanding of how to target molecular mechanisms to

modulate disease processes. With the mission of National Center of Advancing Translational
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Sciences (NCATS), turning research observations into health solutions through translational

science, diverse types of biomedical data have been generated and accumulated in the past

decade through multiple biomedical programs and initiatives managed by the NCATS. The

effort includes the Toxicology in the 21st Century program (Tox21) [5] and NCATS Biomedi-

cal Data Translator (Translator) [6], which provides complementary types of data from bioas-

say screening data to pathophysiology (i.e., the study of abnormal changes in body functions

that are the causes, consequences, or concomitants of disease processes [7]) related data

including objective signs and symptoms of disease, drug effects, and intervening types of bio-

logical data, has been selected and applied in this study. Tox21 established a library of around

10,000 compounds, containing roughly 3,700 approved and investigational drugs and 5,200

environmental chemicals [8]. The Tox21 library has been screened against over 70 in-vitro

assays (e.g., assays to identify compounds that interfere with nuclear receptor signaling or

stress response pathways). All data and detailed assay descriptions with target annotations are

publicly available (https://tripod.nih.gov/tox/pubdata/) and PubChem database [9]. Most of

these assays cover targets/pathways related to nuclear receptor signaling (NR, 55.90%), stress

response (SR, 11.80%), cytotoxicity (8.80%), and other toxicity-related targets/pathways

(23.50%). Data from Tox21 has been systematically preprocessed and performed quality con-

trol (QC, verifying the data quality) for toxicology applications [10–12], thereby providing a

valuable source as biological activity data and can therefore be used for drug repurposing. Bio-

medical Data Translator (“Translator”) is a multi-institution effort to develop a distributed

computational reasoning and knowledge exploration system [6]. Translator has integrated

over 250 knowledge sources, including highly curated biomedical databases such as Compara-

tive Toxicogenomics Database (CTD) [13], ontologies such as Mondo, the Monarch Disease

Ontology [14], and multiple NCATS owned resources, i.e., Genetic And Rare Diseases Infor-

mation Center (GARD) [15], Pharos [16]. With heterogenous types of biomedical data and

reasoning mechanisms implemented within Translator, it is thus a valuable resource of scien-

tific evidence to be explored for supporting various types of biomedical applications [17, 18],

including drug repurposing [19].

Prominent studies have introduced and explored the use and integration of heterogeneous

types of biomedical data for drug repurposing applications. Santamarı́a et al developed DIS-

NET, a knowledge base with a large complex network that stores information about diseases,

symptoms, genes, and drugs extracted from different public sources [20]. DISNET has been

applied to uncover novel patterns and associations and leads to hypotheses for new drug

repurposing case studies [21], including COVID-19 [22]. Peyvandipour et al introduced a sys-

tems biology approach for drug repurposing by building a drug-disease network with all inter-

actions between drug targets and disease-related genes in the context of all known signaling

pathways [23]. Gao et al introduced KG-Predict, a knowledge graph of more than one million

associations for 61 thousand entities from various genotypic and phenotypic databases, for

drug repurposing [24]. Zeng et al [25] constructed a biomedical knowledge graph with main

types of data from various resources including DrugBank, Supertarget, etc. for supporting

drug repurposing. Zhu et al developed an integrative knowledge graph named NCATS GARD

Knowledge Graph (NGKG), with rare diseases from GARD as a backbone and various rare

disease related resources [15]. The Board Drug Repurposing Hub (BDRH) was aimed at man-

ual curating a collection of 4,704 compounds, experimentally confirming their identifies, and

annotating them with literature-reported targets [26]. The Illuminating the Druggable

Genome (IDG) program has collected and organized information about protein targets, repre-

senting the most common druggable targets with an emphasis on understudied proteins. IDG

manages two resources including the Target Central Resource Database (TCRD) collating het-

erogeneous gene/protein datasets and Pharos [16] providing interfaces to access data from
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TCRD [16]. In this study, we explored the BDRH and Pharos to obtain chemical/drug and dis-

ease associations, and applied the NGKG along with data from Translator to validate drug

repurposing results. Meanwhile, the advanced computational techniques, like machine learn-

ing, deep learning has been actively applied to learn patterns in biomedical data related to

drugs and then link them to support the discovery of alternative uses of drugs [27–29]. We

clustered Tox21 chemical compounds by using the Self Organizing Map (SOM) [30] and hier-

archical clustering algorithm [31], which laid out the foundation of drug candidate identifica-

tion from those clusters of chemicals.

In this study, we used bioassay screening data from Tox21 to identify clusters of drugs

with similar biological activities for novel drug repurposing candidate discovery, then we

explored data from the NGKG and Translator to identify direct or indirect scientific evi-

dence for validation. More specifically, we present stepwise methods for candidate discov-

ery, including chemical compound clustering, gene annotations for clustered chemicals and

gene enrichment analysis for enriched gene identification for each cluster, from where we

were able to find novel genes to each cluster in the Methods section; then followed by case

studies to prove the novel genes identified from the above steps and infer new associations

to diseases via the identified genes by exploring biomedical data from the NGKG and

Translator.

Methods & materials

In this study, we utilized bioassay screening data from Tox21 to identify drug repurposing can-

didates and validated them with scientific evidence mined from the Translator ecosystem and

the NGKG. The overview of the method is shown in Fig 1.

Fig 1. Overview of the drug repurposing framework.

https://doi.org/10.1371/journal.pone.0289518.g001
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Tox21 data preparation

The Tox21 10K compound library contains ~10,000 (8,971 unique) substances, including

drugs, pesticides, consumer products, food additives, industrial chemicals, cosmetics, etc. [32].

The qHTS data used in this analysis was generated by screening the Tox21 10K library against

78 in vitro assays (examples of bioassays are given in Table 1 and a complete list can be found

on the public Tox21 website [33]). Compound activity scores are reported using the curve

rank metric, which is valued between -9 and 9 determined by several features of the primary

concentration-response curve including potency, efficacy, and quality. A large positive curve

rank represents strong activation while a large negative curve rank represents strong inhibition

of the assay target. Of the 8,971 substances in the original dataset, 7,170 had curve rank data

across all the Tox21 in-vitro bioassays and only those compounds with activity data were used.

Tox21 compound clustering

We hypothesized that compounds with similar biological activity profiles may share similar

targets or modes of action. We clustered 7,170 compounds in the Tox21 10K library based on

their bioassay screening data by applying the self-organizing map (SOM) model, which has

been proved useful to model the Tox21 10K chemical profiles for in vivo toxicity prediction

and mechanism characterization [10]. Specifically, we fit a SOM model with the bioassay data

as input using the Kohonen package in R, [34] and a pairwise Euclidean distance metric.

Because the numbers of compounds within the SOM clusters were not equally distributed,

which could negatively impact the subsequent gene enrichment analysis, we merged small

SOM clusters with the number of compounds less than fifteen, using hierarchical clustering of

the SOM centroids. The hierarchical clustering was performed using the “complete” agglomer-

ation method based on Pearson correlation coefficients between SOM cluster centroids. This

approach merged small SOM clusters with adjacent SOM clusters that showed highest

similarity.

Identifying gene targets enriched in each cluster

Collecting gene annotations. To collect known gene targets for 7,170 Tox21 chemicals,

we harnessed publicly available associations between chemicals and genes from Pharos [16]

and the Board Drug Repurposing Hub (BDRH) [26]. Pharos and the BDRH provide compre-

hensive and complementary chemical and gene associations, which describes in the Results

section. We first mapped Tox21 chemicals to Pharos and the BDRH based on InchIKeys

Table 1. Examples of in-vitro bioassays used in the Tox21 program.

qHTS Assay Assay Target

tox21-ahr-p1 Identifies small molecule that activate the aryl hydrocarbon receptor (AhR) signaling

pathway

tox21-ap1-agonist-p1 Identifies small molecule agonists of the AP-1 signaling pathway

tox21-ar-bla-agonist-

p1

Identifies small molecule agonists of the androgen receptor (AR) signaling pathway

tox21-are-bla-p1 Identifies small molecule agonists of the antioxidant response element (ARE) signaling

pathway

tox21-car-agonist-p1 Identifies small molecule agonists of the constitutive androstane receptor (CAR) signaling

pathway

tox21-tshr-agonist-p1 Identifies small molecule agonists of the thyroid stimulating hormone receptor (TSHR)

signaling pathway

https://doi.org/10.1371/journal.pone.0289518.t001
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which were converted from SMILES generated for each Tox21 chemicals with RDKit [35].

Notably, only the main component with the longest SMILES string in each compound struc-

ture was applied for InChIKey conversion and the first 14 characters in the InChIKey as the

primary key was used for chemical mapping. This step ensured that salts and stereo chemistry

were removed for chemical mappings. Once the chemicals mapped, we retrieved gene annota-

tions for those mapped chemicals from Pharos and the BDRH.

Gene target enrichment analysis and pathway enrichment analysis. After obtaining the

associated gene target(s) for chemicals from the above step, we performed gene target enrich-

ment analysis to identify gene targets enriched in each cluster. A contingency table was created

to calculate gene frequency inside or outside a certain cluster (see Table 2 for the gene target

enrichment use case). Significance of gene enrichment in a cluster was evaluated using one-

tailed Fisher’s exact test [36], followed by multiple testing corrections with the Bum class

implemented in Bioconductor/ClassComparison [37]. In the following analyses, we selected

enriched genes in a cluster using a false discovery rate (FDR) cutoff of 1%.

Evidence based drug repurposing. The Translator leverages integrated data from over

250 knowledge sources including highly curated biomedical data and derived clinical data [6],

which represents various types of data, such as Disease, SmallMolecule, ClinicalFinding, Cell,

etc. and the corresponding relationships including treats, gene_associated_with_condition,

has_phenotype, has_target in Biolink model [38]. Given such big biomedical data integrated

and presented in KGs within the Translator, it illustrates great opportunities to support evi-

dence based drug repurposing. More specifically, the enriched genes were identified for each

cluster, thus we aimed at identifying novel associations among enriched genes and chemicals

and possible related diseases by accessing the Translator, particularly ARAX [39], a Translator

tool. We selected three clusters for discovering potential drug repurposing candidates, which

describes in case studies.

Results

Clustering results

Chemicals from the Tox21 library were grouped into 142 clusters based on their bioassay activ-

ity profile similarity (i.e., the curve ranks) using the SOM algorithm. The complete clustering

results can be found in the S2 Data. The SOM clustering results are shown in Fig 2. Clusters

with more chemicals shown in dark yellow or red dots in the counts plot, are nearly inactive

against most of the bioassays. The distribution of clusters based on the number of compounds

is shown in Fig 3, where we can find that most clusters are associated with a small number of

compounds, less than 50. Thus, we further merged the small clusters based on hierarchical

clustering (see Methods).

Table 2. A contingency table for gene target enrichment analysis.

Compounds targeting the gene Compounds targeting other genes

Within the cluster a b

Outside the cluster c d

a: number of compounds targeting the gene within the cluster.

b: number of compounds targeting the gene outside the cluster.

c: number of compounds targeting other genes within the cluster.

d: number of compounds targeting other genes outside the cluster.

https://doi.org/10.1371/journal.pone.0289518.t002
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After hierarchical clustering applied over the SOM clusters, we merged 24 highly correlated

SOM clusters with less than 15 compounds based on Pearson Correlation Coefficient. For

example, we merged the cluster #117 with cluster #105 via hierarchical clustering. We retained

the cluster number 105 since #105 containing more compounds than #117. After merging, 129

clusters remained, and gene enrichment analysis was then performed on these clusters. The

complete clustering results can be found in the S1 Data.

To validate the performance of clustering algorithms, we examined chemical similarity

among those clusters. We obtained an average Tanimoto coefficient of 0.099 for more than 24

Fig 2. SOM clustering results. The dot denotes a cluster of chemicals, and the color of dots corresponds to the size of

the clusters (clusters with more chemicals shown in dark yellow or red dots).

https://doi.org/10.1371/journal.pone.0289518.g002

Fig 3. Distribution of the SOM clusters based on the number of compounds.

https://doi.org/10.1371/journal.pone.0289518.g003
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million unique chemical pairs across all clusters, and the average is almost doubled when we

looked at the intra-cluster coefficient of 0.171. Although the overall Tanimoto coefficient is

low given the diversity of Tox21 chemical compounds, it indicates those chemicals within the

clusters are more structurally similar than between clusters.

Gene target enrichment and pathway enrichment analysis

Of the 7,170 chemical compounds with bioassay data, we generated SMILES for 7,030 com-

pounds and the corresponding InChiKeys for 7,017 compounds. We identified a total of 1,001

unique genes that could target 1,535 compounds from Pharos, and 1,303 unique genes for

1,346 compounds from the BDRH. By combining these two sets, we mapped 1,829 distinct

compounds associated with 1,629 unique genes. 1,318 or 72% of these 1,829 compounds are

FDA approved drugs, 600 are procured from the EPA, and 470 are procured from the NTP.

Fig 4 shows overlaps of genes (Fig 4a) and chemical compounds (Fig 4b) from Pharos and the

BDRH. Clearly more gene targets were obtained from the BDRH than Pharos (Fig 4a), and

more compounds from Pharos than the BDRH (Fig 4b). The complete compound and gene

relationships can be found in the supplemental materials.

Once we obtained associated genes for chemicals from each cluster, we performed enrich-

ment analysis against the 129 clusters, testing the overrepresentation of gene target associa-

tions with compounds present in each cluster. Of those 129 clusters, 120 clusters had one or

more enriched genes based on the p-value cutoff value of 0.0086, as calculated by the Bum

class (see Methods). The number of enriched gene targets for each cluster varies from 1 to 65,

with a mean of eight targets. Fig 5 shows the distribution of the number of enriched genes

across drug clusters.

We then analyzed pathways associated with these enriched gene targets. To establish a

global trend of enrichment of biological pathways within clusters, we compared our results to

a pathway enrichment analysis of random drug targets grouped within clusters of the same

size of the actual data. We found a much larger number of enriched pathways in the actual

data than in the randomized data, confirming that compounds targeting similar pathways are

clustered by our method (Fig 6).

Fig 4. Overlap in genes and compounds between Pharos and the BDRH. a) more gene targets were found in the BDRH than via Pharos; b)

Pharos had more compounds than BDRH.

https://doi.org/10.1371/journal.pone.0289518.g004
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Fig 5. Distribution of the number of enriched gene targets for each cluster.

https://doi.org/10.1371/journal.pone.0289518.g005

Fig 6. Comparing pathway analysis p values in randomized gene target clusters (left) versus pathway analysis p values from the

actual Tox21 drug clusters (right).

https://doi.org/10.1371/journal.pone.0289518.g006
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Drug repurposing candidate identification

We validated clusters of drugs from the above steps with evidence derived from the Translator

and the NGKG in an effort to evaluate the utility of the clusters for drug repurposing. Three

clusters were selected for investigation.

Case study 1. We found that cluster #1 is a GPCR-enriched cluster, of the 32 compounds

in cluster #1, 27 compounds were associated with at least one of the enriched GPCR targets.

Enriched pathways in this cluster included “Monoamine GPCRs” (Holm-adjusted p = 4.26e-

75), “Amine ligand-binding receptors” (Holm-adjusted p = 3.43e-71) and “GPCRs, other”

(Holm-adjusted p = 1.43e-08). G-protein-coupled receptors (GPCRs) are transmembrane pro-

teins that reside on cell surfaces. They can detect molecules outside the cell and activate cellular

responses. GPCRs are important drug targets, and about 1/3 to 1/2 of all marketed drugs act

by binding to GPCRs [40].

In this case study, we aimed to validate whether GPCR gene targets in these clusters have

potential associations to the compounds in cluster #1, particularly for those compounds with-

out annotated genes identified from Pharos and the BDRH. Among the five compounds with-

out annotated genes in this cluster, three are FDA approved drugs, Fabesetron, Ftormetazine

and Difeterol. We next investigated whether these drugs had potential associations with any

GPCR targets by exploring Translator as well as the NGKG.

Fabesetron is a serotonin receptor antagonist that was developed for chemotherapy-

induced emesis in the 2000s, but clinical development was terminated in phase II due to

reported side-effects [41]. As a member of GPCR family, HTR4 is related to Fabesetron was

identified via Translator. Furthermore, additional GPCR genes were found via inference by

adding one intermediate node (a wild node) between Fabesetron and GPCR genes as a query

graph. Ftormetazine is a derivative of the phenothiazine class of antipsychotic drugs that act

on the muscarinic cholinergic system; it is associated with Selective Serotonin Reuptake Inhib-

itors (SSRIs), and is a SSRI related antidepressant, which has been approved by querying the

NGKG. Lastly, we found that Difeterol, an antihistamine used as an OTC drug in Japan

(https://www.genome.jp/entry/D09748), is a subclass of Histamine-1 Receptor Antagonist via

Translator. Details about those findings are listed in Fig 7. Collectively, these findings provide

further support for cluster #1 as being primarily comprised of drugs related to GPCR-targeting

that could be repurposed for diseases that involve GPCR targets.

Case study 2. Cluster #2 is enriched with kinase targeting compounds. Enriched pathways

associated with cluster 2 include “Signaling by ERBB2 in Cancer” (Holm-adjusted p = 0.045),

“PI3K events in ERBB2 signaling” (Holm-adjusted p = 0.013), and “GRB2 events in ERBB2 sig-

naling” (Holm-adjusted p = 0.013). According to OMIM [42] and Orphanet [43], one gene

among eleven enriched genes in this cluster, ERBB2 and associated pathways are linked with a

wide range of cancers, including lung adenocarcinoma, gastric cancer, glioblastoma, and ovar-

ian cancer. We first attempted to identify potential associations between ERBB2 and the com-

pounds in the cluster via Translator. Out of nineteen compounds in this cluster, Posaconazole

(PubChem:468595) is an antifungal, and can treat or prevent fungal infections, especially in

people with weak immune systems. Further, we found associations between ERBB2 and Posa-

conazole through different intermediate drug nodes, which present drug-drug interaction

with Posaconazole, shown in Fig 8.

Given the associations between Posaconazole and ERBB2 (Fig 8), and ERBB2 and glioblas-

toma (from OMIM), we hypothesized that Posaconazole might be repurposed for glioblas-

toma, which was further supported by the Translator, shown in Fig 9. Concomitantly,

numerous studies have suggested there are strong relationships from azoles such as Posacona-

zole as a potential treatment option for glioblastoma [44–46], although the mechanisms by
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which azoles inhibit glioblastoma cell growth have yet to be elucidated. The impact of Posaco-

nazole on glioblastoma tumor survival in both in vivo and in vitro studies, combined with its

status as a previously approved anti-fungal treatment, have led to a phase 0 clinical trial test of

Posaconazole in glioblastoma [47].

Fig 7. Gene-compound association discovery for the GPCR enriched cluster #1.

https://doi.org/10.1371/journal.pone.0289518.g007
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Case study 3. For cluster #105, we scanned through 25 compounds without gene annota-

tions out of 36 compounds, to identify any potential associations between those compounds

and enriched genes. One of these compounds, Kaempferol, which is a chemical found in fruits

and vegetables and might reduce cancer risks and development [48], presents strong associa-

tions with DPP4, 1 of 17 enriched genes by querying Translator (Fig 10). Meanwhile we found

319 DPP4 correlated diseases, including COVID-19 (see the resulting graph at https://arax.

ncats.io/?r=65921). Furthermore, we looked for inferred paths linking Kaempferol to any dis-

eases via DPP4 and another gene target based on the route of “Kaempferol-gene-DPP4-Di-

sease”. Search results (accessible at https://arax.ncats.io/?r=65933) highlight the association

between Middle East respiratory syndrome and DPP4 [49]. By synthesizing the above identi-

fied findings/associations, we concluded that Kaempferol might be used for the treatment of

COVID-19. Supporting our hypothesis, Kaempferol has been reported to show anti-SARS--

CoV-2 activity in vitro [50–52].

Discussion

In this study, we demonstrated the use of NCATS in-house biomedical data for generating rel-

evant hypotheses towards drug repurposing. Tox21 applies standard protocols to manage 10K

Fig 8. Associations between ERBB2 and Posaconazole. The details can be found at https://arax.ncats.io/?r=66179.

https://doi.org/10.1371/journal.pone.0289518.g008

Fig 9. Associations between Posaconazole and Glioblastoma, the details can be found at https://arax.ncats.io/?r=116621.

https://doi.org/10.1371/journal.pone.0289518.g009
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compounds of which 3,700 FDA approved and investigational drugs across 70 different bioas-

says and produced a robust set of screening data for toxicology applications. Translator aggre-

gates diverse biomedical resources and inference engines for supporting various biomedical

applications. Pharos provides facile access to various types of data surrounding any targets.

The NGKG integrates comprehensive biomedical data pertinent to GARD rare diseases. Each

of these resources provide complementary information to supplement different aspects of the

present drug repurposing pipeline. We clustered Tox21 compounds based on their in vitro

bioassay activity profiles uncovered underlying shared molecular mechanisms that provide

key information to identify repurposed drug candidates. Pharos was applied to identify associ-

ated gene targets for Tox21 chemical compounds. We explored the Translator and the NGKG

to identify scientific evidence for validating drug repurposing candidates. Although we were

able to apply those resources to find potential candidates, which are illustrated in the case stud-

ies, we acknowledged the limitations of those resources and proposed extension accordingly.

One caveat regarding the Tox21 bioassays is that the targets represented by these assays are not

very diverse focusing primarily on two toxicity-related areas, i.e., nuclear receptor signaling

and stress response. Thus, as the next step, we will include additional bioassay data, such as,

PubChem Bioassay. Translator has capability of mining its underlying aggregated data to

uncover hidden biomedical insight, however the current process of uncovering hidden associ-

ations/evidence is mainly relied on manual assessment and interpretation from a great number

of inferred results. We manually reviewed and filtered the meaningful associations generated

by the Translator for the presented three case studies. To automate this process, we will work

closely with the Translator team on result organizing and ranking. Pharos and the BDRH were

applied for gene and chemical association retrieval, from where associated genes have been

obtained for about 26% (1,829) Tox21 compounds. As a proof-of-principle study, we did not

extend the mapped genes with additional resources since our goal was to demonstrate feasibil-

ity of the pipeline for supporting drug repurposing. In the future, we will include more

resources to expand the annotated gene list for Tox21 compounds to enhance the ability of

gene enrichment analysis.

Tox21 compounds were clustered using SOM supplemented with hierarchical clustering

based on shared biological activities based on bioassay screening data. By performing chemical

structure similarity comparison and pathway enrichment analysis, we confirmed that

Fig 10. Associations between Kaempferol and DPP4, the details can be found at https://arax.ncats.io/?r=65916.

https://doi.org/10.1371/journal.pone.0289518.g010
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chemicals are more structurally related within the clusters than outside the clusters based on

their chemical structures, and compounds targeting similar pathways are clustered by our clus-

ter method. Together, the findings confirmed that the relationships between compounds, gene

target, and diseases, along with structural data, could be harnessed from existing data sources

such as Tox21 and be used to inform the identification of drug repurposing candidates. Future

work aims to identify the biochemical and structural properties exhibited by these compounds

as features to construct predictive models that can potentially evaluate a given compound’s

level of association to a rare disease.

We performed three case studies to demonstrate the capability of our pipeline for drug

repurposing by utilizing NCATS in-house data. We identified the compounds in cluster #1 are

GPCR-targeting which has been proved with scientific evidence identified from the Translator.

The drugs in this cluster can potentially be repurposed for diseases that involve GPCR targets.

We also found that Posaconazole, an antifungal drug might be repurposed for glioblastoma,

which is in phase 0 clinical trial; and Kaempferol, a natural flavanol might be used for COVID-

19. As a proof-of-concept, only three clusters were selected for investigation, as a next step, we

will study more clusters from the rest of 126 clusters with consultation of subject matter

experts (SMEs). All those findings can serve as initial validation of our approach and will be

further evaluated by conducting biological experiments, which will be planned for the next

step.
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