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Abstract

The inspection of stained tissue slides by pathologists is essential for the early detection,

diagnosis and monitoring of disease. Recently, deep learning methods for the analysis of

whole-slide images (WSIs) have shown excellent performance on these tasks, and have the

potential to substantially reduce the workload of pathologists. However, WSIs present a

number of unique challenges for analysis, requiring special consideration of image annota-

tions, slide and image artefacts, and evaluation of WSI-trained model performance. Here

we introduce SliDL, a Python library for performing pre- and post-processing of WSIs. SliDL

makes WSI data handling easy, allowing users to perform essential processing tasks in a

few simple lines of code, bridging the gap between standard image analysis and WSI analy-

sis. We introduce each of the main functionalities within SliDL: from annotation and tile

extraction to tissue detection and model evaluation. We also provide ‘code snippets’ to

guide the user in running SliDL. SliDL has been designed to interact with PyTorch, one of

the most widely used deep learning libraries, allowing seamless integration into deep learn-

ing workflows. By providing a framework in which deep learning methods for WSI analysis

can be developed and applied, SliDL aims to increase the accessibility of an important appli-

cation of deep learning.

Introduction

In histopathology, tissue biopsies are fixed, embedded, sectioned, stained, and placed on a

glass slide before being examined under a microscope. Examination of tissue slides to identify

pathologically relevant features has been an essential tool for early detection, diagnosis and dis-

ease monitoring in medical practice and research for decades. Pathological features can be

anything from the presence or absence of certain cell types or populations, changes in cellular

or nuclear morphology, changes in the arrangement of cells in a tissue, to changes in the inten-

sity of certain tissue stains. Until recently only expert pathologists have been able to perform

this task, requiring years of training, and with individual slides often having to be evaluated by

multiple pathologists before a judgement can be made [1]. However, with a shift towards digi-

tisation in pathology, tissue-slides are now routinely scanned to produce high-resolution

whole-slide images (WSIs). Such images are amenable to automated image analysis and in the

last decade the field has undergone a revolution. Deep learning methods for image analysis
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have shown excellent performance on diagnostic tasks [1–3], rivalling that of pathologists and

further stimulating efforts to digitise glass slides.

Pathologists have high inter-observer concordance rates on some diagnostic tasks, but in

others they frequently disagree [4]. This is compounded by high workload, necessitating rapid

screening of individual cases, increasing the risk of introducing diagnostic errors [5]. Deep

learning methods are fast, often requiring only a few minutes to evaluate a slide, and give con-

sistent evaluations. Thus, deep learning has the potential to substantially reduce the workload

of pathologists, improve the inter-observer concordance rates and accelerate the evaluation of

tissue-slides. The application of deep learning to pathological datasets is therefore a quickly

growing field, as researchers apply the latest advances in machine learning, such as GANs

[6, 7] and transformers [8, 9], to whole slide image problems [10, 11].

Despite this potential, deep learning based approaches have not yet seen widespread uptake

in medical practice. This is in part due to a lack of an accessible framework in which WSI neu-

ral network implementations are developed and applied, meaning that individual researchers

often must re-implement their own pre- and post-processing pipelines in-house for each new

histopathology task. Furthermore, successful implementation of deep learning to WSI analysis

requires careful consideration of model hyperparameters, slide and image artefacts and data

augmentation beyond those encountered in standard image analysis, and thus application of

the latest advances in computer vision to WSI analysis is hampered without a framework for

streamlined WSI processing into which such advances can be incorporated.

Here we introduce SliDL, a new Python library for performing pre- and post-processing of

WSI data. SliDL simplifies and streamlines many of the steps required to tackle the unique

challenges posed by WSIs. This includes, but is not limited to, detection of tissue, slide and tis-

sue artefacts and background in WSIs, easy implementation of alternative tiling strategies,

automatic generation of binary and multi-class segmentation masks from digital annotations,

and utility functions for visualisation and evaluation of model outputs (see Fig 1 and S1 Table

for an overview of the main functionalities in SliDL). Although other tools exist which provide

some of the same functionalities for pre-processing, SliDL is unique in its comprehensive sup-

port for annotation handling (see Related methods). By simplifying and streamlining these

steps, SliDL aims to empower researchers in the clinical sciences to accelerate the application

of deep learning to both existing and newly generated WSI data, so that the latest innovations

in digital pathology can reach the clinic sooner.

SliDL therefore takes into account all of eccentricities of the WSI data type. For example,

their large size makes it is necessary to break up WSIs into ‘tiles’ before they can be analysed

by contemporary deep learning architectures (see Tiling). Tiling, however, introduces further

difficulties as WSIs are often labelled (e.g. cancerous or non-cancerous) at the slide level, not at

the tile level, and so a deep learning approach must be adopted which accounts for how tiles

inherit labels from slides (see Annotation). Furthermore, WSIs can contain unique artefacts

introduced during slide preparation and imaging, which are not found in other image analysis

settings, such as pen marks left by the pathologists reviewing them, or cracks and bubbles in

the slide. All of these artefacts must be removed or accounted for when training a deep learn-

ing model (see Deep tissue detector). SliDL includes easy-to-use functions to both perform til-

ing and to filter out artefact and background slides using a built-in deep neural network.

SliDL has been designed to interact with popular deep learning library PyTorch [12], allow-

ing it to be seamlessly incorporated into deep learning workflows. By tackling the unique chal-

lenges posed by WSIs, SliDL can help to translate deep learning methods into the clinic more

easily, providing a broad method to replace ad hoc solutions, and an accessible entry point to

applying deep learning to WSIs for machine learning researchers unfamiliar with the nuances

of pathology slides. SliDL is available from https://github.com/markowetzlab/slidl,
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Fig 1. A deep learning pipeline with SliDL. (A) Creating SliDL Slide objects, exporting and adding annotations, and extracting tiles and

segmentation masks. (B) Data partitioning, data augmentation, and model training. (C) Inferring on the trained model and stitching

together overlapping segmentation results (if required).

https://doi.org/10.1371/journal.pone.0289499.g001
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documentation is available at https://slidl.readthedocs.io/en/latest/, and a full tutorial and

example SliDL workflow is available at https://github.com/markowetzlab/slidl-tutorial, which

trains, infers, and evaluates classification and segmentation models built from a balanced data-

set of nine lymph node node section WSIs containing breast cancer metastases, and nine with-

out metastases. The WSIs come from the publicly-available CAMELYON16 dataset [13].

SliDL was motivated by a perceived gap in existing tools comprising a number of features

we see as crucial to the application of deep learning to histopathological tasks, which we there-

fore implemented and included in SliDL. Among these are its in-built, robust, benchmarked

deep tissue detector, its numerous functions for reading in and extracting tiles from digital

annotations, its capacity to generate tile-level segmentation masks, and its capacity to perform

inference and compute performance metrics (see Distinct advantages of SliDL). All of these

features and many more are made immediately accessible to novice and expert digital patholo-

gists: SliDL is capable of shortening hundreds of lines of code requiring in-depth knowledge of

image analysis into five to fifteen idiomatic lines which can be understood and implemented

quickly and easily.

In this article we describe each of the major functionalities of SliDL in the order of their

application in a typical deep learning pipeline. First showing how WSI data is handled within

SliDL and how to import WSIs (Handling whole-slide images), implement different tiling

strategies (Tiling). Then, we move on to how to apply the ‘deep tissue detector’ to detect tissue

and remove background and artefacts from slides (Deep tissue detector). Next, we show how

SliDL enables handling of digital annotations and the extraction of tiles and their correspond-

ing segmentation masks (Annotation), before finally demonstrating how the library can be

used to streamline various aspects of model training (Training), inference (Inference) and

evaluation (Evaluating model performance). In each section, ‘code snippets’ are provided giv-

ing guidance on how SliDL should be run (see S2 Table for a table detailing each of the func-

tions displayed in code snippets below and defining their arguments).

Implementation

Handling whole-slide images

When glass slides are digitised by digital whole-slide image scanners, high-resolution images

are taken at multiple magnifications. WSIs therefore have a pyramidal data structure, with the

images taken at each magnification each forming a ‘layer’ of the WSI. The maximum magnifi-

cation of these images is frequently 200X (by convention called ‘20X’, due to scanning being

performed using a 20X objective lens at 10X magnification) or 400X (by convention ‘40X’,

using a 40X objective lens at 10X magnification) [14].

SliDL uses the Pyvips library for reading WSIs [15], and so supports a wide range of for-

mats, including NDPI and pyramidal TIFF, including all OpenSlide formats, and those which

are loaded via ImageMagick or GraphicsMagick such as DICOM [14]. After importing SliDL,

WSIs are instantiated as Slide objects by calling the Slide class on the file path to the WSI

and specifying which layer you would like to access with the level argument.

Code Listing 1. Import SliDL and initialise a Slide object with a path to a WSI

from slidl.slide import Slide

slidl_slide = Slide(path_to_wsi, level=0)

It is through Slide objects that the user interacts with their data and performs the pre-

and post-processing steps described in the following sections.
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During pre- and post-processing, SliDL Slide objects are generally modified in-place,

with new information being added to an internal dictionary (called the ‘tile dictionary’, see Til-

ing below). It is therefore important that users save Slide objects after performing an opera-

tion on them, particularly time-intensive operations such as applying the deep tissue detector

(see Deep tissue detector below). By doing this, the user does not have to wait for expensive

functions to complete more than once.

Saving Slide is achieved by using the Slide.save() method, preserving the entire

Slide object in its current state to a .pml file in the directory specified by the folder argu-

ment using lossless compression.

Code Listing 2. Save a Slide object

slidl_slide.save(folder='path/to/folder')

To reload a Slide object which has been saved, simply set the first argument of the

Slide initialiser to the Slide object rather than to a WSI.

Code Listing 3. Reload a saved Slide object

slidl_slide = Slide('/path/to/folder/slidl_slide.pml', level=0)

Tiling

WSI images are very large; for example, an image scanned at 40X objective power of a 20 x

20 mm sample of tissue has 80,000 x 80,000 pixels; at standard 24-bit colour this would pro-

duce a flat image 19.2GB in size. Current neural network architectures are unable to process

images of this size in one go. Thus, WSIs are broken up into ‘tiles’ or ‘patches’ upon which

the model is trained: small square regions of the original image, typically 32 to 1000 pixels in

height. Tiles can be chosen with or without overlap with neighbouring tiles. Choice of tile

dimensions and overlap are some of the most important hyperparameters to choose when

analysing WSIs [16].

In SliDL, tile dimensions and overlap are chosen by calling the

Slide.setTileProperties() method, and setting the tileSize and

tileOverlap arguments, enabling users to easily experiment with different tiling strategies.

Here one can also specify how tiles should be stored, and how they will be accessed during

training.

Code Listing 4. Set the tile properties in a Slide

slidl_slide.setTileProperties(tileSize=500, tileOverlap=0, unit='px')

By calling Slide.extractAnnotationTiles() or

Slide.extractRandomUnannotatedTiles(), one can extract and store each tile in

individual images files in advance of training or inferring. SliDL will automatically store tile

image files according to their class (see Annotation) and slide of origin in a directory structure

appropriate for use with PyTorch see S1 Fig).

Although functional, storing each individual tile image file may pose data storage issues.

SliDL stores the coordinates of each tile rather than the tile image itself, accessible with
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Slide.getTile() using the tile address as argument (all tile addresses can be iterated

over with Slide.iterateTiles()), making it easy to build a dataset such that tiles are

accessed on-the-fly, saving the need to extract each tile to an image file in situations where this

would be too memory intensive.

Code Listing 5. Iterate through the tiles in a Slide

for tile_coords in Slide.iterateTiles():

pyvips_tile_image = slidl_slide.getTile(tile_coords)

Apart from being substantially less disk memory intensive, this approach also makes it eas-

ier to experiment with different tiling strategies without having to re-extract tiles for each com-

bination of tile size and overlap. The trade off is that on-the-fly tile accession approaches are

typically much slower to train with, so are not recommended except in datasets where tiles

number in the hundreds of thousands or millions and disk memory for these tile images is not

available.

Deep tissue detector

WSIs can contain unique artefacts introduced during slide preparation and imaging which are

not found in other image analysis settings. Tissue may tear and fold during slide preparation,

the image may be unevenly illuminated or stained, and parts of the image may be out of focus.

Tissue slides also often contain pen marks left by the pathologists reviewing them, and may

contain cracks and bubbles. Left unaccounted for, such artefacts can have severe detrimental

effects on a deep learning model. For instance, pen marks are often left by pathologists to indi-

cate the presence of a pathological feature of interest, such as the presence of cancerous cells. If

not removed, a deep learning model may simply learn to recognise the presence of a pen mark

in slides containing cancer, and thereby be completely inapplicable in medical practice where

no such annotation will be available. Beyond artefacts, WSIs will typically contain large por-

tions of background, i.e. regions without any tissue, which do not contain any pathologically

relevant information. After tiling your WSI, tiles which contain artefacts or which simply dis-

play background should therefore be removed speed up the training process and potentially

improve performance.

SliDL provides a built-in deep tissue detector: a DenseNet [17] convolutional neural net-

work architecture (see Convolutional neural networks) trained to classify tiles as either ‘arte-

fact’, ‘background’, or ‘tissue’. SliDL’s deep tissue detector was trained using 9,071 tiles

extracted from 393 individual annotations from 61 WSIs scanned across a variety of machines,

time periods, and tissue types, and two different species to account for a broad range of the

variation of WSI artefacts (including pen marks, folded or torn tissue, slide bubbles, cracks,

blurred or out-of-focus regions, uneven illumination, aberrant staining and other marks),

background, and tissue appearances (Fig 2A). An imbalanced dataset sampler [18] was used to

ensure that during training, the model was exposed to equal numbers of artefact, background,

and tissue tiles. The deep tissue detector is applied by calling the Slide.detectTissue()
method, enabling robust detection of tissue tiles at any level of the WSI pyramid desired. SliDL

then saves the output probabilities that each tile belongs to each of the three classes internally

for each tile in the Slide object.

Code Listing 6. Apply the deep tissue detector to a Slide
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Fig 2. Tissue, artefact, and background detection with SliDL. (A) Tiling, augmenting, and training a DenseNet CNN to classify tissue, artefact,

and background regions on WSIs from a robust dataset representing multiple tissue and species types. This already-trained deep tissue detector

can be applied to any SliDL Slide object with SliDL’s Slide.detectTissue() function. (B) Comparison of classical foreground methods to the Deep

tissue detector. All tests performed are two-tailed Wilcoxon signed-rank tests (n = 36). All P values are Benjamini-Hochberg adjusted, *P< 0.05,

**P< 0.01, ***P< 0.001. (C) Three representative sample slides on which benchmarking was performed. The top row displaying a case where
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slidl_slide.detectTissue(tissueDetectionLevel=1,

tissueDetectionTileSize=512,

tissueDetectionTileOverlap=0,

tissueDetectionUpsampleFactor=4,

batchSize=20,

numWorkers=16)

There may be applications where the artefacts encountered are not well covered by the deep

tissue detector in SliDL, and thus one should always review examples of its output to verify

that the detector is behaving as expected using SliDL’s

Slide.visualizeTissueDetection() function (Fig 2C).

Code Listing 7. Verify the results of the deep tissue detector

slidl_slide.visualizeTissueDetection(fileName='tissue_detection')

Furthermore, SliDL makes it easy to apply a user-provided tissue detection model trained

on additional, or alternative, annotated images by setting the modelStateDictPath and

architecture parameters when calling Slide.detectTissue() to the path to the

custom model and its neural network architecture, respectively.

Code Listing 8. Apply a user-provided tissue detection model to a Slide

slidl_slide.detectTissue(tissueDetectionLevel=1,

tissueDetectionTileSize=512,

tissueDetectionTileOverlap=0,

tissueDetectionUpsampleFactor=4,

batchSize=20,

numWorkers=16,

modelStateDictPath='/path/to/state_dict.pt',

architecture='vgg19')

In certain cases, users may want to make use of classical foreground filtering approaches in

place of or in addition to the deep tissue detector. In SliDL, this can be achieved by calling the

Slide.detectForeground() method, specifying the desired approach with the

threshold argument and the desired WSI pyramid level to perform detection on with the

level argument. Note that even if the foreground or deep tissue detector is applied at a dif-

ferent level from that which tiles are later extracted, the foreground/tissue/artefact/background

predictions will be carried over appropriately across layers. SliDL currently supports Otsu’s

method [19], the triangle algorithm [20], as well as simple intensity thresholding. All are auto-

matically applied when Slide.detectForeground() so that the user is able to access

the results of any algorithm in downstream functions.

tissue and background are easily distinguished and all three approaches perform well. The middle row displaying a case where a clear pen mark

artefact is incorrectly identified as tissue by the two classical approaches, indicating that artefact removal pre-processing is necessary, but the

deep tissue detector has automatically performed both artefact and tissue detection. The bottom row displaying where a large bubble artefact

obscures much of the tissue. Otsu classifies almost the entire slide as background, Triangle does not exclude tissue obscured by the artefact, and

the deep tissue detector successfully identifies both.

https://doi.org/10.1371/journal.pone.0289499.g002
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Code Listing 9. Apply foreground detection methods to a Slide

slidl_slide.detectForeground(level=3)

In general, however, these approaches are less robust to the diversity of artefacts observed

in WSIs, as well as appearances of background and tissue, often requiring careful supervision

for each application [16]. We performed a benchmarking analysis comparing the performance

of the deep tissue detector, Otsu’s and the Triangle algorithm at distinguishing tissue from

background at the tile level (Fig 2B and 2C). Benchmarking was performed on 36 WSIs span-

ning 10 different tissues, a wide variety of different artefacts, and a range of different scanning

and fixing protocols, in total comprising nearly 1.5 million tiles (see Benchmarking for full

details). The balanced accuracy, sensitivity and specificity statistics indicate the strengths and

weaknesses of each of the methods. The deep tissue detector has a significantly higher specific-

ity to the Triangle algorithm, but is not significantly different from Otsu’s method, indicating

that Otsu’s method is comparatively more conservative. The deep tissue detector has a signifi-

cantly higher sensitivity to Otsu’s method, but is not significantly different from Triangle.

Finally, the deep tissue detector has a significantly higher balanced accuracy to both methods,

above 90%, indicating that while it does not decisively outperform both other methods in sen-

sitivity and specificity individually, it does strike the best balance between the two. Further-

more, the deep tissue detector performs substantially more consistently at the task, indicating

its greater robustness (Fig 2B). In Fig 2C we display three examples which are representative of

the range of behaviours shown across the full set of slides.

Annotation

Ground-truth labels for a WSI may exist either at the region-level, wherein they are local to

particular regions within the WSI, or at the slide-level, wherein a label applies to the WSI as

a whole. Region-level labels typically take the form of digital annotations on the WSI, delin-

eating the regions belonging to certain classes. Specialised software such as QuPath and the

Automated Slide Analysis Platform (ASAP) allow users to draw digital annotations onto

WSIs and then export them for use in image analysis workflows [21, 22]. SliDL supports the

use of annotation files in the GeoJSON format as well as the XML format output by ASAP

[23]. QuPath annotations can be exported as GeoJSON files using the Groovy script,

qupath_to_geojson.groovy provided in the SliDL tutorial repository (https://github.

com/markowetzlab/slidl-tutorial).

An annotation file is added to a corresponding Slide object by calling the

Slide.addAnnotations() method, providing the file path to the

annotationFilePath argument. The annotations do not need to cover the entire WSI,

instead SliDL parses annotations by designating all pixels bounded by an annotation for a

given class as being positive for that class, and all other pixels as negative. Furthermore, in the

case of annotations with ‘doughnut holes’ (annotations which are not polygons because they

contain holes in their middle), users need to simply annotate the doughnut holes and assign

them to their own class. Then, when calling Slide.addAnnotations(), the name of this

class can be provided to the negativeClass argument. SliDL will automatically geometri-

cally subtract these doughnut hole annotations from every other annotation class they overlap

with. By default, Slide.addAnnotations() parses the annotations of all non-doughnut

hole classes into the Slide object’s tile dictionary, but users can choose to include only cer-

tain classes present in the annotations by specifying them explicitly as a list to the

classesToAdd argument.
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Code Listing 10. Add annotations to a Slide

slidl_slide.addAnnotations(annotationFilePath='/path/to/annotations.xml',

classesToAdd=['normal', 'tumor'],

negativeClass='doughnut_holes',

level=0)

It is commonly the case that researchers wish to train their models exclusively on tiles

which fall within annotated regions. As such, in SliDL tiles can be extracted from annotated

regions by applying the Slide.extractAnnotationTiles() method. A simple heu-

ristic is applied: a tile is extracted if there are any annotations that cover more than a given

threshold fraction of the area of the tile. Tiles which are not covered above this threshold for

any annotations are ignored entirely. The threshold is set using the

tileAnnotationOverlapThreshold argument (default is 0.5). Different thresholds

can be applied for different classes by providing a dictionary with class names as keys and their

corresponding overlap thresholds as values to the

tileAnnotationOverlapThreshold argument.

A user may also want to extract tissue tiles at random from a slide which has not been anno-

tated. Calling Slide.extractRandomUnannotationTiles() achieves this, and

involves most of the same arguments as Slide.extractAnnotationTiles(). The

unannotatedClassName argument allows the user to specify how unannotated tiles

should be named.

In addition, after calling the Slide.detectTissue() method on a given Slide
object, each tile will be inferred on the deep tissue detector, and the resulting tissue probabil-

ities will be stored for each tile in the ‘tile dictionary’. The tissueLevelThreshold
argument can then be used in subsequent functions such as the tile extraction functions

(Slide.extractAnnotationTiles() and Slide.
extractRandomUnannotatedTiles()) to set a minimum tissue probability for a tile

to be extracted (recommended value of 0.995).

Likewise, foregroundLevelThreshold can be used to restrict extraction of tiles to

those reaching a desired foreground detection threshold as determined by foreground detec-

tion techniques such as [19] (set the argument to ‘otsu’) or the triangle algorithm [20] (set the

argument to ‘triangle’). Simple average greyscale intensity filtering can be achieved by setting

foregroundLevelThreshold to an integer between 0 and 100.

Code Listing 11. Extract random unannotated tiles from a Slide’s WSI

channel_data = slidl_slide.extractRandomUnannotatedTiles(

outputDir=output_dir,

numTilesToExtract= 500,

unannotatedClassName='tissue',

tissueLevelThreshold=0.995,

foregroundLevelThreshold=88)

Whether classifying or segmenting, it is important to consider how to derive the

ground-truth labels for individual tiles from slide label data. For segmentation tasks the

principle is straightforward because the ground-truth is at the pixel-level and thus whole-

slide segmentation masks can also be tiled and directly inherited by the individual image
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tiles. As such, once annotations have been added, SliDL allows the user to create both

binary and multi-class tile-level segmentation masks for provided annotations. When

applying the Slide.extractAnnotationTiles() method, binary segmentation

masks are created by setting the extractSegmentationMasks argument to True, and

the classesToExtract argument set to the name of the class (or list of classes) for

which the binary segmentation masks should be created. If the user wishes for empty class

directories to be created for classes not present in the annotation, they can be defined with

the otherClassNames argument. The tile-level masks are then saved to a ‘masks’ direc-

tory in the location specified by the outputDir argument of

Slide.extractAnnotationTiles().

Code Listing 12. Extract tiles from the annotated regions of a Slide’s WSI

channel_data = slidl_slide.extractAnnotationTiles(

outputDir='/path/to/folder',

classesToExtract=['normal', 'tumor']

tileAnnotationOverlapThreshold=0.3,

numTilesToExtractPerClass=500,

extractSegmentationMasks=True,

tissueLevelThreshold=0.995,

foregroundLevelThreshold=88)

In the case of binary segmentation, a separate segmentation mask for each desired class will

be extracted. In multi-class segmentation problems, users may want to return ‘stacks’ of tile seg-

mentation masks, where each layer of the stack is the segmentation mask of a different class.

SliDL allows users to easily generate these ‘stacked’ multi-class segmentation masks for each tile

they extract. Slide.extractAnnotationTilesMultiClassSegmentation()
performs the same basic tasks as Slide.extractAnnotationTiles(), extracting tiles

and their corresponding segmentation masks from an annotated WSI, but instead of outputting

flat segmentation mask images to the segmentation mask directories, it outputs stacked Numpy

ndarray matrices (saved as .npy files) as multi-class segmentation masks for each tile instead.

Code Listing 13. Extract segmentation mask tiles from the annotated regions of a Slide’s

WSI

channel_data = slidl_slide.extractAnnotationTilesMultiClassSegmentation(

outputDir=output_dir,

classesToExtract=['normal', 'tumor']

tileAnnotationOverlapThreshold=0.3,

numTilesToExtractPerClass=500,

tissueLevelThreshold=0.995,

foregroundLevelThreshold=88)

For classification tasks a tile inherits the label of any annotations that cover more than the

given threshold fraction of the area of the tile specified by the

tileAnnotationOverlapThreshold argument of the

Slide.extractAnnotationTiles() method discussed above. In addition, this heu-

ristic is also applied for the numTilesToExtractPerClass argument which allows the

user to set the maximum number of tiles to extract per class from the slide (default is 100 for
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each class). This ensures that the user does not extract many more tiles than they need for

training for a given class. When there are more extractable tiles for a given class than are

requested by the user, numTilesToExtractPerClass tiles are selected at random from

the class. This argument can be used regardless of whether the user is performing a classifica-

tion or segmentation task downstream of the tile extraction.

In addition to extracting the tiles to directories, unless returnTileStats is set to

False, Slide.extractAnnotationTiles() returns some summary statistics of all

the tile images which were extracted. These values can be used to compute the mean and vari-

ance of each of the colour channels across the tile dataset, which some users may want to use

to normalise their tiles prior to training.

Training

Building a dataset with labels that can be interpreted by a deep learning library is an important

training consideration. SliDL’s tile extraction functions

(Slide.extractAnnotationTiles() and

Slide.extractRandomUnannotatedTiles()) output tiles and labels in a directory

structures that are by default compliant for direct input into PyTorch’s torchvision.
datasets.ImageFolder dataset constructor (see S1 Fig), making it straightforward to

load the tiles SliDL has extracted into a format ready for training.

For classification tasks, per torchvision.datasets.ImageFolder, tile labels are

stored as directory names within a parent directory containing the slide or case name [12]. As

SliDL has been designed to perform pre- and post-processing, training should be performed by

using a separate, complementary library (see Related methods). During inference the inference

step (Inference, SliDL is capable of accepting any PyTorch image model which has been trained,

which includes both convolutional neural networks (CNNs) and vision transformers (ViTs).

Convolutional neural networks. The first of the two main types of deep neural networks

used for image data today, and the sort of deep neural network used to train the deep tissue

detector (Deep tissue detector) is the convolutional neural network, which has shown out-

standing performance on image classification tasks [24–26]. CNNs are a type of learning algo-

rithm designed to take as input data which are spatially invariant (also known as “shift

invariant”), a characteristic whereby small translations of the input data are tolerated. Since

recognising common patterns in image data benefits from this trait, CNNs trained on images

have proven to be highly successful and are one of the main deep learning architectures used

in computer vision, including on tasks involving WSIs [16, 25, 27].

Image-oriented CNNs work by including a set of two-dimensional convolution operations

performed in a sweeping motion over the surface of the input image at each layer to transform it

into an increasingly abstract representation (Fig 3). The weights in the filters (also known as the

“kernels”) of each convolutional layer are what are used in these operations. The filter weights

are learned during backpropagation, so that relevant aspects of the image discerned during

training can be retained as the feature maps derived from the image are passed from one layer to

the next. In between convolution layers are maximum pooling layers, which select the largest

element within each receptive field to shrink the feature maps’ spatial resolution Fig 3. Through

this reduction, pooling layers allow for the spatial invariance characteristic described above [28].

After the alternating convolutional and pooling layers are typically one or several fully-con-

nected layers to coerce the number of features down to the desired class size (in the case of classi-

fication models) or down to the pixel mask size (in the case of segmentation models) [28].

CNNs have been the state of the art for classification and segmentatioon tasks on whole-

slide images for several years [1].
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Vision transformers. Transformers are a newer neural network type which was originally

designed for sequence-based problems such as natural language processing (NLP), which is

the use of machine learning to interpret text [8]. Previously, NLP tasks were primarily per-

formed with recurrent neural networks (RNNs), but a fundamental limitation of RNNs is that

Fig 3. Structure of convolutional neural network and vision transformer. (a) A VGG-like convolutional neural network with alternating convolutional

layers and maximum pooling operations before a few fully connected layers at the end. Figure is based on the VGG paper [29] and images of this

architecture made by others. (b) A vision transformer, based on the figure in the original ViT paper [9].

https://doi.org/10.1371/journal.pone.0289499.g003
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the way they process sequences precludes computation from being parallelised during training,

thereby limiting the length of sequences that can be trained on [8]. Attention mechanisms

began to be used in RNNs to allow longer distances between sequence dependencies to be

learned [30, 31]. Vaswani et al. [8] developed the first transformer architecture, which is com-

posed entirely of attention mechanisms, entirely sidestepping the sequence dependency issue

inherent to RNN-based models; transformers therefore tend to outperform and have function-

ally replaced RNNs [8, 32].

Dosovitskiy et al. [9] described the Vision Transformer (ViT), a transformer architecture

modified to take image data as input. Although several CNNs had previously been designed to

incorporate some attention mechanisms within them [33–35], this was the first successful archi-

tecture to train on images and use entirely attention mechanisms internally. This was achieved

by splitting up inputted images into constituent pieces and treating these pieces (referred to as

“tokens” in NLP language) as a sequence (Fig 3b). Their ViT model achieves state-of-the-art

performance on several image classification benchmark datasets and has become a mainstay

option for researchers looking for deep learning models trainable on images [9, 36–38].

Researchers have more recently begun applying vision transformers to whole-slide images

and histopathological problems, but they form a promising new avenue [11].

Inference

After a model has been trained, the next step is applying that model to the WSIs in a validation

or test set to check the model’s performance. This application of a trained model to a new slide

is known as inference. SliDL has two functions that infer a trained model on tiles with a suffi-

ciently high tissue-probability (identified using the deep tissue detector) in a Slide object,

saving the results into the tile dictionary internal to it: Slide.inferClassifier() and

Slide.inferSegmenter(), which take as input a trained PyTorch model file. Using

them is as simple as creating a Slide object for the slides one wants to infer on and then

applying the function.

Code Listing 14. Infer a classification or a segmentation model on a Slide’s WSI

slidl_slide.inferClassifier(trainedModel=trained_classification_model,

classNames=['normal', 'tumor'],

dataTransforms=data_transforms,

tissueLevelThreshold=0.995,

foregroundLevelThreshold=88,

batchSize=30,

numWorkers=16)

slidl_slide.inferSegmenter(trainedModel=trained_segmentation_model,

classNames=['normal', 'tumor'],

dataTransforms=data_transforms,

tissueLevelThreshold=0.995,

foregroundLevelThreshold=88,

batchSize=30,

numWorkers=16)

After applying these functions, SliDL stores the predictions of the neural network for each

tile in the tile dictionary internal to the Slide object.
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To ensure that the model is behaving as expected, it is important to visualise inference

results by plotting the inference predictions of tiles spatially as they appear in the WSI. Once

inference has been performed on the Slide objects, SliDL’s

Slide.visualizeClassifierInference() and

Slide.visualizeSegmenterInference() functions create these plots for the user

overlaid on a low-resolution image of the WSI, taking the class and WSI pyramid level to visu-

alise as arguments. The user is therefore able to qualitatively assess whether the regions

highlighted by the model are as expected, given the ground-truth, and experiment with differ-

ent training configurations, tile sizes, or other hyperparameters before proceeding if not

(Fig 4).

Code Listing 15. Visualise the inference of a classification or a segmentation model on a

Slide’s WSI

slidl_slide.visualizeClassifierInference(classToVisualize='tumor',

folder='path/to/folder',

level=3)

slidl_slide.visualizeSegmenterInference(classToVisualize='tumor',

folder='path/to/folder',

level=3)

When performing segmentation, the user may want to create segmentation masks which

are larger than the size of the tiles that were inferred on. When adjacent tiles overlap, tile-

level segmentation masks cannot simply be concatenated. SliDL supports the automatic gen-

eration of whole-slide segmentation masks with the

Slide.getNonOverlappingSegmentationInferenceArray() method, return-

ing an inference array with the model’s pixel-level predictions and merging overlapping

regions to return single predictions for each pixel. The class for which predictions are

desired is specified by the className argument. Inference matrices are saved as com-

pressed .npz files at the location specified by the folder argument. Users have the option

of defining a threshold with the probabilityTheshold argument to return a binary

output matrix, where pixels with a probability for the given class with a probability at or

above the threshold are binarized to true, and the others to false. If the users does not define

a probabilityTheshold, the raw probability value will be scaled to be between 0 and

255 (255 is 100% probability) and returned as a Numpy uint8 integer if the dtype argument

is set to ‘int’ (the default). The user can also choose to have the probabilities returned as

Numpy float32 floats if dtype is set to ‘float’, but this is usually undesirable as it results in

extremely memory-intensive matrices.

Code Listing 16. Save the segmentation matrix from an inference on a Slide’s WSI

slidl_slide.getNonOverlappingSegmentationInferenceArray(

className='tumor',

dtype='int'

folder='path/to/folder')
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Evaluating model performance

Beyond visual verification, numerical methods are requires to assess model performance.

SliDL includes a number of wrapper functions around common performance metrics to

enable easy model evaluation. After inferring using a trained model, the

Slide.classifierMetricAtThreshold() and

Slide.segmenterMetricAtThreshold() methods can be applied. By providing a

Fig 4. Visualising the inference of trained models. (A) A plot of the inference of a trained tile-level classification model on three validation slides from the

SliDL tutorial, showing the ability of the classification model to distinguish regions showing breast cancer metastasis from normal lymph node tissue. Plots

were generated with Slide.visualizeClassifierInference(). (B) A plot of the inference of a trained tile-level segmentation model on three validation slides

from the SliDL tutorial, showing the ability of the segmentation model to distinguish the same regions as the classification model. Plots were generated with

Slide.visualizeSegmenterInference().

https://doi.org/10.1371/journal.pone.0289499.g004
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list of probability thresholds to the probabilityThresholds argument, a metric (‘accu-

racy’, ‘balanced_accuracy’, ‘f1’, ‘precision’, or ‘recall’ for

Slide.classifierMetricAtThreshold(), and ‘dice_coeff’ for

segmenterMetricAtThreshold()), and a class to the classToThreshold argu-

ment, these methods will calculate the corresponding metric at each probability threshold for

the given class.

For Slide.classifierMetricAtThreshold(), the

tileAnnotationOverlapThreshold argument defines the minimum fraction of a

tile’s area that must be covered by an annotation from the classToThreshold for that tile

to be considered ground-truth positive for that class (default is 0.5).

Code Listing 17. Compute the classification or segmentation accuracy of an inference on a

Slide’s WSI

classification_accuracies = slidl_slide.classifierMetricAtThreshold(

classToThreshold='tumor',

probabilityThresholds=probability_thresholds,

tileAnnotationOverlapThreshold=0.3,

metric='accuracy')

segmentation_accuracies = slidl_slide.segmenterMetricAtThreshold(

classToThreshold='tumor',

probabilityThresholds=probability_thresholds)

The threshold that gives best performance on the validation set can then be applied to the

test set with the same two functions; inputting the single best threshold in the

probablityThresholds argument.

Although inference is performed on the tile-level, when applied in the clinic a label for the

entire slide is often required. Similarly, during training, it is frequently the case that the test set

has only a slide-level label. A method is therefore needed to translate tile-level predictions to

slide-level labels. One approach is to determine a threshold for the number of tiles which need

to be called positive, for a given class at a given probability threshold, in order to call an entire

slide positive. To test the performance of a model on data with only slide-level labels, the AUC

for a ROC curve can be computed for a range of positive-tile counts. The optimum count can

then be used when applying the best model to unlabelled data in the clinic. In order to make

such analyses straightforward, SliDL includes the

Slide.numTilesAboveClassPredictionThreshold() method which returns the

number of tiles in a slide whose inference prediction probabilities for a given class

(classToThreshold) are greater than or equal to given probability thresholds (provided

in a list to the probablityThresholds argument).

Code Listing 18. Count the number of tiles in a Slide whose inference value exceeds a cer-

tain threshold

slidl_slide.numTilesAboveClassPredictionThreshold(

classToThreshold='tumor',

probabilityThresholds=probability_thresholds)
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These positive-tile counts per slide can then be used to calculate an AUROC. As above,

often a range of probability thresholds are tried, and the one which yields the largest AUROC

on the validation set is then applied to the test set to give the final performance.

Discussion

SliDL provides an easily-installable (see Installation) Python library with a straightforward

API for users seeking to perform tasks involving artefact and background detection, tile extrac-

tion from annotation, and model training and inference on WSIs. It is intended for users with

basic Python knowledge; it does not demand extensive experience with WSI data or pathology.

We see this as one of SliDL’s key advantages over existing methods which expect more rigor-

ous backgrounds in histopathology or image analysis. To best understand the unique value

provided by SliDL, one must compare it to existing computation methods in the WSI space.

Related methods

Several tools have been developed which also provide support for some of the functionalities

available in SliDL. While providing a complete description and comparison of these tools is

beyond the scope of this manuscript, here we briefly describe these tools and direct the reader

towards the articles presenting them for more details (see S3 Table for a summary of all of the

comparisons made with all the methods discussed below).

HistoQC [39] is a Python-based tool for performing quality control of WSIs, aiding users in

the identification slides containing potential technical artefacts and affected by batch effects.

By providing the user with modules for performing a wide range of classical image analysis

techniques, HistoQC enables the construction of custom pipelines for performing foreground

filtering, detection of slide artefacts such as pen marks, and identification of batch effects such

as slides with darker staining compared to the rest. In HistoQC, this is achieved using a combi-

nation of approaches including inspection of colour distributions, application of edge and

smoothness detectors, and classical filters such as Gabor and Frangi filters for texture analysis.

For example, if the background of a WSI is uniformly white, foreground filtering can be per-

formed by applying a threshold to the colour distribution which excludes white pixels. Simi-

larly, a bright green pen mark may be clearly distinguishable from tissue by inspection of the

green colour distribution of the WSI. In addition, HistoQC provides an interactive user inter-

face for exploring one’s data. These approaches can achieve competitive results when carefully

tuned by the user, but may struggle in more complex cases, such as uneven background, and

pen marks with similar colour to the tissue. HistoQC is therefore a useful tool, complementing

the wider functionality and robustness of SliDL, and enabling rapid quality control processing

of one’s data.

HistomicsTK [40] is a Python library for performing a number of image analysis tasks spe-

cific to WSIs including stain colour deconvolution, normalisation and augmentation, as well

as cell/nuclei segmentation and even a user interface for manual annotation of WSIs. Like His-

toQC, all image analysis techniques are performed using classical approaches. HistomicsTK is

highly complementary to SliDL, and in particular, we envisage that users may make use of His-

tomicsTK for performing WSI-specific colour augmentations within a SliDL workflow.

Histolab [41] is a Python library combining features found both in HistoQC and Histo-

micsTK, including functions for performing classical image analysis techniques to facilitate tis-

sue detection and artefact removal, cell/nuclei segmentation, and colour transformations such

as colour deconvolution. In addition, Histolab, like SliDL, supports the extracting of tiles from

WSIs, and enables one to easily test alternative tiling strategies, including random extraction

of tiles according to tissue detection score thresholds.
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MONAI [42] is an extensive Python library which is part of the PyTorch ecosystem and is

designed as a unified framework for performing deep learning on medical imaging data. Like

SliDL, MONAI supports tiling of WSIs and provides extensive support model evaluation met-

rics. In addition, MONAI provides domain-specific support for data augmentation trans-

forms, implementations of neural network architectures, optimisers, loss functions, and AI-

assisted annotation, all of which are tuned for application to medical imaging data.

PathML [43] is a Python library which also supports the tiling of WSIs, and similar to His-

tolab, HistomicsTK and HistoQC implements an number of classical approaches to fore-

ground and artefact detection. Similarly to MONAI and HistomicsTK, PathML also supports

some pre-processing methods such as stain normalisation data augmentation, but is not

designed to perform any post-processing steps.

Distinct advantages of SliDL

Part of the advantage of SliDL is the ease with which it can be learned and used to render com-

plicated digital histopathological techniques and problems immediately accessible to research-

ers, turning what would be weeks of work and files full of code into one straightforward, linear

workflow consisting of just a few lines.

In addition to these advantages, the SliDL toolbox we present here improves on the other

tools mentioned above in several ways, most importantly the handling of digital annotations.

None of the tools listed above implement deep tissue detectors, nor do they implement tools

for handling of annotations for WSIs to facilitate labelling of tiles, automatic resolution of

annotation conflicts, or generation of binary and multi-class tile-level segmentation masks.

Furthermore, while all of these tools provide support for the pre-processing of WSIs, only

MONAI provides tools for model evaluation, and none support post-processing tasks such as

the stitching together of tile-level segmentation masks to produce a slide-level mask. Tools

such as MONAI are therefore highly complementary to SliDL: we envisage users, for example,

making use of SliDL for pre-processing and handling of annotations, and MONAI for data

augmentation and implementation of neural network architectures for training.

Future work

Despite its many advantages, SliDL can be expanded upon and improved in various ways. For

example, it might be useful to eventually provide a graphical user interface (GUI) to SliDL so

that some of its basic features are accessible to users with less of a computer science back-

ground. This might include sliders, toggles, and text boxes in place of programmatic functions

with arguments.

Furthermore, currently, applying the deep tissue detector with any efficiency to WSIs

requires a computer vision-grade GPU, ideally with at least 4 gigabytes of memory and a GPU

clock of at least 1200 megahertz. This feature will therefore be slow for users working on most

standard commercial laptop or desktop models. For this reason, it is worth exploring alterna-

tive methods of implementing SliDL’s deep tissue detector which are compatible with lower-

specification hardware. One potential solution is to re-train the deep tissue detector model on

a deep neural network with fewer internal parameters, such as MnasNet [44], SqueezeNet [45],

or MobileNet [46].

Finally, there remain many potential features to add to SliDL to expand its breadth. We

would like to include a function to automatically generate tile annotations files demarcating

the highest probability tiles for a certain class identified during inference. We are also inter-

ested in including functions so that SliDL can generate of saliency maps of trained deep learn-

ing models [47].
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Conclusion

SliDL is a new and fully-functional new tool for computer scientists looking for a straightfor-

ward but powerful Python library for solving some of the most commonly faced and nettle-

some problems for training and evaluating deep learning models on WSI data quickly and

easily. SliDL also includes a fully illustrative tutorial Jupyter notebook on a real-world example

problem on a publicly available dataset from beginning (removing background and slide arte-

facts, extracting tiles from annotations) to end (training a deep learning model, inferring it on

new slides, and evaluating model performance); the tutorial can be found here: https://slidl.

readthedocs.io/en/latest/. It is our hope and goal that with SliDL and its corresponding tuto-

rial, the application of deep learning to whole-slide images becomes more accessible not just to

researchers already involved in digital pathology, but to newcomers as well, making the field

on the whole more approachable.

Availability and requirements

Project name: SliDL

Project home page: https://github.com/markowetzlab/slidl

Project tutorial home page: https://github.com/markowetzlab/slidl-tutorial

Project documentation home page: https://slidl.readthedocs.io/en/latest/

Operating system(s): Not applicable

Programming language: Python (version 3.7 or above)

Other requirements: Not applicable

License: GPL-3.0

Any restrictions to use by non-academics: Not applicable

Materials and installation

Benchmarking

Here is a full breakdown of the slides used for the benchmarking analysis of the deep tissue

detector (see Deep tissue detector):

• 36 slides

• 6 TCGA-TGCT (testicular germ cell tumor) H&E

• 6 CAMELYON-16 (tiny breast cancer metastases in lymph nodes, including slides with and

without metastases present) H&E slides

• 6 OCCAMS (esophageal adenocarcinoma) H&E slides from esophago-gastro-duodenoscopy

• 6 BEST2 (cytosponge samples some with Barett’s) P53 and H&E slides

• 6 TCGA-PRAD (prostate adenocarcinoma) H&E slides

• 2 TCGA floor of mouth cancer H&E slides

• 1 TCGA small intestine cancer H&E slide

• 1 TCGA gum cancer H&E slide

• 1 TCGA “spinal cord, cranial nerves, and other unspecified parts of central nervous system”

cancer H&E slide

• 1 TCGA tonsil cancer H&E slide
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• Mixture of samples preserved via FFPE (formalin fixed paraffin embedded) and those pre-

served via flash freezing

• Different scanning file types, scanning machines, times of scanning, scanning locations,

stain intensities, stains (H&E and P53), tissue removal methods/surgery types, and tissue

types

• Slide artefacts included ink of many different colors (including blue, red, black, and reen—

some used to mark regions on top of tissue, other times to write labels on a background por-

tion of a slide), slide bubbles, tissue folding/burning, cloudiness or yellowing, slide shifted in

scanning machine to leave black region in image, slide edge artefacts, dirt and debris under

the slide, black slide crosses, blurry regions

• Slides exhibited a wide range of artefact degree and amount—some slides had virtually no

artefact whatsoever, others had a few little ink dots or bubbles, still others had large black

regions and/or regions of ink etc.

• 1,489,084 tiles in total across all 36 slides with a massive range in the size of each slide (small-

est slide: 47MB, largest slide: 3.9GB / fewest tiles in one slide: 3,304, most: 86,190)

• 730 individual annotations including tissue and doughnut hole annotations

• Slides all scanned in 40x with 500px edge length tiles

All 36 WSIs used to benchmark the deep tissue detector are available at https://doi.org/10.

5281/zenodo.7947380.

Hardware

It is recommended that SliDL users either work on a machine with at least 32 GB of RAM and

enough disk space to hold the number of number of tiles they would like to extract (tiles are

not large, but if thousands are extracted, a proportional amount of disk space is required. At

least four cores are recommended. WSIs tend to be 0.5–5 GB in size, so if tens or hundreds are

used in an analysis, disk space to store them is required (external hard drives work well). Users

that wish to utilise the inference functions of Slide, Slide.inferClassifier() and

Slide.inferSegmenter() are highly recommended to have a CUDA-compatible

Graphics Processing Unit (GPU). SliDL also works well in high performance computing envi-

ronments that meet these conditions.

Installation

SliDL is available on the Python Package Index (PyPI) for easy installation:

Code Listing 19. Install SliDL

pip install slidl

Troubleshooting

There are several mistakes and error messages that can arise when using SliDL. Trouble-

shooting presents the most common mistakes users might run into, including the error mes-

sage output by SliDL, the possible reason for the mistake, and the possible solution to it

(Table 1).
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Supporting information

S1 Fig. Directory structure. The directory structure output by

Slide.extractAnnotationTiles() and Slide.
extractRandomUnannotatedTiles() which is amenable to PyTorch’s ImageFolder

dataset.

(TIF)

S1 Table. Table summarising the primary functions of SliDL.

(TIF)

S2 Table. Table describing the SliDL functions discussed in the main text. Functions are

listed in green, a summary of their purpose in blue, their arguments in yellow and the descrip-

tion of the arguments in white. For a complete description of all SliDL functions and their

arguments, see https://slidl.readthedocs.io/.

(PDF)

S3 Table. Table of comparisons to related methods.

(PDF)
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Table 1. Common SliDL error messages with explanations and possible solutions. X, Y, and Z represent numbers or words that will vary depending on the exact error

made by the user.

Message Possible reason Solution

‘This image is not compatible. Please refer to the

documentation for proper installation of openslide

and libvips’

The WSI input into the SliDL initialiser was not a

supported file format

Convert the WSI to a file format supported by

lipvips.

‘Tissue detection has already been performed. Use

overwriteExistingTissueDetection if you wish to

write over it’

Slide.detectTissue() has already been called on the Slide

object

Set the overwriteExistingTissueDetection argument

to True, or else don’t perform tissue detection again

‘Annotation with centroid (X, Y) produces a

Shapely Z instead of a polygon; check to see if it

self-intersects.’

The annotation around the specified centroid pixel

coordinates of the WSI does not produce a polygon when

geometrically parsed

Check that annotation on the WSI in a WSI viewer

looking for self-overlapping regions and correct it to

be a polygon

‘Warning: X suitable Y tiles found but requested Z
tiles to extract. Extracting all suitable tiles. . .’

The numTilesToExtractPerClass argument of a tile

extraction function exceeds the number of suitable tiles of

class Y

Reduce the numTilesToExtractPerClass argument

for class Y, or else let SliDL will extract all available Y
tiles by default

‘Model has X classes but only Y class names were

provided in the classes argument’

The number of classes output by the model inputted to

Slide.inferClassifier() or Slide.inferSegmenter() does not

equal the number of classes present in the classNames

argument

Verify that classNames includes all the classes that

were trained on, and correct this argument as

necessary

‘No predictions found in slide. Use inferClassifier()

/ inferSegmenter() to generate them.’

Using a SliDL function reliant on inference results without

having added inference results to the Slide object

Run Slide.inferClassifier or Slide.inferSegmenter()

on the Slide object

https://doi.org/10.1371/journal.pone.0289499.t001
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