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Abstract

Although preterm birth (PTB), a birth before 34 weeks of gestation accounts for only less
than 3% of total births, it is a critical cause of various perinatal morbidity and mortality. Sev-
eral studies have been conducted on the association between maternal exposure to PM and
PTB, but the results were inconsistent. Moreover, no study has analyzed the risk of PM on
PTB among women with cardiovascular diseases, even though those were thought to be
highly susceptible to PM considering the cardiovascular effect of PM. Therefore, we aimed
to evaluate the effect of PM4q on early PTB according to the period of exposure, using
machine learning with data from Korea National Health Insurance Service (KNHI) claims.
Furthermore, we conducted subgroup analysis to compare the risk of PM on early PTB
among pregnant women with cardiovascular diseases and those without. A total of 149,643
primiparous singleton women aged 25 to 40 years who delivered babies in 2017 were
included. Random forest feature importance and SHAP (Shapley additive explanations)
value were used to identify the effect of PM4o on early PTB in comparison with other well-
known contributing factors of PTB. AUC and accuracy of PTB prediction model using ran-
dom forest were 0.9988 and 0.9984, respectively. Maternal exposure to PM;, was one of
the major predictors of early PTB. PMq concentration of 5 to 7 months before delivery, the
first and early second trimester of pregnancy, ranked high in feature importance. SHAP
value showed that higher PM,o concentrations before 5 to 7 months before delivery were
associated with an increased risk of early PTB. The probability of early PTB was increased
by 7.73%, 10.58%, or 11.11% if a variable PMq concentration of 5, 6, or 7 months before
delivery was included to the prediction model. Furthermore, women with cardiovascular dis-
eases were more susceptible to PM,q concentration in terms of risk for early PTB than those
without cardiovascular diseases. Maternal exposure to PM;¢ has a strong association with
early PTB. In addition, in the context of PTB, pregnant women with cardiovascular diseases
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are a high-risk group of PM and the first and early second trimester is a high-risk period of
PMjo.

Introduction

Preterm birth (PTB), a delivery before 37 °7 weeks of gestation, has been an unsolved major
problem in obstetrics for a long time. PTB is divided into early and late PTB according to ges-
tational age (GA). Early PTB is defined as a delivery occurring before 34 *” weeks of gestation
and late PTB is defined as a delivery occurring between 34 ®” and 36 ©7 weeks of gestation [1].
PTB accounts for up to 10% of total global births. Early PTB rate was about 2.8% in 2019 in
United States and has not decreased over the past decades [2-5]. Although early PTB rate is
relatively lower than late PTB rate, early PTB has more significant clinical impact. The mortal-
ity of infants born in early PTB period was more than 5 times higher than that of infants born
in late PTB in the United States in 2018 [6]. Moreover, early PTB neonates are also at more
risk of various morbidities than late PTB neonates [7]. Major complications of neonates
including respiratory distress syndrome (RDS), intraventricular hemorrhage (IVH), and even
long-term neurodevelopmental morbidities increase with decreasing GA [8-10]. For these rea-
sons, prediction and management of early PTB have always been important issues.

Various factors associated with PTB ranging from genetic features to environmental factors
have been reported [11-14]. Among various environmental factors affecting PTB, air pollu-
tion, especially exposure to fine particulate matter (PM), has drawn increasing attention in
recent decades. Many studies about the association between PM and PTB was also conducted,
but the results were conflicting [12-22]. Huynh et al. have reported that maternal exposure to
PM can increase the risk of PTB while Pereira et al. could not find a significant association
between the two [15, 16]. Several meta-analyses have been conducted to examine the associa-
tion between PTB and PM, but their results were also inconsistent [23-26]. Ju L et al demon-
strated that the exposure of PM10 throughout pregnancy was associated with the increased
risk of moderate PTB (delivery at 32-36 weeks of gestation) with a relative risk (RR) of 1.80
(95% confidence interval [CI]: 1.05-1.11) and very PTB (28-31 weeks of gestation) with a RR
of 1.13 (95% CI: 1.06-1.21) [23]. However, Yu Z et al reported no significant association
between PM10 and moderate and very PTB [24]. Therefore, the association between PM10
and PTB is not yet definitive.

PM;, which is particles with an aerodynamic diameter equal or less than 10 um is a well-
known risk factor for cardiovascular diseases [27-30]. Several previous studies demonstrated
that the cardiovascular diseases of pregnant women are associated with the increased risk of
PTB [31-34]. Furthermore, the more severe cardiovascular diseases are, the greater the risk of
PTB. Based on the association between PM, and cardiovascular diseases, it is postulated that
pregnant women with cardiovascular diseases may be more susceptible to the effect of PM;,
on PTB. However, the a about the effect of PM;, on pregnant women with cardiovascular dis-
eases is lacking.

Therefore, this study aimed to evaluate the effect of PM;, on early PTB compared with
effects of known PTB-contributing factors by establishing a prediction model of early PTB
using machine learning. In this study, we used data extracted from Korea National Health
Insurance (KNHI) claims and concentration of PM;, estimated by the national system. In
addition, we compared effects of PM ;o on PTB in pregnant women with cardiovascular dis-
eases and those without cardiovascular diseases.
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Methods
Study population

This nation-wide population-based cohort study included women aged 25 to 40 years. Single-
ton primiparous women who delivered babies in 2017 were included. Those who had late PTB
were excluded. Data were extracted from KNHI claims. In South Korea, more than 97% of
total population are enrolled in KNHI. The database of KNHI contains almost all data covered
by the insurance under the National Health Insurance System. KNHI claims data were pro-
vided after de-identification according to the Act on the Protection of Personal Information
[35]. This retrospective cohort study was approved by the Institutional Review Board (IRB) of
Korea University Anam Hospital on November 5, 2018 (2018 AN0365). Informed consent was
waived by the IRB.

Variables

The dependent variable was early PTB in 2017. All variables except for PM,, were introduced
according to the ICD-10 Code and procedure code (S1 Table). PM;, concentration by region
was provided by the National Ambient Air Monitoring System in South Korea. The National
Ambient Air Monitoring System in South Korea consists of 505 stations covering all 162 cities,
countries, and districts in the entire nation. By using the demographic information of the study
population that was provided from the KNHIS database, we matched the monthly concentra-
tion of PM to each participant. The missing data of PM10 concentration were imputed using
median substitution of the PM10 concentration obtained from a nearby monitoring station. A
total of 55 independent variables covered the following information: (1) PM;, data in 2016
using regional PM;, concentration matched with the residence address of study population,
including PM,, concentration data of specific month (from January 2016 to December 2016)
and PM,, concentration of each month before delivery (1 to 10 months before delivery); (2)
demographic/socioeconomic determinants in 2017 including age and socioeconomic status
measured by an insurance fee with the range of 0 (the lowest group) to 20 (the highest group);
(3) obstetric and gynecologic diseases (namely, placenta previa, threatened abortion, incompe-
tent internal os of cervix, gestational diabetes, hypertensive disorders during pregnancy (HDP)
including gestational hypertension, preeclampsia and eclampsia, congenital malformation of
uterus, pelvic inflammatory disease, vaginitis, endometriosis, abnormal menstruation, recur-
rent miscarriage or infertility) for any year between 2002 and 2016; (4) cardiovascular diseases
(i.e., acyanotic congenital heart diseases (CHD), cyanotic CHD, arrhythmia, cardiomyopathy,
congestive heart failure (CHF), ischemic heart disease (IHD), and cardiac arrest) for any year
between 2002 and 2016; (5) other medical diseases, including hypertension, diabetes, hyperlip-
idemia, anemia, pulmonary embolism, sepsis, and stroke; and (6) medication history (that is,
benzodiazepine, calcium channel blocker (CCB), nitrate, progesterone, hypnotic/sedative drug
(antihistamine, zolpidem, eszopiclone, pentobarbital sodium, and benzodiazepine derivates),
and tricyclic antidepressant (TCA)) in 2002-2016. Women with cardiovascular diseases were
defined as women who had a history of at least one of following cardiovascular diseases: acya-
notic CHD, cyanotic CHD, arrhythmia, cardiomyopathy, congestive heart failure (CHF), ische-
mic heart disease (IHD), and cardiac arrest. These disease data and medication history were
screened using ICD-10 and ATC codes, respectively (S2 Table).

Analysis

Logistic regression, and the random forest were used for the prediction of early PTB [36-42].
A random forest is a group of decision trees with a majority vote on the dependent variable.
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The random forest with 100 decision trees was employed in this study (100 training sets were
sampled with replacements, 100 decision trees were trained with the 100 training sets, and 100
decision trees made 100 predictions). The random forest took a majority vote on the depen-
dent variable. Data of 149,643 cases with full information were split into training and valida-
tion sets at a ratio of 80:20. Random forest feature importance was introduced for identifying
major determinants of PTB and testing its associations with PM;, concentrate, socioeconomic
status, cardiovascular disease and medication history using benzodiazepine, progesterone, and
tricyclic antidepressants. Subgroup analysis of pregnant women with underlying cardiovascu-
lar diseases was performed. Major determinants were defined as variables ranked as the top
50% among all variables in the early PTB prediction model. Oversampling approach was
applied so that training of machine learning could be balanced between early PTB and term
birth groups. Furthermore, to determine how specific variables worked in the prediction
model, SHAP (Shapley Additive Explanations) value was computed. Python (CreateSpace:
Scotts Valley, 2009) was employed for the analysis between December 15, 2021 and April 15,
2022.

Results
Characteristics of study population

A total of 149,643 primiparous women were included in the final analysis. Among the study
population, 3,066 (2.05%) women had early PTB and 10,953 (7.32%) women had at least one
underlying cardiovascular disease. Maternal age at delivery was higher in women with early
PTB than in those with term birth (32.19 years vs. 31.84 years, p < 0.0001). Most cardiovascu-
lar diseases except CHD were more common in women who had early PTB than those who
had term birth. Baseline characteristics of the study population are described in Table 1.
Table 2 shows monthly PM;, concentration data (from January 2016 to December 2016) and
PM;,, concentration of each month before delivery (from 1 to 10 months before delivery) in
each group (term birth vs. early PTB). The concentration of PM;, was significantly different
between early PTB and term birth groups in summer and early fall (from June to September).
During the period from 5 to 7 months before delivery, women who had early PTB were
exposed to significantly higher concentrations of PM;, than those who had term birth.

Prediction model for early PTB and effect of PM;, on PTB

Table 3(a) presents accuracy, sensitivity, specificity and areas under the operating-characteris-
tic-curve (AUC) of the early PTB prediction model. With the random forest model for over-
sampled data, the AUC was 0.9988 and the accuracy was 0.9984. With the logistic-regression
model, the AUC was 0.6787 and the accuracy was 0.5450. The performance of the random for-
est model was superior to the logistic regression model. The model with oversampled data
showed greater AUC than that model with the original data. Therefore, we considered findings
of logistic regression as supplementary findings.

Results of feature importance of major determinants of early PTB are presented in Table 4.
It should be noted that most of the major determinants of early PTB for oversampling data
were similar to those for original data. Socioeconomic status influenced PTB the most, fol-
lowed by age at delivery. Among 27 major determinants of early PTB, PM;, concentration of
each specific month before delivery ranked within top-10 major determinants of early PTB in
oversampled data. PM;, concentration of each period before delivery (i.e., PM;, concentra-
tions of five months before delivery) had more impact on early PTB than PM,, concentration
of a specific month (i.e., PM;, concentration of December). This trend was also shown in the
original data. This finding implies that maternal exposure to PM, is associated with early PTB
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Table 1. Baseline characteristics of study population.

Variables Term birth Early preterm birth P

(n =146,577) (n = 3,066)
Demographic information
Age at delivery (years) 31.84 32.19 < 0.0001
Socioeconomic status (Insurance fee) 11.15 11.08 0.4797
Cardiovascular diseases
Cyanotic CHD 31 (0.02%) 2 (0.07%) 0.1037
Acyanotic CHD 247 (0.17%) 6 (0.20%) 0.7169
Arrhythmia 6,327 (4.32%) 155 (5.06%) 0.0467
Cardiomyopathy 73 (0.05%) 6 (0.20%) 0.0005
Congestive heart failure 676 (0.46%) 26 (0.85%) 0.0019
Ischemic heart disease 4,078 (2.78%) 110 (3.59%) 0.0074
Cardiac arrest 7 (0.01%) 0 (0%) 0.7020
Obstetric and gynecologic diseases
Placenta previa 489 (0.33%) 9 (0.29%) 0.7030
Threatened abortion 18,291 (12.48%) 498 (16.24%) < 0.0001
Incompetent internal os of cervix 90 (0.06%) 4(0.13%) 0.1309
Gestational diabetes 65,103 (44.42%) 1,444 (47.10%) 0.0031
Hypertension during pregnancy 6,164 (4.21%) 291 (9.49%) < 0.0001
Congenital malformation of uterus 401 (0.27%) 26 (0.85%) < 0.0001
Pelvic inflammatory disease 42,429 (28.95%) 1,085 (35.39%) < 0.0001
Vaginitis 117,299 (80.03%) 2,515 (82.03%) 0.0060
Endometriosis 5,972 (4.07%) 213 (6.95%) < 0.0001
Abnormal menstruation 42,370 (28.91%) 996 (32.49%) < 0.0001
Recurrent abortion or infertility 31,572 (21.54%) 933 (30.43%) < 0.0001
Other medical diseases
Hypertension 17,724 (12.09%) 487 (15.88%) < 0.0001
Diabetes 5,303 (3.62%) 193 (6.29%) < 0.0001
Hyperlipidemia 33,098 (22.58%) 884 (28.83%) < 0.0001
Anemia 41,169 (28.09%) 983 (32.06%) < 0.0001
Pulmonary embolism 64 (0.04%) 1 (0.03%) 0.7714
Sepsis 84,252 (57.48%) 1,873 (61.09%) < 0.0001
Stroke 605 (0.41%) 16 (0.52%) 0.3524
Medication
Benzodiazepine 61,740 (42.12%) 1,480 (48.27%) < 0.0001
Calcium channel blocker 422 (0.29%) 17 (0.55%) 0.0069
Nitrate 310 (0.21%) 5(0.16%) 0.5627
Progesterone 23,817 (16.25%) 620 (20.22%) < 0.0001
Hypnotic/sedative drug 7,067 (4.82%) 231 (7.53%) < 0.0001
Tricyclic antidepressant 15,027 (10.25%) 388 (12.65%) < 0.0001

https://doi.org/10.1371/journal.pone.0289486.t001

and that the impact of PM; is greater than well-known contributing factors of early PTB, such

as infection (feature importance in oversampled data, PM;, concentration in six months

before delivery (0.0320) vs. pelvic inflammatory disease (0.0198) vs. vaginitis (0.0197))

(Table 4(a)). Fig 1 presents SHAP value of the prediction model which shows the sign and

magnitude for the effect of a major determinant on early PTB. SHAP value of PM,, concentra-
tion of 5 to 7 months before delivery (first and early second trimester of pregnancy) ranked
high. Higher PM;, concentration increased the risk of early PTB. The probability of early PTB
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Table 2. PM,, concentration exposed to study population.

PM,, concentration Term birth (n = 146,577) Early preterm birth (n = 3,066) P
Monthly PM, concentration (um/m?)

PM,q in Jan un2016 50.25 50.38 0.3898
PM,, in Feb 2016 47.42 47.41 0.9011
PM,, in Mar 2016 61.70 61.87 0.3637
PM,, in Apr 2016 68.18 68.35 0.3269
PM, in May 2016 54.78 54.83 0.6631
PMj in Jun 2016 43.22 43.48 0.0240
PM,, in Jul 2016 30.93 31.20 0.0024
PM,, in Aug 2016 34.17 34.41 0.0326
PM,, in Sep 2016 37.50 37.78 0.0071
PM,, in Oct 2016 39.40 39.58 0.1176
PM,, in Nov 2016 53.64 53.83 0.2232
PM,, in Dec 2016 48.36 48.49 0.3667
PM, concentration of each month before delivery (pm/m3 )

PM,, in 10 months before delivery 47.56 45.95 < 0.0001
PM,, in 9 months before delivery 47.33 47.04 0.1907
PM,( in 8 months before delivery 46.37 47.89 < 0.0001
PM, in 7 months before delivery 47.02 49.90 < 0.0001
PMp in 6 months before delivery 47.11 50.05 < 0.0001
PM, in 5 months before delivery 47.57 49.37 < 0.0001
PM,, in 4 months before delivery 47.06 47.79 0.0042
PM,, in 3 months before delivery 46.74 46.24 0.0459
PM,, in 2 months before delivery 46.11 44.40 < 0.0001
PM,, in 1 month before delivery 45.30 43.27 < 0.0001

https://doi.org/10.1371/journal.pone.0289486.t1002

was increased by 7.73%, 10.58% or 11.11% if a variable PM,;, concentration of 5, 6, or 7 months
before delivery was included to the prediction model.

Effect of PM;, on PTB in women with underlying cardiovascular diseases

Subgroup analysis of women with underlying cardiovascular diseases was conducted. Table 3
(b) presents accuracy, sensitivity, specificity and AUC of the subgroup analysis. Early PTB pre-
diction model by random forest of oversampled data in both women with and without cardio-
vascular diseases also showed a fine performance. Table 4(b) presents feature importance of
major determinants of early PTB in subgroup analysis. A total of 22 variables of PM,, concen-
tration ranked in 3™ to 24" of feature importance in women with cardiovascular diseases.
However, 17 variables of PM,, concentration were ranked as major determinants in women
without cardiovascular diseases. The rank of PM;, concentration was relatively lower in
women without cardiovascular diseases than in those with cardiovascular diseases. This
implies that women with cardiovascular diseases might be more susceptible to PM;, concen-
tration in terms of risk for early PTB than those without cardiovascular diseases. This trend
was also observed in original data in a stronger way.

Discussion
Main finding

This large population-based cohort study set the prediction model for early PTB using random
forest. The AUC and accuracy of PTB prediction model using random forest were 0.9988 and
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Table 3. Performance measures of prediction model. (a) Prediction model for early PTB in total study population, (b-1) Prediction model for early PTB in women with

underlying cardiovascular diseases, (b-2) Prediction model for early PTB in women without underlying cardiovascular diseases.

Original data Oversampled data

(a)

Logistic Regression Accuracy 0.9805 0.6787
Sensitivity 0.0000 0.5508
Specificity 0.9805 0.6914
AUC 0.5000 0.5450

Random Forest Accuracy 0.9803 0.9984
Sensitivity 0.0000 0.9951
Specificity 0.9805 1.0000
AUC 0.4999 0.9988

(b-1)

Logistic Regression Accuracy 0.9759 0.6683
Sensitivity 0.0000 0.5109
Specificity 0.9759 0.6924
AUC 0.5000 0.5527

Random Forest Accuracy 0.9749 0.9981
Sensitivity 0.0000 0.9942
Specificity 0.9759 1.0000
AUC 0.4995 0.9985

(b-2)

Logistic Regression Accuracy 0.9817 0.6822
Sensitivity 0.0000 0.5737
Specificity 0.9817 0.6923
AUC 0.5000 0.5465

Random Forest Accuracy 0.9816 0.9985
Sensitivity 0.0000 0.9954
Specificity 0.9817 1.0000
AUC 0.4999 0.9988

Abbreviation: AUC, Areas under the operating-characteristic-curve.

https://doi.org/10.1371/journal.pone.0289486.t003

0.9984, respectively. We found that PM;, concentration of each period before delivery was a
major contributor to early PTB. We also found that the higher PM,, concentration of 5 to 7
months before delivery increased the risk of early PTB based on the SHAP value. Furthermore,
women with cardiovascular diseases were found to be more vulnerable to PM,, concentration

than those without cardiovascular diseases.

Effects of PM,, on PTB

Although the pathophysiology of PM;, on PTB has not yet been clearly demonstrated, PM,,
induced inflammation and oxidative stress are considered as key pathway of PM; causing

PTB [39-44]. In addition, because PM concentration has seasonal difference which might

have different effects on PTB depending on the period of exposure, some studies have analyzed
the effect of PM on PTB according to the trimester of pregnancy [18-22]. Considering these,
we analyzed the effect of PM,, on early PTB according to the concentration of each period
before delivery and the specific month which could reflect the season. The current study found
that maternal exposure to PM, according to the period of pregnancy (PM,, concentration of
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Table 4. Random forest feature importance of prediction model for early PTB (top 27 variables). (a) Feature importance in total study population, (b-1) Prediction
model for early PTB in women with underlying cardiovascular diseases (original data), (b-2) Prediction model for early PTB in women with underlying cardiovascular dis-
eases (oversampled data).

(a)
Original data Oversampled data
Rank Variables Feature importance Variables Feature importance
1 Socioeconomic status 0.1392 Socioeconomic status 0.1017
2 Age at delivery 0.1273 Age at delivery 0.0928
3 Gestational diabetes 0.0367 PM 0, 6 months before delivery 0.0320
4 Sepsis 0.0349 PM0, 2 months before delivery 0.0313
5 Benzodiazepine 0.0348 PM, 0, 7 months before delivery 0.0302
6 Abnormal menstruation 0.0323 PM0, 1 month before delivery 0.0298
7 Anemia 0.0295 PM, 10 months before delivery 0.0290
8 Pelvic inflammatory disease 0.0286 PM;, 4 months before delivery 0.0283
9 Vaginitis 0.0253 PM,, 9 months before delivery 0.0280
10 Hyperlipidemia 0.0209 PM,, 3 months before delivery 0.0277
11 Progesterone 0.0208 PM,, 5 months before delivery 0.0277
12 PM, 0, 1 month before delivery 0.0203 Gestational diabetes 0.0274
13 PM,, 2 months before delivery 0.0202 PM,,, 8 months before delivery 0.0269
14 PM,, 5 months before delivery 0.0199 Sepsis 0.0257
15 PM;0, 4 months before delivery 0.0198 Benzodiazepine 0.0236
16 PM;, 3 months before delivery 0.0197 Abnormal menstruation 0.0229
17 PM;, 8 months before delivery 0.0196 Anemia 0.0219
18 PM, 0, 6 months before delivery 0.0195 Pelvic inflammatory disease 0.0198
19 PM0, 10 months before delivery 0.0194 Vaginitis 0.0197
20 PM,, 7 months before delivery 0.0193 PM, 0, Apr 0.0193
21 PM;, 9 months before delivery 0.0191 PM,y, Jan 0.0188
22 Miscarriage or infertility 0.0184 PM,, Mar 0.0188
23 TA 0.0178 PM,,, May 0.0186
24 Hypertension 0.0157 PM,, Jul 0.0185
25 Tricyclic antidepressant 0.0152 PM,, Aug 0.0185
26 PM,, Feb 0.0129 PM,, Feb 0.0184
27 PM, o, Mar 0.0123 PM,p, Jun 0.0183
(b-1)
Women with cardiovascular diseases Women without cardiovascular diseases
Rank Variables Feature importance Variables Feature importance
1 Socioeconomic status 0.0793 Socioeconomic status 0.1490
2 Age at delivery 0.0789 Age at delivery 0.1347
3 PM, 0, 1 month before delivery 0.0353 Gestational diabetes 0.0391
4 PM, 0, 3 months before delivery 0.0344 Sepsis 0.0357
5 PM, 0, 2 months before delivery 0.0342 Benzodiazepine 0.0337
6 PM, 0, 4 months before delivery 0.0318 Abnormal menstruation 0.0330
7 PM,, 6 months before delivery 0.0315 Anemia 0.0319
8 PM,, 5 months before delivery 0.0305 Pelvic inflammatory disease 0.0296
9 PM 0, 7 months before delivery 0.0304 Vaginitis 0.0263
10 PM;, 10 months before delivery 0.0297 Hyperlipidemia 0.0258
11 PM0, 9 months before delivery 0.0292 Progesterone 0.0235
12 PM; 0, 8 months before delivery 0.0278 PM;, 1 month before delivery 0.0201
13 Anemia 0.0222 PM, 2 months before delivery 0.0196
14 Benzodiazepine 0.0220 PM,, 5 months before delivery 0.0195
(Continued)
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Table 4. (Continued)

15 Recurrent miscarriage or infertility 0.0216 Threatened abortion 0.0193
16 PM,, Dec 0.0209 PM,,, 7 months before delivery 0.0193
17 Gestational diabetes 0.0209 PM,0, 8 months before delivery 0.0193
18 Hyperlipidemia 0.0207 PM,, 4 months before delivery 0.0191
19 Pelvic inflammatory disease 0.0202 PM0, 6 months before delivery 0.0191
20 PM,y, Jun 0.0199 PM, 3 months before delivery 0.0191
21 PM0, Apr 0.0198 PM0, 9 months before delivery 0.0186
22 PM, Sep 0.0198 PM, 10 months before delivery 0.0183
23 PM,, Aug 0.0197 Hypertension 0.0161
24 Sepsis 0.0193 Recurrent miscarriage or infertility 0.0159
25 PM,, Feb 0.0188 Tricyclic antidepressant 0.0159
26 Abnormal menstruation 0.0188 PM,y, Apr 0.0118
27 PM,y, Jul 0.0185 PM,p, Jan 0.0117
(b-2)
Women with cardiovascular diseases Women without cardiovascular diseases
Rank Variables Feature importance Variables Feature importance

1 Socioeconomic status 0.0581 Socioeconomic status 0.1052
2 Age at delivery 0.0565 Age at delivery 0.0966
3 PM;, 2 months before delivery 0.0462 PM 0, 6 months before delivery 0.0327
4 PM0, 10 months before delivery 0.0454 PM0, 2 months before delivery 0.0306
5 PM, o, 7 months before delivery 0.0398 PM 0, 7 months before delivery 0.0303
6 PM;, 6 months before delivery 0.0392 PM;,, 1 month before delivery 0.0301
7 PM,, 4 months before delivery 0.0381 PM, 10 months before delivery 0.0294
8 PM, 0, 9 months before delivery 0.0371 PM,, 8 months before delivery 0.0283
9 PM, 0, 3 months before delivery 0.0354 PM,, 9 months before delivery 0.0282
10 PM,, 1 month before delivery 0.0349 PM,, 4 months before delivery 0.0282
11 PM,, 5 months before delivery 0.0345 PM,, 3 months before delivery 0.0281
12 PM;0, 8 months before delivery 0.0338 PM0, 5 months before delivery 0.0277
13 PM,, Jan 0.0294 Gestational diabetes 0.0272
14 PM,, Dec 0.0256 Sepsis 0.0262
15 PM;, Aug 0.0253 Benzodiazepine 0.0237
16 PM,g, Jul 0.0250 Abnormal menstruation 0.0232
17 PM,, Sep 0.0248 Anemia 0.0228
18 PM,,, Nov 0.0243 Pelvic inflammatory disease 0.0201
19 PM,, Apr 0.0242 Vaginitis 0.0201
20 PM,y, May 0.0241 PM;p, Jan 0.0196
21 PM,y, Mar 0.0239 PM,, Apr 0.0195
22 PM,,, Feb 0.0236 PM,,, Feb 0.0188
23 PM, Oct 0.0230 PM,, Mar 0.0187
24 PMy, Jun 0.0229 PM;y, Dec 0.0186
25 Benzodiazepine 0.0155 PM,, Jul 0.0184
26 Sepsis 0.0142 PM,o, May 0.0183
27 Hyperlipidemia 0.0141 Hyperlipidemia 0.0182

https://doi.org/10.1371/journal.pone.0289486.t004

each month before delivery) was more associated with the risk of early PTB than the concen-
tration of PM, itself (monthly PM,, concentration). In addition, higher PM,, concentration
in 5 to 7 months before delivery (the first and early second trimester) was a major contributor

to early PTB and associated with an increased risk of PTB. This result was consistent with
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Fig 1. SHAP value of early-PTB prediction model.
https://doi.org/10.1371/journal.pone.0289486.9001

previous studies showing that maternal exposure to PM in first and second trimesters could
significantly increase the risk of PTB [18-22]. Throughout the current study, we assumed that
maternal exposure to PM;, during the first and early second trimester of pregnancy might
have more critical effects on PTB compared to the exposure during other periods.
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Effects of PM,, on PTB in women with cardiovascular diseases

The pathological mechanism of PM for cardiovascular diseases can be broadly divided into
direct translocation and indirect pathway [45]. Direct action has a direct effect on the cardio-
vascular system as ultrafine particles translocates through the blood stream [45]. The indirect
pathway affects cardiovascular diseases by oxidative stress and activation of the inflammation
pathway [45]. Several studies have reported that pro-inflammatory cytokines are increased in
subjects exposed to PM [46-48]. Systemic inflammatory response can promote atherosclerosis,
coagulability, and endothelial dysfunction, which ultimately affects the cardiovascular system
[43]. In addition, PM can stimulate the autonomic nervous system and the hypothalamic-pitu-
itary-adrenal (HPA) axis. It is also associated with systemic inflammatory responses and ath-
erosclerosis [49-54]. Women with cardiovascular diseases have suboptimal cardiac adaptation
during pregnancy compared to healthy women. They also have more underlying cardiovascu-
lar risk factors that can increase the risk of PTB, which will increase the likelihood of PTB [31,
55-59]. In this study, we found that PM, had a relatively stronger effect on early PTB of preg-
nant women with cardiovascular diseases than those without cardiovascular diseases. We
assumed that PM, exacerbate the cardiovascular function of pregnant women with underly-
ing cardiovascular diseases, and this can further increase the risk of early PTB.

Strength and limitation

The strength of the current study was that we used large-scale population-based data and ana-
lyzed these data with machine learning, one of the optimal methods for analyzing large
amounts of data. Moreover, we used various variables including demographic/socioeconomic,
obstetric, and gynecologic, cardiovascular, and other medical information as confounding fac-
tors. Furthermore, we analyzed the timing and co-morbidities that might exaggerate the effect
of PM; on early PTB. However, this study also has some limitations. First, we could not pres-
ent the actual gestational age at delivery because we used original data from KNHIS claims
that only provided ICD-10 code, not the actual gestational age at delivery. In addition, we
could not subdivide the cause of early PTB. There are various mechanisms of early PTB includ-
ing spontaneous preterm labor, severe maternal morbidity such as preeclampsia, and severe
fetal morbidity such as non-reassuring fetal heart rate. However, we could not analyze the
mechanism of PTB due to the lack of information in the original data. Lastly, other air pollut-
ants such as PM, 5, NO,, and O; were not evaluated.

Conclusion

With this large population-based cohort study using machine learning, we found that maternal
exposure to PM;, was a major contributor to early PTB. Moreover, we found that in the con-
text of PTB, pregnant women with cardiovascular diseases are a high-risk group of PM;, and
the first and early second trimester is a high-risk period of PM;. The current study empha-
sized the importance of PM,q as an overlooked risk factor for PTB. We believe that these find-
ings can alert the risk of PM,, to both obstetricians and pregnant women, and the effort to
reduce the maternal exposure to PM, especially in pregnant women with cardiovascular dis-
eases in their first and early second trimester is needed.

Supporting information
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eases.
(DOC)
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