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Abstract

Identifying biomarkers is essential to obtain the optimal therapeutic benefit while treating

patients with late-life depression (LLD). We compare LLD patients with healthy controls

(HC) using resting-state functional magnetic resonance and diffusion tensor imaging data to

identify neuroimaging biomarkers that may be potentially associated with the underlying

pathophysiology of LLD. We implement a Bayesian multimodal local false discovery rate

approach for functional connectivity, borrowing strength from structural connectivity to iden-

tify disrupted functional connectivity of LLD compared to HC. In the Bayesian framework,

we develop an algorithm to control the overall false discovery rate of our findings. We com-

pare our findings with the literature and show that our approach can better detect some

regions never discovered before for LLD patients. The Hub of our discovery related to vari-

ous neurobehavioral disorders can be used to develop behavioral interventions to treat LLD

patients who do not respond to antidepressants.

Introduction

Patients with late-life depression (LLD) are usually over 55 years old and have major depres-

sive symptoms. In the U.S., the prevalence of major depression in adults 50 years and older is

estimated to be 4.7% [1]. As the world population of adults aged 60 years and older is expand-

ing rapidly from 900 million in 2015 to more than 2 billion by 2050 [2], focus on understand-

ing age-related disorders is becoming prominent and necessary to accommodate this

demographic shift. One of the major disorders in elders is depression associated with socioeco-

nomic, psychiatric, and medical factors [3]. Prominent depressive symptoms of LLD are

severe, with persistent low mood and self-esteem, deep sadness, or a sense of despair. LLD

patients lack interest in a previously rewarding or enjoyable activity. LLD is also a leading

cause of disability in older adults and causes substantial health care expenses [4].

Detection of brain networks may serve as neuroimaging biomarker for disease identifica-

tion and provide a better understanding of how to treat LLD patients. No specific guideline

suggests how to identify LLD patients with corresponding severity early. The development of

biomarkers utilizing brain network properties for early detection of LLD is needed to achieve

optimal benefits while treating LLD patients. Identification of biomarkers and predictors
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becomes challenging due to the heterogeneity in brain tissues, choice of a subnetwork for

group comparisons, and proper interpretation of performance function. The complexity of the

current investigation is due to sample variability, the dependency between regions of interest

(ROI), and high dimensionality for the non-Gaussian scenario or non-linear relationship in

ROIs [5].

Diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging

(rs-fMRI) for the whole brain are used to measure structural connectivity (SC) and functional

connectivity (FC), respectively. Abnormalities in FC and SC within the brain network involv-

ing cognitive function and mood regulation may increase the likelihood of developing depres-

sion. Currently, available approaches address one or, at most, a few of these statistical

challenges, but none is able to address all comprehensively. The goal of this article is to identify

functional biomarkers that may be potentially associated with the pathophysiology of LLD and

address limitations of existing statistical methodologies frequently used to analyze such data.

Some studies used structural connectivity data to compare LLD with HC. DTI data is

mainly used to measure structural connectivity. A study examined white matter structural

alterations in specific brain regions implicated in depressed individuals compared to HC. A

general linear model was proposed to identify SC changes in LLD patients. It found lower

microstructural white matter activity in the right anterior cingulate cortex (ACC) and the right

caudal middle frontal gyrus (also known as dlPFC) during episodes of depression in LLD

patients [6]. Another study adopted a general linear model to observe the remission of depres-

sion. Results of that study showed higher fractional anisotropy (FA) in the frontal white matter

above the anterior commissure-posterior commissure (AC-PC) plane of LLD individuals [7].

One study used a multiple linear regression model with tract-based spatial statistics to detect

group differences and correlations of regional DTI data [8]. Another study used a hierarchical

linear regression model to measure the association between white matter tracts and the ACC.

A higher FA of left uncinate fasciculus was found in the LLD patients who suffered from apa-

thy [9]. In addition, one study used a correlation analysis to confirm the association between

SC and self-referential thinking [10].

However, the literature comparing LLD with HC using multimodal connectivity is very

limited. One research proposed a linear mixed-effects model to detect biomarkers comparing

LLD and HC by incorporating both measures of SC and FC and within-subject correlations.

The study discovered disruptions in posterior and anterior parts [11]. Another study explored

the relationship between brain connectivity and perceived loneliness in LLD patients. Using a

general linear model combined with network-based Statistics (NBS), the findings of that study

revealed that loneliness was associated with disrupted SC and FC between the amygdala and

superior frontal gyrus [12]. The other research chose a Mann-Whitney U test to examine the

group difference between LLD and HC or between LLD and remitted patients with LLD.

Results of this study revealed that LLD patients had higher mean diffusivity in the white matter

tract between the left ACC and posterior superior temporal gyrus (pSTG). Compared to the

HC, the remitted patients with LLD had lower FC between the left ACC and pSTG; there is no

significant difference between unremitted LLD and HC [13].

This article introduces a neuroimaging study to detect network alternations in LLD com-

pared to HC. We develop a Bayesian mixture model for FC measures incorporating SC mea-

sures as auxiliary information. Our decision criteria for determining significant biomarkers is

based on a proposed algorithm that utilizes information obtained from a Bayesian mixture

model we developed. Further, it strictly controls the overall false discovery rate (FDR). We

present results regarding disrupted FC of LLD compared to HC and hubs of disruptions with

neurobehavioral activity. The results focus on the FC patterns within and between the major
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brain networks associated with LLD. Finally, we discuss some limitations of the current frame-

work and provide suggestions and thoughts for future work.

Materials and methods

A multimodal neuroimaging study for late-life depression

A cross-sectional neuroimaging study was conducted by Dr. Ajilore at the University of Illinois

at Chicago (UIC) to compare LLD with HC. For this study, a total of 42 participants were

recruited. 21 participants in the LLD group were matched with another 21 participants in HC.

All study participants were at least 55 years old.

Participants of the study

The ages of participants ranged from 55 to 82 years, with a mean age of 67.8 years and a stan-

dard deviation of 7.05 years. There was a significant difference in age between the two groups

(p = 0.001). These two groups had no significant difference regarding demographic character-

istics, including sex, race, years of education, smoking status, and handedness. Additionally,

there was no significant difference in clinical information, such as hemoglobin a1c, triglycer-

ides, cholesterol, glucose, blood pressure, and stroke risk probability. These results suggest that

HC and LLD groups were well-matched regarding demographic and clinical characteristics.

The recruitment method of participants were described in [14]. Individuals were recruited

via community outreach (e.g., local newspaper, radio, and television advertisements) and rele-

vant outpatient clinics. Initially, participants went through a screening procedure via tele-

phone. The exclusion criteria were psychotic disorders (such as schizophrenia and bipolar

disorder), history of any of the following: anxiety disorder outside of major depressive epi-

sodes, head trauma and substance abuse, and MRI contraindications (e.g., pacemaker, metal

implants). The inclusion criteria for all participants were over 55 years of age, no history of

unstable cardiac or neurological diseases, and medication-naive or anti-depressant free for at

least two weeks. After the telephone screen, all eligible participants were scheduled for an

assessment with Structured Clinical Interview for Diagnostic and Statistical Manual of Mental

Disorders, 4th edition (DSM-IV) (SCID-IV) [15] by a trained research assistant, followed by an

evaluation on the severity of depression using the 17-item Hamilton Depression Rating Scale

(HDRS) [16] by a board-certified psychiatrist. The LLD patients met SCID-IV criteria for

major depressive disorder (MDD) and a score� 15 on the 17-item HDRS. All study subjects

provided written informed consent. The study was approved by the UIC Institutional Review

Board and performed in compliance with the Declaration of Helsinki.

Age effect on the identification of brain connectivity

Age has been identified as a potential confounding factor in studies investigating brain con-

nectivity [8, 17]. Therefore, it is crucial to investigate the impact of age on identifying signifi-

cant connectivity in this study. Using an FDR level of 0.30, 122, and 90 connectivities were

identified by the hierarchical linear mixed effects model with and without controlling for age,

respectively. Of these, 77 connectivity overlapped, resulting in an overlap rate of 85.6% (77/

90). These findings suggest that the age effect does not have a huge impact on the identification

of significant connectivity in the LLD study.

Image acquisition and data processing

Brain regions in this neuroimaging study were parcellated by the Freesurfer Desikan atlas [18].

A total of 87 cortical with subcortical gray matter ROIs was considered for the whole brain
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analysis, including 43 bilateral regions and brain stem (central) in each participant. The FC

and SC measures consist of a total of 87

2

� �
¼ 87� ð87 � 1Þ=2 ¼ 3741 unique links or

connectivity.

For image acquisition, the neuroimaging data was processed by a Philips Achieva 3.0T

scanner (Philips Medical Systems, The Netherlands) with an 8-channel sensitivity-encoding

head coil. The participants were positioned on the scanner bed, fitted with soft ear plugs and

foam pads, to ensure comfort and reduce head motion. During the scan, participants were

required to remain still, keep their eyes closed, be relaxed, and not think anything particular.

The three-dimensional T1-weighted image data was obtained with an MPRAGE (Magnetiza-

tion Prepared Rapid Acquisition Gradient Echo) sequence. The parameters were as follows:

relaxation time (TR) = 8.4 ms, excitation time (TE) = 3.9 ms, Field of View (FOV) = 240 mm,

flip angle = 80˚, voxel size = 1.1 × 1.1 × 1.1 mm. A single-shot gradient-echo echo-planar imag-

ing (EPI) sequence was used to collect rs-fMRI imaging data with the following parameters:

TR/TE = 2000/30 ms, FOV = 23 × 23 × 15 cm3, flip angle = 80˚, EPI factor = 47, in-plane reso-

lution = 3 × 3 mm2, slice thickness with no gap = 5 mm, slice number = 30, SENSE reduction

factor = 1.8, NEX = 200; total scan time = 6:52. DTI imaging data were acquired using a single-

shot spin-echo EPI sequence with the following parameters: TR/TE = 6994/71 ms, FOV = 240

mm, flip angel = 90˚, voxel size = 0.83 × 0.83 × 2.2 mm. A total of 67 contiguous axial slices

aligned to the anterior commissure-posterior commissure line was collected in 32 gradient

directions with a b value of 700 s/mm2 and one acquisition without diffusion sensitization.

The artifact detection tool (ART: http://www.nitrc.org/projects/artifact_detect) was used to

measure motion artifacts in all subjects. There was no significant between-group difference in

composite motion (means the standard deviation(SD); HC: mean=.275, SD=.142, for LLD

mean=.292, SD=.143, p=.77), still we controlled for any motion artifacts using realignment

parameters detected by ART. There was no significant difference between HC and LLD sub-

jects in movement. We used “scrubbing” to remove outlier frames as part of the CONN default

processing pipeline.

The SC maps were generated for each participant using a pipeline integrating multiple

image analysis techniques. The diffusion-weighted imaging (DWI) images were first corrected

using the automatic image registration tool in DtiStudio software [19] by registering all DWI

images to their corresponding b0 images with a 12-parameter affine transformation, followed

by computation of diffusion tensors and deterministic tractography using fiber assignment by

a continuous tracking algorithm. The label maps were generated using T1-weighted images

with FreeSurfer.

For data processing, FC was measured using the rs-fMRI toolbox CONN. The CONN tool

performed seed-based correlation analysis by computing the Pearson correlation coefficients

between the BOLD time series measured the activation from a given ROI to all other ROIs.

The BOLD signal was passed through a band-pass filter of 0.008 to 0.09 Hz. As the rs-fMRI

connectivity data was measured using Pearson’s correlation coefficients, we applied Fisher’s Z
transformation to stabilize the variance and approximate normal distribution for the trans-

formed data [20–22]. We assumed a Poisson distribution on the DTI data measured by FA,

essentially the estimate of fiber counts [11]. Next, the cube-root transformation was applied

for normality.

Statistical methods for data analysis

Constraint regression models (e.g., LASSO or elastic net regression) are frequently used to

analyze neuroimaging data (e.g., fMRI, DTI, etc.) for selecting features or important biomark-

ers to explain disease-biomarker relationship [21]. Then, machine learning techniques are
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used to classify or predict the disease status of new subjects [5]. For group comparisons (e.g.,

LLD vs. HC), mixed-effects models together with multiple comparison is used for such data to

control the false discovery rate of biomarkers [21]. In particular, fMRI data is analyzed by

model-based methods such as cross-correlation analysis (CCA) [23–27] or statistical paramet-

ric mapping [28]), or data-driven methods such as independent component analysis (ICA) or

principal component analysis [29–32]. Generally, SC is determined using DTI data, measured

by FA, relative anisotropy, mean diffusivity, or anisotropic diffusion [33–39].

Mixed-effects models or graph theoretical approaches are used to analyze structural neuro-

imaging data for generating structural connectomes [40, 41]. Graph theoretical procedures

provide additional flexibility to examine the global property of each subject’s network, which

focuses on the subnetwork of nodes while examining local network properties [40]. For multi-

modal analysis, Bayesian approaches utilize SC as a prior for FC [42–45], and data-driven

approaches such as joint ICA [46–54], partial least squares [55–58], or CCA [32, 59–62] are

also used with or without prior information. An alternative is to use a bivariate mixed-effects

model to jointly analyze fMRI and DTI data of LLD or Major Depressive Disorder (MDD)

subjects addressing between-region correlations [11]. What is critically important is the imple-

mentation of an inferential procedure particularly suitable to control the false discovery rate

while testing multiple networks generated from group comparisons (e.g., LLD vs. HC) [20].

Statistical methods for controlling the false discovery rate in neuroimaging studies, such as

Efron’s Local false discovery rate (Lfdr) [63, 64] are developed using only one modality (e.g.,

FC), ignoring the potential influence of other modalities (e.g., SC, electroencephalogram, etc.)

completely. For this LLD study, we develop an analytical approach consisting of two steps. In

the first step, we utilize a linear mixed-effects regression model to analyze FC and SC data sep-

arately to determine between-region connectivity, addressing correlations over regions and

heterogeneity between subjects. Using this model, we obtain test statistics for between-group

comparison of FC and SC. In the second step, we fit a two-group Bayesian mixture model [63–

66] utilizing the density of FC test statistics with auxiliary information from SC test statistics.

We formulate a Bayesian mixture model for two-group comparison assuming that for con-

nectivity links under the null hypothesis (i.e., no FC difference between disease and control

group), referring to as null connectivity links, the absolute value of t-statistic (denoted by jtðFÞi j)

follows a folded normal distribution (denoted by f0ðjt
ðFÞ
i j; 0; s

2Þ with zero mean and an

unknown variance σ2. This folded normal under the null distribution does not use any infor-

mation from the SC. Next, we assume that connectivity links under the alternative hypothesis,

i.e., a difference of FC exists between the disease group and control group (referred to as alter-

native connectivity links), the corresponding t statistic follows a gamma distribution denoted

by f1ðjt
ðFÞ
i j; aðjt

ðSÞ
i jÞ; bÞ. The justification for using a gamma distribution is as it provides flexi-

bility to accommodate different shapes of the data points and fits better for right-skewed data

in general. We assume the shape parameter (aðjtðSÞi jÞ > 0) of the gamma distribution is a log-

linear function of the absolute value of the jtðSÞi j statistic of the difference of SC of two groups

with a normal prior distribution. The rate parameter (β) of the gamma distribution does not

depend on SC. A dichotomous latent weight variable wi is attached to the mixture model

where its zero value (i.e., wi = 0) is assigned to the null distribution, and one (i.e., wi = 1) is

assigned to the alternate distribution. The prior probability of wi = 1 depends on the SC statis-

tic, i.e. jtðSÞi j is modeled using a logistic regression with jtðSÞi j as a covariate. By Bayes theorem,

the Bayesian local false discovery rate, i.e. BLfdri (jtðFÞi j, jt
ðSÞ
i j)) is defined as the posterior proba-

bility that the ith connectivity link is null conditioning on jtðFÞi j and jtðSÞi j statistics. Thus our

PLOS ONE A novel biomarker selection method using multimodal neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0289401 April 4, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0289401


approach to modeling FC borrows strength from SC and provides a better assurance on the

true detection of biomarkers.

Finally, utilizing the Bayesian information, we compute the Bayesian local false discovery

rate (Blfdr) for each connectivity to decide its significance given the observed FC and SC test

statistics. A detailed discussion of this statistical approach, including the simulation study to

demonstrate the performance of the method in terms of controlling the FDR, is provided in

[67]. In summary, we have extended the covariate-modulated Lfdr method [65] to multimodal

neuroimaging data and implemented a Bayesian multimodal Lfdr approach to integrate SC

and FC statistics utilizing a Bayesian mixture model (expression of the BLfdr is given in S1

Appendix). This approach leverages the complementary SC statistic as auxiliary information

to enhance the modeling of the distribution of FC statistics to identify differential FC between

two groups.

Results

Bayesian multimodal Lfdr method detected 21 functional links of the LLD group that are sig-

nificantly different from the corresponding functional links of the HC group at the FDR level

q = 0.2 as shown in Table 1, where q is the desired FDR level with considerations on how to

Table 1. Twenty-one differential functional links and the corresponding test statistics values determined by Bayesian multimodal Lfdr method at FDR level of 0.2

for LLD neuroimaging study.

Region 1a Region 2a Test statisticb

Hyperconnectivity:

R thalamus proper (RTP) R caudal middle frontal gyrus (RCMF) 4.340 (E)

R pallidum (RP) L inferior parietal cortex (LIP) 4.011 (E)

R pallidum (RP) R caudal middle frontal gyrus (RCMF) 4.051 (E)

R accumbens area (RAA) L isthmus cingulate cortex (LIC) 3.890 (E)

R ventral diencephalon (RVD) R fusiform gyrus (RF) 4.132 (E)

L isthmus cingulate cortex (LIC) R caudal middle frontal gyrus (RCMF) 4.583 (E)

L posterior cingulate cortex (LPC) R rostral middle frontal gyrus (RRMF) 3.877 (E)

L posterior cingulate cortex (LPC) R supramarginal gyrus (RS) 3.378

L rostral middle frontal gyrus (LRMF) R caudal middle frontal gyrus (RCMF) 4.074 (E)

L superior parietal cortex (LSP) R pars opercularis (RPO) 3.355

R caudal anterior cingulate cortex (RCAC) R caudal middle frontal gyrus (RCMF) 3.855 (E)

R caudal middle frontal gyrus (RCMF) R isthmus cingulate cortex (RIC) 3.733 (E)

R caudal middle frontal gyrus (RCMF) R posterior cingulate cortex (RPC) 3.598

R pars triangularis (RPT) R rostral anterior cingulate cortex (RRAC) 3.469

R posterior cingulate cortex (RPC) R supramarginal gyrus (RS) 3.491

Hypoconnectivity:

L thalamus proper (LTP) L posterior cingulate cortex (LPC) -3.701

L ventral diencephalon (LVD) R caudal anterior cingulate cortex (RCAC) -3.889

R caudate nucleus (RCau) L cuneus cortex (LCun) -3.245

L entorhinal cortex (LE) L supramarginal gyrus (LS) -3.314

L fusiform gyrus (LF) L pars triangularis (LPT) -3.864

L fusiform gyrus (LF) L supramarginal gyrus (LS) -4.332 (E)

a L = left; R = right.
b Based on between-group comparison in FC using a linear mixed-effects regression model assuming random subject effect and heteroscedastic errors at both group and

link level, a positive value indicates hyperconnectivity, a negative value indicates hypoconnectivity. 11 FC links were also identified by Efron’s Lfdr method at q = 0.2 are

indicated using (E).

https://doi.org/10.1371/journal.pone.0289401.t001
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determine q described in [20, 68]. Among the 21 links, 15 have significantly higher FC (i.e.,

hyperconnectivity), and 6 have significantly lower FC (i.e., hypoconnectivity). In contrast,

using FC data, Efron’s Lfdr method solely detects 12 significant functional links at q = 0.2,

among which 11 links overlap with those identified by the Bayesian multimodal Lfdr method.

Fig 1 presents the brain images of 21 functional links showing a significant difference

between the LLD and HC groups by the Bayesian multimodal Lfdr method at q = 0.2. Fig 2 dis-

plays the network analysis of 21 functional links based on cortical and subcortical gray matter

regions in the left and right hemispheres of the brain. The procedure of determining the signif-

icant link by the BLfdr is discussed in S1 Appendix.

First, we identify the primary hub region, the dlPFC, that has significantly higher FC to

seven other regions, including left isthmus cingulate cortex, left rostral middle frontal gyrus,

right thalamus proper, right pallidum cortex, right caudal anterior cingulate cortex, right isth-

mus cingulate cortex and right posterior cingulate cortex in LLD patients as compared to the

HC group.

The second main finding is that LLD patients exhibit higher FC pattern comprising the

right dlPFC, bilateral right rostral middle frontal gyrus within the CEN, right caudal anterior

cingulate cortex within the SN, bilateral isthmus cingulate cortex, bilateral posterior cingulate

cortex, right thalamus proper and right supramarginal gyrus within the DMN. We observed

higher FC between the right supramarginal gyrus with the bilateral PCC region within the

DMN. Lower FC was found between the left posterior cingulate cortex and left thalamus

proper within the DMN. Also, we noticed higher FC between the left superior parietal cortex

and right pars opercularis in LLD. We found lower FC between the left PCC and left thalamus

proper within the DMN in the left hemisphere and higher FC in bilateral PCC regions. We

also observed lower FC between the left pars triangularis, left FG, left supramarginal gyrus,

and left entorhinal cortex in the LLD group, suggesting potential functional semantic and

facial recognition inhibition in the left hemisphere of the brain. Our results show a consistently

higher FC between the right dlPFC within the CEN, right dACC within the SN, and right PCC

within the DMN in LLD patients.

In addition, we find eight secondary hubs, defined as regions showing at least two signifi-

cantly higher or lower FCs to other regions. These regions are the left fusiform gyrus (FFA),

right pallidum, right dACC (SN), left isthmus cingulate cortex (DMN), bilateral posterior cin-

gulate cortex (DMN), and bilateral supramarginal gyrus (DMN). Moreover, significant FC

Fig 1. Brain images of 21 functional links exhibiting significant between-group differences identified by the

Bayesian multimodal Lfdr method at an FDR level of 0.2. The red lines indicate higher FC (hyperconnectivity), and

the blue lines indicate lower FC (hypoconnectivity). L = left; R = right.

https://doi.org/10.1371/journal.pone.0289401.g001
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activities are observed in eight bilateral regions: rostral middle frontal gyrus (CEN), dorsal

thalamus, ventral diencephalon, fusiform gyrus (FFA), pars triangularis, isthmus cingulate cor-

tex (DMN), posterior cingulate cortex (DMN) and supramarginal gyrus (DMN). We also

observed lower FC between the right caudate nucleus and left cuneus cortex in the LLD group.

Inspecting Fig 2, we find that the hub of disruptions is the right dlPFC, which can be used

as an intervention target for repetitive transcranial magnetic stimulation (rTMS). Future stud-

ies with larger samples should examine whether the right dlPFC would be a better intervention

target for rTMS in LLD.

Reproducibility of our results

To check the reproducibility of our findings, we used data from a neuroimaging study involv-

ing internalizing psychopathologies (IP) subjects. In that work, IP was characterized by disor-

dered emotion processing, such as MDD, generalized anxiety disorder (GAD), and other

related diagnoses. Study subjects were recruited from the greater Chicago area through UIC;

Fig 2. Network analysis of 21 functional links exhibiting significant between-group differences identified by the

Bayesian multimodal Lfdr method at FDR level of 0.2 based on cortical and subcortical gray matter regions by the

left and right hemispheres of the brain. Red lines indicate higher FC (hyperconnectivity), and the blue lines indicate

lower FC (hypoconnectivity). The red circle denotes the primary hub, and the yellow circles denote secondary hubs. 11

FC links also identified by Efron’s Lfdr method are indicated using (E). Abbreviations: CEN = central executive

network; DMN = default mode network; SN = salience network; VN/FFA = visual network / fusiform face area;

Broca = Broca’s area; RN = reward network; LCun = left cuneus cortex; LE = left entorhinal cortex; LF/RF = left/right

fusiform gyrus; LIC/RIC = left/right isthmus cingulate cortex; LIP = left inferior parietal cortex; LPC/RPC = left/right

posterior cingulate cortex; LPT/RPT = left/right pars triangularis; LRMF/RRMF = left/right rostral middle frontal

gyrus; LS/RS = left/right supramarginal gyrus; LSP = left superior parietal cortex; LTP/RTP = left/right thalamus

proper; LVD/RVD = left/right ventral diencephalon; RAA = right accumbens area; RCAC = right caudal anterior

cingulate cortex; RCMF = right caudal middle frontal gyrus; RCau = right caudate nucleus; RP = right pallidum;

RPO = right pars opercularis; RRAC = right rostral anterior cingulate cortex.

https://doi.org/10.1371/journal.pone.0289401.g002
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the neuroimaging data processing procedure is described in [69]. To make a consistent com-

parison, we chose those IP patients who suffered from mild to severe depression symptoms.

Specifically, 20 subjects with an HDRS score above 14 were chosen from the IP group. The

propensity scoring matching method selected 23 subjects from the healthy control group.

Study subjects aged were between 18 and 60 years, with a mean age of 27.4 years and a stan-

dard deviation of 11.0 years. The brain network was parcellated by CONN atlas [70], namely,

to get a total of 105 brain regions with 5460 unique links. Comparing the IP study with the

LLD study, we see that the age distributions of these two studies are different. To minimize the

impact of age, subjects in each study were matched with ages for two comparison groups.

Efron’s Lfdr and Bayesian multimodal Lfdr detected respectively 45 and 3 (right amygdala

—right middle temporal gyrus, right pallidum—left middle temporal gyrus, and right temporal

fusiform cortex—left supramarginal gyrus) FC significant links while comparing the IP group

with the HC group. The three links detected by the Bayesian method were also detected by

Efron’s method. The links of IP and of LLD cannot be compared directly due to the difference

in brain parcellation (i.e., 105 brain regions for IP vs. 86 brain regions for LLD). To bring into

conformity, we compared those two groups’ brain regions (instead of links). Brain regions

detected in both IP and LLD groups by the Bayesian Lfdr are the right pallidum and the left

supramarginal gyrus. It is worth noting that the right pallidum is within the RN, and the left

supramarginal gyrus is within DMN. Both RN and DMN have been detected in LLD. This

brings a partial reproducibility result by the proposed Bayesian method.

Model comparison with multimodality

Several investigators used multimodal neuroimaging data to better understand the neurologi-

cal condition of brain with diseases. Honey et al. (2009) [71] investigated the correlation

between HC (using resting state fMRI) with SC (using DTI). Sui et al. (2013) [72] employed

the independent component analysis and estimated the number of independent components

using three modalities such as fMRI, DTI, and structural MRI, while studying the abnormal

structure underlying schizophrenia relative to healthy controls. Zhao (2014) [11] used a bivari-

ate linear mixed-effects model (BLMM) to detect disrupted links of LLD compared to HC.

Multimodality of neuroimaging studies mainly focuses on correlations of modalities or detec-

tion of the main components of such correlations.

For comparison, we developed a hierarchical bivariate linear mixed-effects model

(HBLMM) extending Zhao’s model [11] where HC and FC were jointly used to detect disrup-

tions as opposed to the proposed Bayesian model where SC is used as auxiliary information to

model FC. The HBLMM detected forty links with significant group differences in HC and FC

jointly. Two links, namely, the left ventral diencephalon (LVD)—right caudal anterior cingu-

late cortex (RCAC) and left thalamus proper (LTP)—left posterior cingulate cortex (LPC),

overlapped with those detected by the Bayesian multimodal method. However, while consider-

ing the brain regions as a whole, there were 15 ROIs (LIP/LPC/RPC/LTP/RTP within the

DMN, RCAC with the SN, LSP/RCMF/RRMF within the CEN, LCun/LF within the VN/FFA,

and LVD/RAA/RCau/RP within the RN) detected by the HBLMM that overlapped with those

found by the Bayesian multimodal method. The main difficulty with the HBLMM is the proper

selection of the covariance matrix between HC and FC. Thus, findings may become subjective.

Another difficulty of using HBLMM is the computational time due to the correlation matrix

between HC and FC. Reviewing the literature, we find the proposed Bayesian approach is

user-friendly and utilizes multimodality properly to detect functionally disrupted connectivity.
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Discussion

In this article, we have developed a rigorous analytical approach for detecting biomarkers

using multimodal neuroimaging data. Our method uses SC information in defining the den-

sity function of the FC data under the alternative hypothesis that some FC of LLD differs sig-

nificantly from the corresponding FC of HC. Both the null and alternative densities of FC are

then used in the proposed Bayesian model to compute the Lfdr. As a result, adding strength

from multimodal neuroimaging data, our Bayesian approach increases the sensitivity of testing

the hypotheses that some FC of LLD differ from the corresponding FC of HC. It helps improve

efficiency in controlling the FDR and detecting disrupted connectivity of LLD patients com-

pared to HC patients. We find disrupted FC within and between some major brain networks,

including CEN, DMN, SN, and fusiform face area, for facial cognition associated with LLD.

CEN has been identified as a primary hub showing higher FC in CEN and DMN. These find-

ings provide more detailed information on disrupted FC regions and patterns involving the

underlying pathology of LLD and further insights on potential neuroimaging biomarkers for

future clinical development to treat LLD patients. The robustness and reproducibility of our

findings are verified via extensive simulation studies under the same parametric environment

derived from the study data. It means that the chance is very low that we have detected false

biomarkers. On the other hand, the likelihood of detecting the same biomarker is very high for

detecting it with different LLD study data.

The dlPFC area has been implicated as the key neural substrate for MDD from the literature

[73–75]. During working memory tasks, healthy subjects show bilateral activation in dlPFC

and anterior cingulate cortex, while depressed patients exhibit asymmetric activity in dlPFC

where the left dlPFC shows higher activation as reported in several neuroimaging studies [73,

76–78]. Alexopoulos et al. (2012) [79] found lower FC in the left dlPFC area in LLD patients

relative to healthy subjects in an rs-fMRI study. The left dlPFC has been the target site of

rTMS, a noninvasive procedure using magnetic field pulses to stimulate nerve cells, which was

approved by the US Food and Drug Administration (FDA) in 2008 as a treatment for medica-

tion-resistant MDD (refer to FDA approval K061053). The clinical effectiveness of rTMS on

the left dlPFC was established in randomized clinical trials for depression [80, 81]. By contrast,

our analysis reveals evidence of the laterization of the right dlPFC with significantly higher FC

and therefore suggests a specific and distinctive activation path via the right dlPFC in LLD

patients. The right dlPFC was also a key hub of the altered FC in chronic neck pain patients at

high risk of depression [82, 83]. Chronic pain is one of the most common co-occurring (i.e.,

comorbid) conditions in LLD patients [84]. Thus, the right dlPFC with higher FC is the key

region involved in both cognition impairment and pain related to LLD.

Our findings align with the previous research with convergent data implicating disruptions

of FC in the DMN in neural mechanisms for psychiatric disorders. A meta-analysis of rs-fMRI

studies in MDD [85] reported higher FC within the DMN associated with MDD. A review of a

number of rs-fMRI studies [86] showed reduced FC in the PCC region in healthy aging sub-

jects. Also, higher FC has been reported in the posterior DMN area in major depression [87],

and late-life anxious depression [88], in the PCC region within the DMN in LLD [79], in the

left PCC region of DMN in MDD [89].

From the limited literature, we have learned that the disrupted right pars opercularisgyrus

may be related to speech inhibition in a case reported [90], and hyperconnectivity of right pars

opercularis was observed in adolescents with MDD [91]. Evidence shows that the right interior

frontal gyrus, especially the right pars opercularis, may be specialized in music neurocognition

[92]. It has long been known that music and emotion are connected, and music therapy has

been applied to treat various psychiatric disorders such as depression [93].
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Greicius et al. [94] have found higher FC in the thalamus with DMN during resting state in

patients with MDD. Perrin et al. (2012) [78] had found that electroconvulsive therapy reduced

FC between the right anterior cingulate cortex and right dlPFC in patients with severe depres-

sion. Yuen et al. (2014) [9] investigated the FC pattern of the SN in an rs-fMRI study to com-

pare LLD with low and high apathy in healthy subjects, while apathy was a common symptom

in MDD. Their results showed that relative to the HC group, LLD patients with high apathy

had higher FC pattern within SN between the right anterior insular cortex and dACC and

higher FC of the right anterior insular cortex to the right dlPFC within the CEN and right pos-

terior cingulate cortex (BA 31) within the DMN.

Disrupted connectivity of bilateral FG to other regions may cause dysfunction in face recog-

nition in patients with mild cognitive impairment. The right ventral diencephalon is important

in predicting mild cognitive impairment and dementia in LLD patients [95]. In an fMRI study

with healthy subjects [96], the left pars triangularis has been observed to activate in semantic

processing. Further, another fMRI study of simultaneous language translation in healthy inter-

preters has reported higher activity in the left pars triangularis during backward translation. It

suggests pars triangularis should be considered a “hub” of the language-control network [97].

A meta-analysis of previous studies on antidepressants [98] found that treatments had

improved the neural response to positive emotion in the right dlPFC and left FG.

Our results show a higher FC pattern associated with LLD within and across the major

large-scale neurocognitive brain networks, including CEN, DMN, and SN, which align with

the previous findings of aberrant FC among large-scale brain networks in MDD [85]. In con-

clusion, our results suggest that LLD patients exhibit lower FC within the left hemisphere of

the brain while higher FC is within the right hemisphere of the brain. This asymmetric FC pat-

tern may be worth further investigation.

We envisage some limitations in the analytical approach that we have developed for bio-

marker detection. Our multimodal Bayesian approach controls the local false discovery rate

for group comparisons using cross sectional neuroimaging data. As such, this approach cannot

be used for longitudinal data. Over the past years, prospective longitudinal and interventional

neuroimaging studies with patients having psychiatric or neurological disorders have gained

popularity. For these studies, the primary objective is to investigate the association between

changes in connectivity and those in clinical measurement (e.g., neurobehavioral measure-

ment) within and between the intervention and control groups and evaluate the efficacy of the

intervention. The multimodal neuroimaging and clinical data are collected at the baseline and

scheduled post-baseline visits during the treatment period for each participant. Our analytical

approach cannot be applied to such complex data to detect biomarkers.

We have the following suggestions for future work. We will need to substantially extend the

current framework to handle more complex study designs and underlying data structures of

prospective and interventional neuroimaging studies. The basic idea includes using a mixed-

effects model for repeated measures to analyze longitudinal connectivity data and compare the

intervention (e.g. LLD) and control groups. The subject-level demographics and baseline char-

acteristics (e.g., age, baseline disease activity such as disease duration) can be included in the

model as covariate(s). Test statistics for comparing LLD with HC are then modeled with other

available modality data. One can compute Pearson correlation coefficients at each scheduled

post-baseline visit to examine the association between connectivity and clinical measurements

related to the intervention. These correlations can identify specific connectivity associated

with clinical measures that are changing over time [99].

Machine learning and classification techniques are useful dimension reduction tools for

high dimensional neuroimaging data involving thousands of connectivity collected from a lim-

ited number of subjects [100]. A predictive model based on variable selection methods can be
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applied to neuroimaging data to select connectivity that may differentiate the LLD group from

the control group. Regularization approaches, such as LASSO [101], ridge [102], and elastic

net regression [103], are intended to reduce variance at the cost of introducing some bias. The

elastic net regression method may be a better choice for correlated variables, as it provides a

compromise to balance between LASSO l1−norm penalty and ridge l2−norm penalty. Recent

rs-fMRI neuroimaging studies have utilized elastic net logistic regression as a regularization

method [21, 104]. Algamal and Lee [105] proposed an adaptive elastic net regularized logistic

regression model in a high dimensional genomics study, which can also be applied to neuro-

imaging data. For LLD neuroimaging data with a small sample size of 23, splitting the already

small data into even smaller training and testing data will be impractical. One solution is to

develop data pooling strategies to combine the study data with other LLD neuroimaging stud-

ies using similar study designs [106] and then perform a meta-analysis of the pooled data

using elastic net method [5].

In summary, using multimodal neuroimaging data, this article develops an analytical meth-

odology and applies it to detect neuroimaging biomarkers for LLD patients. Our methodology

is applicable for detecting biomarkers for other mental disorders such as anxiety, traumatic

brain injury, and post-traumatic stress disorder. Biomarkers or hubs of disrupted FC provide

insights into how the LLD group works differently than the HC group. Our findings are

expected to help develop interventions to treat LLD patients better.
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