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Abstract

Wind energy, as a kind of environmentally friendly renewable energy, has attracted a lot of

attention in recent decades. However, the security and stability of the power system is

potentially affected by large-scale wind power grid due to the randomness and intermittence

of wind speed. Therefore, accurate wind speed prediction is conductive to power system

operation. A hybrid wind speed prediction model based on Improved Complete Ensemble

Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), Multiscale Fuzzy

Entropy (MFE), Long short-term memory (LSTM) and INFORMER is proposed in this

paper. Firstly, the wind speed data are decomposed into multiple intrinsic mode functions

(IMFs) by ICEEMDAN. Then, the MFE values of each mode are calculated, and the modes

with similar MFE values are aggregated to obtain new subsequences. Finally, each subse-

quence is predicted by informer and LSTM, each sequence selects the one with better per-

formance than the two predictors, and the prediction results of each subsequence are

superimposed to obtain the final prediction results. The proposed hybrid model is also com-

pared with other seven related models based on four evaluation metrics under different pre-

diction periods to verify its validity and applicability. The experimental results indicate that

the proposed hybrid model based on ICEEMDAN, MFE, LSTM and INFORMER exhibits

higher accuracy and greater applicability.

Introduction

With the rapid growth of the world economy, environmental and resource scarcity is becom-

ing increasingly serious. Currently, the world is suffering from resource scarcity and ecological

shock as well as energy and environmental challenges, making it quite urgent to transform tra-

ditional energy structure and reduce dependence on fossil fuels [1]. Wind energy, a kind of

green and sustainable energy, is very environmentally friendly and does not generate any

harmful substance compared with traditional fossil fuels. Plus, wind power is becoming more

and more cost-effective, making it more and more important for improving energy structure

and addressing environmental pollution. Wind speed prediction holds crucial practical signifi-

cance in the efficient management and optimization of wind power systems. An increasing

number of countries have begun their attempts to develop wind energy, among which China is
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the world’s largest market and produce for wind energy. By the end of 2021, China’s installed

wind power capacity has reached 290 GW, accounting for 42.3% of the global total installed

capacity [2].

However, unstable and intermittent wind speed causes fluctuations in the generation of

wind power and affects the utilization of wind energy, seriously hindering the advance of wind

power generation. Therefore, accurate wind speed prediction is crucial to improving the effi-

ciency and stability of wind power generation [3]. The change in the wind speed needs to be

predicted so that wind turbine can be regulated prior to such change to maximize the utiliza-

tion of wind energy while reducing the fluctuation and instability caused by changing wind

speed.

Currently, wind speed is mainly predicted by physical model, statistical model, machine

learning model, and hybrid model.

Physical model approach refers to Numerical Weather Prediction (NWP). NWP technology

is a mathematical and physical model-based weather forecasting technique that simulates

atmospheric motion through mathematical models to predict weather changes. Based on phys-

ics, this technology divides the atmosphere into countless grid points, and then simulates

atmospheric motion through computers and solves weather equations using numerical meth-

ods to derive weather changes in the future time period. Zhao et al. presented a day-ahead

probabilistic wind speed prediction model based on the optimized NWP to achieve probabilis-

tic one-day 96-step wind speed prediction [4]. Based on a single NWP wind speed prediction

model, He et al. proposed a short-term wind power prediction model that combines deep

learning models with numerical weather prediction for wind speed prediction. The model was

designed to predict wind power accurately under different weather conditions [5]. However,

the NWP model is complex and the data is difficult to determine, which makes it challenging

to control errors in different stages. Consequently, prediction results are prone to bias [6].

Statistical model is a method of predicting future wind speed based on historical data. This

model predicts future wind speed using historical data based on time series analysis or regres-

sion analysis. The models based on time series analysis include Bayesian model [7], autoregres-

sive integrated moving average model (ARIMA) [8], auto regression moving average (ARMA)

[9], and generalized autoregressive conditional heteroskedasticity model (GARCH) [10], while

those based on regression analysis include linear regression, logistic regression and multiple

regression models. Aasim et al. proposed a new RWT-ARIMA model, which was validated to

have good performance in the short-term prediction of wind speed [11]. Garcı́a et al. put for-

ward a one-by-one truncated binary matrix Bayesian dynamic linear model for joint wind

component analysis and short-term wind prediction and verified the prediction performance

of their model [12]. Jiang et al. established a hybrid GARCH-based prediction method to facili-

tate wind speed prediction, which can better capture the fluctuation in self-sequences [10].

The statistical model is easy to interrupt, susceptible to outliers and trends and difficult to cap-

ture nonlinear signals despite the fact that it is simple and easy to use.

In recent years, machine learning and deep learning methods have been widely used in

wind speed prediction, including Recurrent Neural Network (RNN) [13], Long Short-term

memory (LSTM) [14], Convolutional Neural Network (CNN) [15], support vector machine

(SVM) [16], and Transformer [17]. These artificial intelligence-based methods can better han-

dle complex nonlinear relationships and multimodal data in wind speed prediction, thus

improving prediction accuracy and efficiency. Among these machine learning and deep learn-

ing algorithms, LSTM performs well as an improved RNN algorithm, which has good perfor-

mance in short-term wind power prediction. Banik et al. proposed a deep learning algorithm

based on LSTM to predict short-term wind speeds [18]. Memarzadeh et al. proposed a new

hybrid forecasting model for short-term power load and price forecasting based on LSTM
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[19]. LSTM has demonstrated strong performance in short-term prediction tasks attributed to

its unique gating mechanism. However, its efficacy diminishes when applied to long-term pre-

diction scenarios. Studies have shown that the prediction speed of LSTM decreases rapidly and

that of MSE increases rapidly after predicting more than 48 points. In the case of an short pre-

diction interval (minutes or seconds), only 48 periods of data may be far from sufficient, and

LSTM is not capable to parallel learning [20]. Transformer has also received a lot of attention

since its introduction, and is suitable for long-order prediction and can learn in parallel [21,

22]. However, Transformer suffers from complicated calculation, high memory consumption

and slow speed. Informer proposes the ProbSparse self-attention mechanism on the basis of

Transformer to overcome temporal and spatial complexity while overcoming the deficiencies

of computational complexity and slow speed, and is applicable to the prediction of wind speed

at different time periods [20]. Bai et al. employed the Informer model for medium to long-

term wind power prediction and substantiated its superiority in terms of reduced prediction

errors and enhanced performance for long time series power prediction tasks [23]. Huang

et al. used Multi-step informer for medium to long-term wind power forecasting. The perfor-

mance of Informer in medium to long-term prediction is notable [24]. The above research

indicates that methods based on deep learning performs well in predicting wind speed, but

those based on single deep learning is far from sufficient to handle non-stationary and fluctu-

ating wind speed data to meet the accuracy requirement. And with the explosive growth of

data volume, it is difficult to explore the intrinsic deep features of wind speed by single model,

making it extremely important to preprocess data.

To further improve the accuracy of wind speed prediction, more and more hybrid predic-

tion models have started to show their advantages in recent years. Hybrid prediction models

are mainly divided into three categories. Firstly, the prediction accuracy of a single model can

be somewhat improved by combining different predictors [13, 25]. Combining CNN and Bi-

LSTM, Nguyen et al. not only extracted the internal features of time series, but also fully

exploited forward and backward information [26]. Wang et al. developed a multivariate com-

bined wind speed prediction system based on convolutional and recurrent neural networks

[27]. The second type of hybrid model was composed of optimization algorithm and predictor,

which could effectively improve the prediction performance of the model by optimizing the

parameters of the predictor through the optimization algorithm [28–32]. Wang et al. com-

bined extreme learning machine (ELM) with AdaBoost algorithm and used automatic weather

station data to select different locations as target stations for multi-timescale wind speed pre-

diction [33]. ElKenawy et al. proposed a high-precision wind speed prediction method, and

optimized the hyperparameter of various models with ADGWDTO algorithm [28]. Xian et al.

proposed a multi-kernel SVR ensemble (MKSVRE) model based on unified optimization and

whale optimization algorithm (WOA) and verified its effectiveness [34]. Finally, owing to

complex and unstable wind series, data preprocessing methods, represented by data decompo-

sition, have attracted intensive attention in recent years [35–37]. Wu et al. used the ensemble

empirical modal decomposition (EEMD) to convert the 1-dimensional series of raw wind

speed into 16-dimensional series, and directly modeled multidimensional wind speed data

with Transformer [38]. Bommidi et al. Employing an improved complete ensemble empirical

modal decomposition of adaptive noise (ICEEMDAN) decomposition method to denoise

wind speed data [17]. However, the decomposition of wind speed sequences introduces multi-

ple modes, thereby increasing computational complexity. Consequently, scholars have

employed calculations of sample entropy (SE) and fuzzy entropy (FE) to assess the complexity

of the time series. It has been observed that higher entropy values indicate a higher level of

complexity in the time series. To mitigate the computational burden, researchers have effec-

tively reduced the complexity by merging sequences with similar entropy values, while
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ensuring the preservation of prediction accuracy [39, 40]. Qin et al. reorganized the compo-

nents by fuzzy entropy [41]. Peng et al. performed decomposition and reconstruction by com-

bining OVMD with SampEn [42]. In addition, scholars have considered wind speed

prediction models with multivariate and multi-objective optimization. Lv et al used improved

hybrid time series decomposition strategy (HTD), novel multi-objective binary backtracking

search algorithm (MOBBSA) and advanced Sequence-to-Sequence (Seq2Seq) predictor to

extract, decompose, and predict features of wind speed sequences, and verified its effectiveness

[43]. Considering the influence of various meteorological factors, Lv et al. designed a filter-

wrapper non-dominated sorting differential evolution integrating K-medoid clustering

(FWNSDEC) to generate feature subsets. Then, effective prediction of the three-dimensional

sequence sample set is achieved through singular spectrum analysis and convolutional long

short-term memory (ConvLSTM) networks [44]. Some representative literatures can be seen

in Table 1.

According to the research, hybrid models are a viable solution to overcome the limitations

of single models while achieving high levels of accuracy. Specifically, the hybrid framework

that incorporates data preprocessing and multiple predictors has been found to perform well

in this respect. This approach provides a comprehensive and nuanced perspective, emphasiz-

ing the unique strengths of each component to enhance prediction accuracy and practicality.

In decomposition, ICEEMDAN can better solve the problem of modal aliasing compared

to other methods [17]; Multi scale fuzzy entropy can better measure the complexity of time

series at different scales by utilizing multi scale coarse granularity [40]; INFORMER and

LSTM perform well in long-term times series and short-term times series, respectively [14,

23].

However, most of the existing research on wind speed prediction is only suitable for short-

term wind speed prediction. As the number of prediction points increases, its prediction accu-

racy decreases rapidly. Therefore, based on the above considerations, this paper proposes a

new hybrid prediction model that combines ICEEMDAN, MFE, LSTM and INFORMER to

improve the prediction accuracy and applicability.

The contributions of this paper are mainly as follows.

1. ICEEMDAN is used to decompose the original wind speed series into multiple IMF com-

ponents to reduce the prediction difficulty and denoising.

Table 1. Some representative literatures on the prediction model.

Prediction Model Category Reference Strengths Weaknesses

Physical model NWP [4, 5] Wide spatial range; long time range Limited accuracy; complexity

Statistical model ARMA [9]; ARIMA [8] GARCH [10];

RWT-ARIMA [11]

Relatively simple, easy to use Cannot capture the nonlinear

characteristics

Single machine learning/ deep

learning

SVM [16]; CNN [15]; RNN [13]; LSTM

[14]

Able to capture nonlinear signals High demand for data, easily to

fall into local optimum

Fusion model based on deep

learning and optimization

algorithms

FWA-LSTM [32]; CNN-LSTM [26];

ELM-AdaBoost [33]; WOA-SVR [34]

Optimize predictor parameters, enhanced

predictive performance

High computing costs, not

suitable for long-term times series

Fusion model based on deep

learning and decomposition

EMD [37]; VMD [2]; EEMD [38];

ICEEMDAN [17]

High complexity, can effectively capture

nonlinear signals

High computing costs, not

suitable for long-term times series

Transformer [17, 21, 31] Suitable for long-term times series Complex model, hard to train,

high demand for data

Informer [20, 23, 24] Suitable for long-term times series, reduced

computational complexity on the basis of

transformer

High demand for data

https://doi.org/10.1371/journal.pone.0289161.t001
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2. Under the premise of ensuring the prediction performance, the MFE values of each IMF

component are calculated to reduce the computational effort, and the components with

similar MFE are combined to generate new subseries.

3. The INFORMER and LSTM model is used to predict each subseries, and then the results

are superimposed to obtain the final predicted wind speed.

4. The effectiveness and predictive performance of the proposed model were evaluated by

comparing it to seven other related prediction models. Additionally, to validate the long

sequence advantage of the INFORMER prediction model, a comparison was made with the

LSTM model, and the predictive performance of both models was analyzed under different

prediction points.

The rest of this paper is arranged as follows: Section 2 explains each method involved in the

proposed hybrid model, including ICEEMDAN, MFE, LSTM and INFORMER. Section 3

describes the overall architecture of the hybrid model. Section 4 analyzes and validates the

effectiveness of the proposed model through a real case. Section 5 concludes the whole paper.

Methodology

This section introduces the principles and excellence of various algorithms used in the predic-

tion model. The selected model includes improved fully adaptive noise ensemble empirical

modal decomposition, multiscale fuzzy entropy, and informer.

Improved Complete EEMD with Adaptive Noise (ICEEMDAN)

Empirical Mode Decomposition. Empirical Mode Decomposition (EMD) is a signal pro-

cessing technique used to decompose a signal into a set of fixed-shaped eigenmode functions

known as Intrinsic Mode Functions (IMFs). The main concept behind EMD is to decompose

the original signal into several IMFs, each of which is locally smoothed on the time scale and

has frequency components that vary with the scale.

The EMD algorithm involves several steps. Firstly, the envelope is extracted from the origi-

nal signal to obtain an envelope curve. Secondly, the envelope curve is subtracted from the

original signal to obtain a residual signal. Finally, the residual signal is summed up to obtain

an approximation of the original signal.

Despite the advantages of EMD, it has several drawbacks. Firstly, the EMD algorithm

requires several iterations and has a large computational effort, which makes the algorithm

slow and difficult to handle large-scale data. Secondly, the eigenmodes are extracted by solving

the envelope and local average, but at the local extremes, both the envelope and the local aver-

age may fail, leading to errors in the extraction of the eigenmodes. Lastly, the EMD algorithm

is sensitive to noise because noise can interfere with the local features of the signal, leading to

errors in the extraction of the eigenmodes.

In summary, EMD is a powerful signal processing technique that can decompose a signal

into IMFs. However, it has several limitations, including computational effort, sensitivity to

noise, and the local extremum problem, which can impact its effectiveness for some

applications.

EMD related improvements. Several improved algorithms have been proposed to

address the limitations and shortcomings of the Empirical Mode Decomposition (EMD) algo-

rithm. For instance, the Ensemble Empirical Mode Decomposition (EEMD) and Complete

Ensemble Empirical Mode Decomposition (CEEMD) algorithms add pairs of positive and

negative Gaussian white noise to the signal to be decomposed, which mitigates the modal mix-

ing problem of the EMD algorithm. The CEEMDAN (Complete Ensemble Empirical Mode
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Decomposition with Adaptive Noise) algorithm further improves on the EEMD algorithm by

introducing the concept of adaptive noise, which makes the algorithm more robust to noise.

Despite the improvements made by these algorithms, they still have some limitations. The

EEMD and CEEMD decomposition algorithms introduce a certain amount of white noise into

the eigenmodal components, which can affect the subsequent analysis and processing of the

signal. Additionally, the CEEMDAN algorithm may produce Intrinsic Mode Functions

(IMFs) containing more noise, and discarding them directly after decomposition can result in

the loss of useful information.

In summary, these improved algorithms have enhanced the reliability and accuracy of the

EMD algorithm in different aspects. However, they still have some challenges that require fur-

ther research and solution. For instance, efforts should be made to reduce the residual noise

and pseudo-modal problems.

Improved complete EEMD with adaptive noise. Improved Complete EEMD with Adap-

tive Noise (ICEEMDAN) is an improved algorithm in Complete EEMD with Adaptive Noise

(CEEMDAN) [39]. Different from CEEMDAN, Gaussian white noise is directly added in the

decomposition process, but the kth IMF component is selected after the white noise is decom-

posed by EMD, mainly to solve the residual noise and pseudo-modal problems in CEEMDAN.

In ICEEMDAN, the operator EK(�) is the kth order modal component after decomposition by

EMD, and the operator M(�) is the local mean of the signal, which proceeds as shown in Fig 1.

As shown in the figure, ω(i)[n] is the ith group of Gaussian white noise added, so in each

round of the IMF solving process, the noise added is the IMF component of the original noise

signal. εj is the coefficient multiplied after the addition of noise component, and Ek (ω(i)[n]) is

the kth EMD component of ω(i)[n]. The specific steps are as follows.

(1) After the addition of white noise to the original time series x(n), the signal is x(l)(n).

xðlÞðnÞ ¼ xðnÞ þ ε0E1ðw
ð1Þ½n�Þ ð1Þ

(2) x(l)(n) is obtained by EMD decomposition of the 1st residual component and the IMF com-

ponent.

r1ðnÞ ¼ MðxðlÞðnÞÞ ð2Þ

IMF1ðnÞ ¼ xðnÞ � r1ðnÞ ð3Þ

Fig 1. Calculation process of ICEEMDAN.

https://doi.org/10.1371/journal.pone.0289161.g001
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(3) By analogy, the (k+1)st residual component and the kth IMF component can be expressed

as:

rkþ1ðnÞ ¼ MðrkðnÞ þ εkEkþ1ðw
ðlÞðnÞÞÞ ð4Þ

IMFkðnÞ ¼ rkðnÞ � rkþ1ðnÞ ð5Þ

(4) Repeat step 3 until the residual component rk(n) is a monotonic function, then the original

signal x(n) can be expressed as:

xðnÞ ¼
XN

k¼1

IMFkðnÞ þ rNðnÞ ð6Þ

where N is the number of decomposed components.

By incorporating an adaptive noise mechanism, ICEEMDAN dynamically adjusts the noise

level based on signal characteristics and noise intensity. This adaptive feature effectively miti-

gates noise interference during signal decomposition, thereby enhancing the accuracy and

robustness of the process. Additionally, ICEEMDAN decomposes the signal into multiple

intrinsic mode components using EEMD, with each component maintaining independence.

This independence allows each IMF to accurately represent different signal components, thus

preventing aliasing and interference among them. In summary, the combination of these char-

acteristics establishes ICEEMDAN as an effective and reliable method for signal

decomposition.

Multiscale fuzzy entropy

Multiscale fuzzy entropy (MFE) is a method that combines fuzzy entropy and multiscale

entropy to better measure the complexity of time series at different scales. While basic fuzzy

entropy has limitations due to the fixed sampling rate and single scale, MFE introduces a mul-

tiscale coarse-graining process to provide an additional observation perspective when the time

scale is uncertain. By utilizing multiscale coarse-graining, MFE captures more information

about the signal, allowing for a more accurate measurement of complexity.

Fuzzy entropy. Fuzzy Entropy and sample entropy are similar in the sense that both mea-

sure the probability for a time series to generate a new pattern in the case of the change in

dimensionality. The higher the probability for the series to generate a new pattern, the more

complex it will be, and the higher the entropy value. The calculation steps are as follows.

Suppose there is a time series consisting of N data, x(n) = x(1), x(2), x(3), . . .x(n), then the

FE value is denoted as FE(m,r,n), where m is the Embedding Dimension and r is the similarity

tolerance threshold which generally ranges from 0.1to 0.25std(x). The FE calculation steps are

specifically described as follows.

(1) Sequential segmentation.

Form a sequence of vectors of dimension m by serial number.

Xi
m ¼ fX1

m;Xiþ1
m; . . . . . . ;XN� mþ1

mg; ði ¼ 1; 2; 3 . . . . . . ;N � mþ 1Þ ð7Þ

Xi
m ¼ fxðiÞ; xðiþ 1Þ; . . . . . . ; xðiþm � 1Þg � xm

i; ði ¼ 1; 2; 3 . . . . . . ;N � mþ 1Þ ð8Þ
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where xmi is the mean value of Xi
m.

xi
m ¼

1

m

Xm� 1

k¼0

xðiþ kÞ ð9Þ

(2) Define the distance dijm between the vector Xi
m and Xj

m as the Chebyshev distance, i.e., the

maximum of the absolute value of the difference between the values of the elements.

dij
m ¼ DchebychevðXi

m;Xj
mÞ ¼ maxk¼0;1;2;......;m� 1

�
�xðiþ kÞ � xðjþ kÞ

�
� ð10Þ

(3) Define the similarity: Introduce the fuzzy affiliation degree n and measure the similarity

between Xi
m and Xj

m.

Dij
m;n;r ¼ e�

ðdi j
mÞ
r

n

; 1 � j � N � m; j 6¼ i ð11Þ

(4) Define the function Om,r,n.

Om;r;n ¼
1

N � m

XN� m

i¼1

1

N � m � 1

XN� m

j¼1;j6¼i

Dij
m;n;r

" #

ð12Þ

(5) Reconstruct a set of vectors of dimension m+1 and calculate the similarity.

Omþ1;r;n ¼
1

N � m

XN� m

i¼1

1

N � m � 1

XN� m

j¼1;j6¼i

Dij
mþ1;n;r

" #

ð13Þ

(6) Define the fuzzy entropy: The fuzzy entropy FE(m,r,n) of the sequence is expressed as:

FEðm; r; nÞ ¼ lnOm;r;n � lnOmþ1;r;n ð14Þ

The fuzzy entropy of time series can be calculated according to the above steps.

Multiscale fuzzy entropy. Multiscale fuzzy entropy draws on the idea of multiscale

entropy [40]. ME is designed to measure the complexity and self-similarity of time series at dif-

ferent scale factors. If the entropy value of one sequence is higher than that of the other at most

scale entropy values, the former is more complex than the latter. If the entropy value of a time

series decreases monotonically with the increase in scale factor, then the structure of the series

is relatively simple. The MFE calculation procedure is as follows.

(1) For a discrete time series Xi of length N, given the embedding dimension m and the simi-

larity tolerance r, a new coarse grained vector ykτ is constructed based on the original

sequence.

ytk;j ¼
1

t

Xjtþk� 1

i¼ðj� 1Þtþk
XðiÞ; 1 � j �

N
t
; 1 � k � t ð15Þ

where τ is the scale factor. When τ = 1, the coarse-grained time series is the original
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sequence Xi, and when τ 6¼ 0, the original sequence Xi is decomposed into coarse-grained

sequences ykτ, τ is the number of decomposition, and N/τ is the length of each segment.

(2) The fuzzy entropy FE is calculated according to τ and is listed as a function of the scale fac-

tor with constant similarity tolerance r, which is usually taken as 0.1–0.25 times the stan-

dard deviation of the original sequence.

Based on the above steps, the MFE can be expressed as:

MFEðX; t;m; rÞ ¼ FEðm; r; ytkÞ ð16Þ

Informer network. The informer is composed of an encoder and a decoder. The encoder

handles long input sequences and reduce time complexity through probspare self-attention.

By incorporating distillation in self-attention, the encoder effectively reduces the time dimen-

sion of input sequences. In addition, the generative decoder can generate the final results in

one step instead of one step at a time. The overall structure is shown in Fig 2 [20].

(1) ProbSpare self-attention. The traditional self-attentive mechanism involves three inputs,

namely query, key and value, and the attention matrix of the inputs is calculated using

deflated points.

AttenðQ;K;VÞ ¼ Softmaxð
QKT

ffiffiffi
d
p ÞV;Q 2 RLQ�d;K 2 RLK�d;V 2 RLV�d ð17Þ

where d is the input dimension. The probability formula for the attention factor of the ith
query is expressed as:

Aðqi;K;VÞ ¼
X

j

kðqi; kiÞX

l

kðqi; klÞ
vj ¼ Epðki

�
�qiÞ½Vj� ð18Þ

Fig 2. Informer model.

https://doi.org/10.1371/journal.pone.0289161.g002
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where p(kj|qi) is the probability distribution formula in the traditional transformer, q(kj|qi) is

the uniform distribution, and k(kj|qi) is the asymmetric exponential kernel function.

In fact, the result after dot product obeys the long-tail distribution, which means that only

the dot product result of a small number of queries and keys dominates, so other dot product

results can be ignored, which can reduce computational complexity. Due to sparse self-atten-

tion matrix, some scholars calculated the relative entropy of the probability distribution of the

attention mechanism of the query relative to the uniform distribution by using use the Kull-

back-Leibler(KL) scatter. The formula for evaluating the sparsity of the ith query can be

expressed as:

Mðqi;KÞ ¼ In
XLK

j¼1

e
qikj

T
ffiffi
d
p

�
1

LK

XLK

j¼1

e
qikj

T
ffiffi
d
p

ð19Þ

where the first term is the log-sum-exp of the inner product of qi and all keys, and the second

term is their arithmetic average. Thus when dot products U = LQInLK, the complexity for com-

puting �Mðqi;KÞ will be reduced from O(LQLK) to LQInLK, finally leading to such new Prob-

Spare self-attention expressed as:

AttenðQ;K;VÞ ¼ Softmaxð
�QKT

ffiffiffi
d
p ÞV;Q 2 RLQ�d;K 2 RLK�d;V 2 RLV�d ð20Þ

where �Q is a sparse matrix containing only the first u dominant queries, i.e., top u queries after

selection. The sparse matrix of �Q in the new and original attention mechanisms is of the same

size.

(2) Encoder. Informer’s Encoder stack is a combination of multiple encoders and distillation

layers. The purpose is to allow the encoder to process longer sequences of input by halving

the individual layer features in the time dimension by means of an attentional distillation

mechanism.

As a result of the ProbSpare self-attention, there are redundant combinations of feature

mappings of encoder with value V. Therefore, distilling operation is performed to assign

higher weights to dominant features with dominant attention and generate focus self-attention

feature mappings at the next layer. The distilling operation process from j to j+1 layers is

expressed as:

Xt
jþ1
¼ MaxPoolðELUðConvldð½Xj

t�ABÞÞÞ ð21Þ

This process involves multi-head probsparse self-attention and key operations in the atten-

tion block. Conv1d represents a one-dimensional convolutional operation on a time series

with ELU as the activation function, followed by maximum pooling operation. To enhance the

robustness of the attention distillation mechanism, the multiple halved copies of the main

sequence are also constructed, with each being half the length of the previous one, which

undergo the same attention distillation mechanism as the main sequence, constructing multi-

ple feature maps of length L/4. Finally, these feature maps are stitched together into the final

feature map of the input encoder. With the above method, the size of the feature maps can be

gradually reduced without consuming too much memory in the computational space. The

process of Encoder is briefed in Fig 3.

(3) Decoder. A decoder is added to the structure, comprising of two multi-headed self-atten-

tion layers. The probabilistic self-attention and canonical attention are respectively adopted

for the first and second layers. The encoder output and the input sequence after embedding
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the projection serve as the input of the decoder. The input sequence is divided into two sec-

tions.

Xt
feed dec

¼ ConcatðXt
token
;Xt

phol
Þ 2 RðLtokenþLyÞ�dmodel ;Xt

token
2 RLtoken�dmodel ð22Þ

where Xfeed_dec is the input sequence to the decoder; Xtoken is the start flag, and Xphol is the

target placeholder.

Timestamps are padded with zeros to maintain dimensionality consistency during input in

the prediction sequence. Masked multi-headed self-attention is applied to self-attention that

masks future information. Each position focuses on current information and avoids auto-

regression so that the model directly predicts all the outputs through a forward process without

step-by-step dynamic decoding, resulting in a dramatic reduction in prediction decoding time.

Long short-term memory (LSTM)

Long Short-Term Memory (LSTM) is a deep learning model that has become popular in pro-

cessing sequential data due to its ability to address the problem of long-term dependencies in

traditional recurrent neural networks. LSTM introduces memory cells that contain both a hid-

den state and a memory state at each time step. The hidden state is used to pass information,

while the memory state is used to store information. The gate mechanism is at the core of

LSTM and comprises three gate units: input gate, forget gate, and output gate. These gates

learn the state based on the current input and previous states and can be dynamically adjusted.

The input gate controls which information should be added to the memory, the forget gate

controls which information should be forgotten, and the output gate controls which informa-

tion should be output from the memory. With this structure, LSTM can learn long-term

dependencies in sequential data, and its application has been widespread in various fields,

including speech recognition, natural language processing, and image processing. The struc-

ture of LSTM is shown in Fig 4.

Forgetting gate. The forgetting gate determines which information should be forgotten

based on the sigmoid function. Its input includes the previous hidden state ht-1 and the current

input xt, and the weight Wf is the weight of the previous layer of neurons. The forgetting gate

is expressed as:

ft ¼ sðWf � ½ht � 1; xt� þ bf Þ ð23Þ

Input gate. The input gate determines which information should be retained and adds

new memory. It is determined by a sigmoid layer and a subsequent tanh layer that generates a

Fig 3. Calculation process of encoder.

https://doi.org/10.1371/journal.pone.0289161.g003
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candidate value ( ~Ct ) to add to the neuronal state. The output gate it and the cell output ~Ct are

expressed in formulas:

it ¼ sðwi � ½ht� 1; xt� þ biÞ ð24Þ

~Ct ¼ tanhðWC � ½ht� 1; xt� þ bCÞ ð25Þ

Output gate. The output gate determines the neuronal state Ct and how much informa-

tion should be output in the input ot. The output gate ot and the cell output ht are expressed in

formulas:

ot ¼ sðWo � ½ht� 1; xt� þ boÞ ð26Þ

ht ¼ ot∗tanhðCtÞ ð27Þ

In the above equations, Wf, Wi, Wc, Wo and bf, bi, bc, bo are the weights and biases of the for-

get gate, input gate, candidate value, and output gate, respectively.

Update neuron status. The top part of the LSTM structure updates the state of neurons

from the previous state Ct-1 to the new state Ct and then to Ct+1. The update of its status is

determined by the forgetting gate and input gate to decide which information to forget and

retain. The formula for updating the state of neurons is expressed as:

Ct ¼ ft∗Ct� 1 þ it∗ ~Ct ð28Þ

Analysis of combination mechanism

Informer adopts the network architecture of Transformer, which consists of multiple self-

attention layers and feed-forward neural network layers. The self-attention mechanism

employed by Informer allows the network to capture long-term dependencies within the

sequence on a global scale, facilitating parallel computation and expediting model training and

inference processes. In contrast, LSTM may encounter challenges such as gradient vanishing

Fig 4. Structure diagram of LSTM.

https://doi.org/10.1371/journal.pone.0289161.g004
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or exploding when dealing with lengthy sequential data, thereby hindering the effective cap-

ture of long-term dependencies. In comparison, the self-attention mechanism utilized by

Informer enables a better capture of dependencies in long sequences while being less suscepti-

ble to the issues of gradient vanishing or exploding. LSTM’s recursive structure necessitates

sequential computations at each time step, rendering parallelization unattainable. Conversely,

the self-attention mechanism in the Informer network permits parallel computation across the

entire sequence, thereby enhancing computational efficiency.

The decomposed sequence resulting from the decomposition algorithm exhibits character-

istics of both high-frequency and low-frequency components. Considering the limitations of a

single predictor in extracting features from the sequence, this study selects Informer, suitable

for high-frequency components, and LSTM, suitable for low-frequency components, to design

the Informer-LSTM combined prediction algorithm. To validate the effectiveness of the pro-

posed combined algorithm, comparative experiments were conducted.

Based on part of the wind speed data set, a group of comparative experiments were set up,

and LSTM and INFORMER were used to predict the four subsequences in Fig 5. The results

are shown in Table 2.

As shown in Table 2. LSTM is suitable for predicting low-frequency sequences with rela-

tively small fluctuations, while INFORMER is more suitable for predicting high-frequency

sequences with high volatility. Therefore, this article considers combining the advantages of

both, predicting low-frequency sequences from LSTM and high-frequency sequences from

INFORMER for the decomposed and recombined subsequences.

To further validate its performance, a set of comparative experiments were conducted

based on partial wind speed datasets, comparing LSTM INFORMER with individual LSTM

Fig 5. Decomposition of test wind speed set.

https://doi.org/10.1371/journal.pone.0289161.g005

Table 2. RMSE of each subsequence predicted by two predictors.

Seq1 Seq2 Seq3 Seq4

LSTM 0.31967 0.26136 0.16043 0.37599

INFORMER 0.13150 0.38620 0.34800 0.71581

https://doi.org/10.1371/journal.pone.0289161.t002
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and INFORMER. The predicted results are shown in Fig 6 and Table 3. It can be observed that

LSTM INFORMER has higher prediction accuracy.

Wind speed prediction model

Based on the principles and excellence of each algorithm introduced in Section 2, the ICEEM-

DAN-MFE-INFORMER hybrid prediction model is constructed. This section presents the

whole framework and process of the hybrid prediction model to reduce the error in prediction

results. The prediction process is shown in Fig 7.

Firstly, wind speed data are incomplete, and missing data are compensated by interpola-

tion. Then complete continuous wind speed time series is decomposed into multiple intrinsic

mode components as well as a residual by ICEEMDAN to make it less difficult to predict non-

smooth series. The complexity of each component is evaluated by MFE, the MFE value of each

IMF is calculated, and the IMF components with similar MFE values are reconstructed to

obtain several new subseries. Finally, to predict each subsequence, LSTM and INFORMER are

combined since they have different predictive effects on sequences with unknown complexity

at different frequencies. After testing, it was observed that LSTM has better predictive perfor-

mance for smooth sequences while INFORMER is more suitable for subsequences with larger

fluctuations. Therefore, the predictor to be used is selected based on the degree of fluctuation

of the subsequence. The prediction results of each subsequence are superimposed to obtain the

final prediction results.

Fig 6. Comparison of test results.

https://doi.org/10.1371/journal.pone.0289161.g006

Table 3. Comparison of prediction accuracy of three models.

LSTM INFORMER LSTM-INFORMER

RMSE 0.6204 0.4820 0.3143

MAE 0.7315 0.6973 0.4536

https://doi.org/10.1371/journal.pone.0289161.t003
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Case study

In this section, the effectiveness of the proposed hybrid prediction model is demonstrated

through a real case. All the experiments are implemented in python 3.9, pytorch 1.6.4, AMD

Ryzen 7 6800H with Radeon Graphics, RAM 16G.

Data source

In order to test the universality of the proposed model, this section selects two cases with dif-

ferent lengths and sampling frequencies for the simultaneous prediction of wind speed.

Case 1: The wind speed data in Case 1 were obtained from a wind farm with a 10-minute sam-

pling interval over a 16-day period from March 14, 2022, to March 30, 2022. A total of 2448

sampling points were collected, and all missing data points were filled using interpolation.

Case 2: This dataset contains 2,390 wind speed data points, with no missing data. The data was

recorded at an hourly sampling frequency, covering a period of 6 months from 20:00 on

June 3, 2020 to 9:00 on September 11, 2020.

The statistical information of the wind speed datasets from two cases is listed in Table 4.

Table 4 reveals noticeable volatility in the data for both cases. Specifically, Case 1 exhibits a

wider range between the maximum and minimum values, accompanied by a larger standard

Fig 7. Framework of the proposed hybrid model.

https://doi.org/10.1371/journal.pone.0289161.g007
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deviation (STD). These observations indicate that Case 1 demonstrates higher volatility com-

pared to Case 2, rendering prediction more challenging.

The unit root test (ADF) was performed on the wind speed series to analyze their volatility

and non-stationarity. Due to the large sample size, direct ADF test would lead to excessive AIC

value and poor fitting. Therefore, five sub-sequences with 100 decimal points were randomly

selected from the original wind speed data to conduct ADF test respectively. The test results

are shown in the Table 5. At the 0th order difference, the significance p-values of all five sam-

ples were greater than 0.05, indicating that the wind speed series were non-stationary. The first

70% of the data were used for training the model and the remaining 30% for testing. The origi-

nal wind speed series are shown in Figs 8 and 9.

Table 4. The statistics of wind speed data sets in two cases.

Case Samples Groups Statistical information(m/s)

Max Min Mean Std Median

Case1 All 2448 14.03 0.02 5.45 2.74 6.26

Train set 1714 14.03 0.02 6.15 2.69 4.86

Test set 734 10.04 0.02 3.80 2.08 5.21

Case2 All 2390 9.16 0.02 4.51 1.80 4.34

Train set 1673 9.02 0.02 4.16 1.81 4.38

Test set 717 9.16 0.03 5.35 1.46 5.37

https://doi.org/10.1371/journal.pone.0289161.t004

Table 5. P-value of ADF test for each sequence.

Subseqs Seq1 Seq2 Seq3 Seq4 Seq5

Case1 p-value 0.676 0.512 0.701 0.667 0.584

Case2 p-value 0.710 0.779 0.643 0.801 0.757

https://doi.org/10.1371/journal.pone.0289161.t005

Fig 8. Wind speed series (Case 1).

https://doi.org/10.1371/journal.pone.0289161.g008
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Evaluation index

To verify the superiority of the model, four evaluation metrics, namely root mean square error

(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient

of determination R2 were selected and calculated by:

RMSEð ~yn ; ynÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
XN

n¼1

yn � ~ynð Þ

2

v
u
u
t ð29Þ

MAEð ~yn ; ynÞ ¼
1

N
�
XN

n¼1

�
�
�yn � ~yn

�
�
� ð30Þ

MAPEð ~yn ; ynÞ ¼
1

N

XN

n¼1

�
�
�
�
�

yn � ~yn
yn

�
�
�
�
�

ð31Þ

R2ð ~yn ; ynÞ ¼ 1 �

XN

n¼1

ðyn � ~ynÞ
2

XN

n¼1

ðyn � �yÞ2
ð32Þ

where yn is the actual value, ~yn is the predicted value, �yn is the average value, and N is the num-

ber of predicted sequence points.

Fig 9. Wind speed series (Case2).

https://doi.org/10.1371/journal.pone.0289161.g009

PLOS ONE Short-term wind speed forecasting based on a hybrid model

PLOS ONE | https://doi.org/10.1371/journal.pone.0289161 September 8, 2023 17 / 27

https://doi.org/10.1371/journal.pone.0289161.g009
https://doi.org/10.1371/journal.pone.0289161


Parameter setting and comparison model

The wind speed sequence was predicted by the informer structure, with the above mentioned

four(five in case 2) wind speed subsequences as the input and the prediction result of wind

speed as the output. The parameters of the informer structure were set as follows in Table 6.

The proposed model based on ICEEMDAN-MFE-LSTM-INFORMER was compared with

seven relevant models, namely, ICEEMDAN-MFE-INFORMER, ICEEMDAN-MFE-LSTM,

ICEEMDAN-MFE-RF, VMD-MFE-LSTM, CEEMDAN-MFE-LSTM, INFORMER, LSTM

and RF, to verify its effectiveness in predicting wind speed. The parameters of these compari-

son models are set as follow in Table 6.

Decomposition and recombination

The complete wind speed series was obtained by interpolation method and decomposed by

ICEEMDAN method. The standard deviation Nstd was set to 0.2 and the maximum screening

number Maxlter to 5000 according to several experiments and reasonable optimization. The

decomposition results are shown in Figs 10 and 11, where the first term is the initial wind

speed data, and the remaining nine(eleven in case 2) terms are decomposed IMFs (the last

item is a residual r) arranged from high frequency to low frequency.

To reduce the computational effort and time, the above nine IMFs were reasonably recon-

structed by multi-scale fuzzy entropy under the premise of ensuring the prediction accuracy.

The embedding dimension m was set to 2, the time_delay to 1, and the similarity tolerance r to

0.2 Std. The MFE values of each IMF were calculated, as shown in Table 7 and Figs 12–14

respectively. The IMFs with similar MFE values were reorganized and superimposed, as also

respectively indicated in the table and figure. After being decomposed and recombined by

ICEEMDAN and MFE methods, four(five in case 2) new subsequences were derived, as dis-

played in Table 8 and Figs 15 and 16.

Analysis of prediction results

Based on the decomposition and reconstruction method described above, each subsequence is

predicted by a combination of LSTM and INFORMER. LSTM is used for smoother sequences,

Table 6. Main parameter settings for each model.

Methods Parameter Value Methods Parameter Value

INFORMER Time feature encoding frequency 10t (i.e., 10min)(1hour in case2) LSTM maximum training number 1800

model dimension 32 learning rate 0.005

number of heads of multi-head self-attention 8 number of hidden layers 1

number of encoder layers 2 RF delay step 15

number of decoder layers 1 number of decision trees 100

number of stacked encoder layers 3 minimum number of leaves 5

number of sampling factors 5 ICEEMDAN The standard deviation 0.2

attention mechanism of encoding prob the maximum screening number 5000

dropout 0.05 CEEMDAN white noise standard deviation 0.2

experimental times 5 maximum number of filters 5000

initial learning rate 0.001 VMD bandwidth limit 2000

input sequence length 96 noise tolerance 0.3

start token length 48 modes 9(11 in case2)

prediction sequence length 24 MFE Embedding Dimension 2

loss function mean square error Time Delay 1

the similarity tolerance 0.2

https://doi.org/10.1371/journal.pone.0289161.t006

PLOS ONE Short-term wind speed forecasting based on a hybrid model

PLOS ONE | https://doi.org/10.1371/journal.pone.0289161 September 8, 2023 18 / 27

https://doi.org/10.1371/journal.pone.0289161.t006
https://doi.org/10.1371/journal.pone.0289161


while INFORMER is used for sequences with larger fluctuations. The predictor selected for

each subsequence is presented in Table 9. The final wind speed prediction result is obtained by

combining the prediction results of each subsequence.

Based on the above decomposition and reconstruction, the final prediction results of wind

speed are shown in Figs 17 and 18.

To evaluate the efficacy of the proposed hybrid model, a series of comparative experiments

were conducted. Specifically, the following comparisons were made: (1) comparison of a single

Fig 11. Decomposition results of wind speed series by ICEEMDAN (Case2).

https://doi.org/10.1371/journal.pone.0289161.g011

Fig 10. Decomposition results of wind speed series by ICEEMDAN (Case 1).

https://doi.org/10.1371/journal.pone.0289161.g010
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predictive model, (2) Comparison of decomposition mechanisms, (3) Comparison of mixed

prediction models. These comparisons were conducted to analyze the performance of the

hybrid model in relation to other methods.

The four evaluation indexes (RMSE, MAE, MAPE, and R2) of each model were calculated

separately. Their prediction accuracy is indicated below.

(1) Comparison of a single predictive model. Comparison of single prediction models

including RF, LSTM, and INFORMER, and the comparison results are shown in Table 10.

(2) Comparison of decomposition mechanisms. The comparison of decomposition

mechanisms including VMD-MFE-LSTM, CEEMDAN-MFE-LSTM, and ICEEMDAN-M-

FE-LSTM, and the comparison results are shown in Table 11.

(3) Comparison of mixed prediction models. The comparison of mixed prediction mod-

els including ICEEMDAN-MFE-RF, ICEEMDAN-MFE-LSTM, ICEEMDAN-MFE-INFOR-

MER, ICEEMDAN-MFE-LSTM-INFORMER, and the comparison results are shown in

Table 12.

Table 7. MFE values of IMFs.

Case1 Case2

IMFs MFE Value IMFs MFE Value

IMF1 0.01047 IMF1 0.0012

IMF2 0.10193 IMF2 0.0274

IMF3 0.10151 IMF3 0.0239

IMF4 0.31154 IMF4 0.0264

IMF5 0.41028 IMF5 0.1808

IMF6 0.43657 IMF6 0.3868

IMF7 0.59657 IMF7 0.3561

IMF8 1.78678 IMF8 1.4093

IMF9 2.07965 IMF9 7.0981

https://doi.org/10.1371/journal.pone.0289161.t007

Fig 12. The MFE value of IMFs (Case1).

https://doi.org/10.1371/journal.pone.0289161.g012
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Fig 14. The MFE value of IMFs (Index chart of Case2).

https://doi.org/10.1371/journal.pone.0289161.g014

Fig 13. The MFE value of IMFs (Case2).

https://doi.org/10.1371/journal.pone.0289161.g013

Table 8. The recombined sequence.

Case1 Seqs Seq1 Seq2 Seq3 Seq4 \

Combination IMF1 IMF2,3 IMF4-7 IMF8,9 \

Case2 Seqs Seq1 Seq2 Seq3 Seq4 Seq5

Combination IMF1 IMF2,3,4 IMF5,6,7 IMF8 IMF9

https://doi.org/10.1371/journal.pone.0289161.t008
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Fig 15. New sequence diagram of IMFs recombination (Case 1).

https://doi.org/10.1371/journal.pone.0289161.g015

Fig 16. New sequence diagram of IMFs recombination (Case2).

https://doi.org/10.1371/journal.pone.0289161.g016

Table 9. The effect of two kinds of predictors on different subsequences.

Case1 Seqs Seq1 Seq2 Seq3 Seq4

Predictor LSTM INFORMER INFORMER INFORMER

Case2 Seqs Seq1 Seq2 Seq3 Seq4

Predictor LSTM LSTM INFORMER INFORMER

https://doi.org/10.1371/journal.pone.0289161.t009
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Fig 17. The final prediction results of wind speed (Case1).

https://doi.org/10.1371/journal.pone.0289161.g017

Fig 18. The final prediction results of wind speed (Case2).

https://doi.org/10.1371/journal.pone.0289161.g018

Table 10. Comparison of a single predictive model.

Models RMSE MAE MAPE R2

Case1 RF 1.2443 0.9058 0.3574 0.6843

LSTM 0.6503 0.5542 0.1604 0.8540

INFORMER 0.6417 0.5334 0.1524 0.8643

Case2 RF 0.7264 0.5580 0.1957 0.8443

LSTM 0.6931 0.5536 0.2164 0.8623

INFORMER 0.6682 0.5317 0.2090 0.8713

https://doi.org/10.1371/journal.pone.0289161.t010
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Based on the above observations and calculation results, we drew the following conclusions.

1. The ICEEMDAN-MFE-LSTM-INFORMER prediction model exhibited higher accuracy

with less error than the other seven models and better performance in predicting wind

speed.

2. The hybrid prediction model using modal decomposition algorithm was more effective in

predicting wind speed than single model as wind speed is generally non-stationary and dif-

ficult to directly predict. However, the modal composition makes it less difficult to predict

wind speed as it filters out noise series in the wind speed. The above results indicated that

the prediction accuracy of wind speed could be effectively improved by preprocessing data

based on data decomposition.

3. ICEEMDAN outperformed VMD in terms of data decomposition due to its ability to

address the issue of residual noise and pseudo-modality in the modal decomposition.

Therefore, it was able to reduce the interference of noise sequences and improve the predic-

tion accuracy.

4. The LSTM model exhibits higher prediction accuracy for smoother and less volatile

sequences, whereas the INFORMER model is better suited for sequences with higher

volatility.

Conclusion

This study presents a hybrid prediction model that integrates ICEEMDAN, MFE, LSTM, and

INFORMER to enhance the accuracy and reliability of wind speed prediction. Initially, the

wind speed series is decomposed into intrinsic mode functions (IMF) using the ICEEMDAN

decomposition algorithm, which separates the data into IMFs ranging from high to low

Table 11. Comparison of decomposition mechanisms.

Models RMSE MAE MAPE R2

Case1 VMD-MFE-LSTM 0.5590 0.3961 0.1467 0.8852

CEEMDAN-MFE-LSTM 0.4936 0.4094 0.1268 0.8806

ICEEMDAN-MFE-LSTM 0.4881 0.3937 0.1203 0.8895

Case2 VMD-MFE-LSTM 0.4394 0.3315 0.1467 0.9392

CEEMDAN-MFE-LSTM 0.3531 0.2474 0.1207 0.9622

ICEEMDAN-MFE-LSTM 0.3834 0.3290 0.1288 0.9595

https://doi.org/10.1371/journal.pone.0289161.t011

Table 12. Comparison of mixed prediction models.

Models RMSE MAE MAPE R2

Case1 ICEEMDAN-MFE-RF 0.6117 0.5063 0.1372 0.8797

ICEEMDAN-MFE-LSTM 0.4881 0.3937 0.1203 0.8895

ICEEMDAN-MFE-INFORMER 0.4936 0.4094 0.1268 0.8806

ICEEMDAN-MFE-LSTM-INFORMER 0.4573 0.3878 0.1291 0.9411

Case2 ICEEMDAN-MFE-RF 0.5037 0.4091 0.1302 0.8846

ICEEMDAN-MFE-LSTM 0.3834 0.3290 0.1288 0.9595

ICEEMDAN-MFE-INFORMER 0.3531 0.2474 0.1207 0.9622

ICEEMDAN-MFE-LSTM-INFORMER 0.3171 0.2142 0.1149 0.9653

https://doi.org/10.1371/journal.pone.0289161.t012
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frequencies. Subsequently, the MFE values of each IMF are computed, and IMFs with similar

MFE values are reconstructed, yielding multiple new subsequences. Next, the combination

mechanism of LSTM and INFORMER is analyzed. LSTM is found to be suitable for modeling

relatively stable low-frequency sequences, whereas INFORMER performs better in capturing

high-frequency sequences with significant fluctuations. Accordingly, the combined model is

employed to predict the decomposed and reconstructed subsequences. LSTM is employed for

smoother series, while INFORMER is utilized for more volatile series. Ultimately, the pre-

dicted values of each subsequence are combined to generate the final prediction results. To

assess the effectiveness of the proposed prediction model, a comparative analysis is conducted

with seven alternative prediction models. The experimental results, evaluated using multiple

indicators, confirm the superior performance and efficacy of the proposed combination

method.

Precise wind speed prediction facilitates enhanced management of renewable energy

resources, optimized energy market transactions, improved power system scheduling and

operation, as well as effective planning and risk management of wind energy projects. Accurate

wind speed prediction further enables improved energy efficiency, reduced energy costs, and

decreased reliance on conventional energy sources. Consequently, the proposed hybrid model

holds substantial theoretical and practical significance.

Nonetheless, several issues remain to be addressed in future research. Currently, few schol-

ars have considered influential factors on wind speed, such as seasonal variations, atmospheric

conditions, meteorological systems, and measurement heights. Therefore, incorporating these

factors into wind speed prediction poses a major challenge. It is imperative to select appropri-

ate prediction methods based on different scenarios and make adjustments based on actual

conditions, thereby enhancing the overall credibility and reliability of the predictions.
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