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Abstract

Virtualisation is a major technology in cloud computing for optimising the cloud data centre’s

power usage. In the current scenario, most of the services are migrated to the cloud, putting

more load on the cloud data centres. As a result, the data center’s size expands resulting in

increased energy usage. To address this problem, a resource allocation optimisation

method that is both efficient and effective is necessary. The optimal utilisation of cloud infra-

structure and optimisation algorithms plays a vital role. The cloud resources rely on the allo-

cation policy of the virtual machine on cloud resources. A virtual machine placement

technique, based on the Harris Hawk Optimisation (HHO) model for the cloud data centre is

presented in this paper. The proposed HHO model aims to find the best place for virtual

machines on suitable hosts with the least load and power consumption. PlanetLab’s real-

time workload traces are used for performance evaluation with existing PSO (Particle

Swarm Optimisation) and PABFD (Best Fit Decreasing). The performance evaluation of the

proposed method is done using power consumption, SLA, CPU utilisation, RAM utilisation,

Execution time (ms) and the number of VM migrations. The performance evaluation is done

using two simulation scenarios with scaling workload in scenario 1 and increasing resources

for the virtual machine to study the performance in underloaded and overloaded conditions.

Experimental results show that the proposed HHO algorithm improved execution time(ms)

by 4%, had a 27% reduction in power consumption, a 16% reduction in SLA violation and an

increase in resource utilisation by 17%. The HHO algorithm is also effective in handling

dynamic and uncertain environments, making it suitable for real-world cloud infrastructures.

Introduction

Cloud computing is a paradigm for providing on-demand computational services and

resources through the internet, such as data storage and computing power [1]. Cloud comput-

ing offers customers on-demand resources in the form of virtual machines (VMs) and
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accomplishes their tasks while meeting Quality of Service (QoS) requirements. Each VM is

designed to target a certain computing resource capability (e.g., the number of CPUs, I/O

bandwidth and memory capacity). Using a physical machine (PM) or host to run several VMs,

Virtualisation technology increases a data centre’s energy efficiency by decreasing the amount

of hardware in use and increasing the resource usage of physical machines. Cloud providers

need to schedule the virtual machines to suitable physical machines so that both users’ and the

providers’ objectives will be optimised.

The notion of cloud data centres comes from the fact that cloud computing makes use of

data centre infrastructure to offer services. Cloud data centres will manage 94% of workloads

by 2021 [2]. However, the operations of these data centres require a lot of energy. Energy

expenses account for about 42% of total operational costs, according to Amazon’s data centre

research [2]. Another reason to save energy is the ongoing discussion about climate change.

Running servers is projected to produce 0.5% of world CO2 emissions [3]. As a result, lowering

data centre energy usage without sacrificing the QoS provided is an incipient research domain.

Large numbers of physical servers are commonly seen in data centres. The IT infrastruc-

ture, which is subjugated by PMs, accounts for about 60% of the overall energy usage in a data

centre. Virtualisation is a technique that allows customers to access cloud computing resources

in the form of several VMs. Since numerous VMs may be deployed to a similar physical server,

Virtualisation is critical for attaining both energy efficiency and high server utilisation. Hence,

employing an effective Virtual Machine Placement (VMP) method can have a significant

impact on the power usage of a data centre. VMP is an NP-hard optimisation problem [4].

Virtual machines (VMs) share resources through Virtualisation on hosts to process user

requests over physical machines (PMs). Virtualisation may be used to conduct three different

operations: VM migration, VM isolation and VM consolidation. The virtual machine migra-

tion technology moves virtual machines from one PM to another. Virtual machines operating

on separate hosts will leave that host and congregate on fewer ones during the VM consolida-

tion process to save energy by turning off or transferring the initial running host to hibernate

mode [5].

The issue of energy consumption has improved because of recent developments in hard-

ware technology. It is still a major issue for sustainable computing though, because how com-

puting and auxiliary hardware resources are used has a significant impact on how much

energy is used by those resources. In contrast to resources that are employed effectively, under-

utilisation or over-utilisation of the resources (CPU and RAM) results in increased energy

consumption. This necessitates the creation of several software energy-saving strategies, such

as scheduling and Virtualisation. With lower resource utilisation, the energy efficiency of the

system will be lower. Additionally, there will be more active hosts.

A PM supplies all essential VM resources such as storage, network bandwidth, memory,

and CPU as each PM can hold several VMs. Consolidation of virtual machines is a method for

making intelligent and efficient use of the resources of the cloud. One of the most difficult

components of VM consolidation is VM allocation. It is described as locating the best PM for

a VM to decrease the number of operating physical machines in data centres. As a result,

many goals have been proposed for improving load balancing, lowering costs and network

usage, mitigating SLA (Service Level Agreement) violations, increasing energy efficiency, and

maximising resource utilisation.

This work presents a Harris Hawk Optimisation (HHO) model for multi-objective virtual

machine placement in the cloud data centre. The proposed HHO model aims to optimally

place VMs on appropriate physical hosts. HHO is a meta-heuristic approach for determining

the global ideal solution. The system model is depicted in Fig 1. A data centre is made up of

multiple physical machines. Many virtual machines can run on a single physical machine.
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PSO PABFD W1 18590 21457 22100 W2 24109

25632 26234 W3 25696 26543 28256 W4 24427

25387 26678 W5 24145 25286 25875 SLA

violations HHO PSO PABFD W1 14.58 15.02 17.3

W2 15.24 17.21 18.25 W3 13.71 16.54 18.43 W4

15.03 16.85 17.76 W5 16.07 17.65 17.42 Sample

dataset:; MaxJobs: 76872; MaxRecords: 76872;

Preemption: No; UnixStartTime: 788722174;

TimeZone: 0; TimeZoneString: US/Pacific;

StartTime: Thu Dec 29 09:29:34 PST 1994;

EndTime: Sat Dec 30 23:54:09 PST 1995;

MaxNodes: 400 (48 interactive, 352 batch, 6

service, 10 I/O); MaxProcs: 400; Note: service and

I/O partitions are not used to run jobs; MaxQueues:

37; Job Number – a counter field, starting from 1.;

Submit Time – in seconds. The earliest time the log

refers to is zero, and is usually the submittal time

of the first job. The lines in the log are sorted by

ascending submittal times. It makes sense for jobs

to also be numbered in this order.; Wait Time – in

seconds. The difference between the job’s submit

time and the time at which it actually began to run.

Naturally, this is only relevant to real logs, not to

models.; Run Time – in seconds. The wall clock

time the job was running (end time minus start

time).; Number of Allocated Processors – an

integer. In most cases this is also the number of

processors the job uses; if the job does not use all

of them, we typically don’t know about it.; Average

CPU Time Used – both user and system, in

seconds. This is the average over all processors of

the CPU time used, and may therefore be smaller

than the wall clock runtime. If a log contains the

total CPU time used by all the processors, it is

divided by the number of allocated processors to

derive the average.; Used Memory – in kilobytes.

This is again the average per processor.; User ID –

a natural number, between one and the number of

different users.; Group ID – a natural number,

between one and the number of different groups.

Some systems control resource usage by groups

rather than by individual users.; Executable

(Application) Number – a natural number, between

one and the number of different applications

appearing in the workload. in some logs, this might

represent a script file used to run jobs rather than

the executable directly; this should be noted in a

header comment.; Queue Number – a natural

number, between one and the number of different

queues in the system. The nature of the system’s

queues should be explained in a header comment.

This field is where batch and interactive jobs

should be differentiated: we suggest the

convention of denoting interactive jobs by 0.;

Partition Number – a natural number, between one

and the number of different partitions in the

systems. The nature of the system’s partitions

https://doi.org/10.1371/journal.pone.0289156


Virtual Machine Manager (VMM) also identified as Hypervisor, is software that makes it eas-

ier to create, manage, and monitor virtual machines. On top of physical hosts, it also controls a

Virtualised environment. When the data center manager receives a request for VM execution

it first gathers status information from all accessible physical machines and sends it to the VM

scheduler. The HHO model was used to create the VM scheduler. The VM scheduler then

evaluates the status information and assigns VMs to appropriate PMs.

Harris Hawk is a meta-heuristic approach for determining the global ideal solution. The

significant contributions of the proposed work are listed below:

• A resource and energy-efficient VM deployment model for diverse cloud environments is

proposed. This contribution intends to increase the resource utilisation and then the energy

consumption can be minimised while satisfying the QoS expressed by the cloud providers.

• Load balancing is addressed by migrating VMs from overloaded to underloaded physical

machines and vice versa.

• Reducing the running time of the VM Placement algorithm: The reduction in execution

time required to process all the requests from users plays a vital role from the cloud provid-

er’s perspective since it directly affects the performance of the cloud provider.

The remainder of this article is structured as follows, a review of the existing techniques is

presented in the literature review section. The problem formulation section discusses the prob-

lem and the proposed HHO model, while the experimental setup and comparisons section

evaluates the proposed technique. Finally, the conclusion section summarises the paper with a

discussion on future work.

Literature review

One of the challenges with cloud computing is VMP which has an impact on many aspects of

cloud computing. As a result, several research efforts have been carried out to map the best

position for VMs among accessible PMs. This section summarises pertinent studies on VMP

and Table 1 depicts the studies and their parameters. Also, virtual machine placement techn-

quies are categorized into Nature/Bio Inspired methods, Metaheuristic approaches and

Machine Learning technquies.

Nature/bio inspired methods

The Salp Swarm Algorithm and the sine-cosine algorithm were combined to create a hybrid

multiobjective VM placement technique [6]. The proposed technique aimed to reduce the

mean time before host shutdown (MTBHS), the number of SLA violations and power con-

sumption. The proposed method was compared to several meta-heuristics, and the findings

showed that it was superior. When discussing VMs and PMs, the bandwidth has not been fully

considered. Furthermore, the balanced use of multidimensional resources in physical hosts

remains uncertain.

A bandwidth-aware VMP algorithm, developed on the enhanced Whale Optimisation

Algorithm (WOA) and a novel bandwidth allocation methodology, was proposed in [7]. The

outcomes reveal that the suggested method outperforms several meta-heuristics and heuristics.

I suggested approach focuses solely on bandwidth optimisation, neglecting to consider other

critical resources like memory and CPU use. Also, the study did not focus on the problem of

optimising power consumption.

The authors in [8] proposed an energy-aware VM placement technique using Binary Parti-

cle Swarm Optimisation (BPSO) algorithm. The work is based on the modification of local
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should be explained in a header comment. For

example, it is possible to use partition numbers to

identify which machine in a cluster was used.;

Preceding Job Number – this is the number of a

previous job in the workload, such that the current

job can only start after the termination of this

preceding job. Together with the next field, this

allows the workload to include feedback as

described below.; Think Time from Preceding Job

– this is the number of seconds that should elapse

between the termination of the preceding job and

the submittal of this one. 1 0 224904 37349 128

37349 -1 -1 -1 -1 1 7 -1 -1 29 2 -1 -1 2 4751

257510 43349 128 42924 -1 -1 -1 -1 1 7 -1 -1 29 2

-1 -1 3 91769 213864 22 128 -1 -1 -1 -1 -1 1 7 -1
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17 2 -1 -1 9 141918 265888 74 256 67.95 -1 -1 -1
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3 -1 -1 28 2 -1 -1
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optimum placement and global optimal placement, to get optimal VM placement with the

lowest energy usage.

To minimise energy consumption and fulfil uers’ experience, an enhanced ant colony algo-

rithm is used to propose an energy-saving VMP approach which attains a balance between

user experience and energy consumption in data centres [9]. The original ant colony algo-

rithm’s pheromone and heuristic parameters were modified, ensuring that the improved algo-

rithm may transition from a local to a globally optimal solution, avoiding the algorithm’s early

maturity. Dolphin Partner Optimisation along with optimised security for resource allocation,

has been presented in [10]. Memory-aware Optimisation and Energy-based Prioritisation are

utilised to pick memory and energy-established VMs for safety, and this work has also incor-

porated hypervisor safety into the two groups of VMs acquired. The Dolphin Partner Optimi-

sation then enhances the two sets of virtual machines to provide the best capable VM for each

set. Finally, streamlining security is applied to boost security, and the chosen virtual machine

is essentially the most secure.

Authors in [11] proposed a research model that uses VM consolidation to minimise data

centre power consumption while maintaining stable operation. An adaptive harmony search

approach is created to achieve the best solution for the suggested VM consolidation model,

which requires less effort to establish the model’s parameters than current harmony search

methods.

The authors in [12] presented an energy-efficient container placement using the WOA

technique. Two stages of placement, that is placing containers on suitable VMs and mapping

VMs to suitable PMs are solved as one optimisation problem. The proposed method is evalu-

ated in a heterogeneous environment and results show, it minimises the power consumption,

reduces the number of PMs used and maximises the resource utilisation but increases the

number of migration increasing the cost.

Authors [13] developed a hybrid approach using PSO and Flower Pollination Optimisation

techniques to reduce power consumption, placement time, and resource wastage and increase

Fig 1. System design for VMP in the cloud.

https://doi.org/10.1371/journal.pone.0289156.g001
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Table 1. Classification of different approaches in the existing literature.

Reference Algorithm Used Parameters Limitations

Execution

Time

Resource

Utilisation

Energy

Consumption

SLA

Violation

6 Salp Optimisation ✓ ✓ Doesnot consider Resource Utilisation

7 Whale optimisation algorithm Focused only on bandwidth efficiency, does not

consider resource utilisation and energy

consumption

8 PSO ✓ Doesnot consider resource utilisation, execution time

and SLA violations.

9 ACO ✓ ✓ No real-time dataset is used, and resource utilisation

is not considered

10 Proportionate resource

utilisation (PRU) based policy

✓ ✓ Does not consider execution time and SLA violations

11 Dolphin partner optimisation ✓ ✓ ✓ Does not consider VM migrations

13 Original harmony search ✓ ✓ Does not consider resource utilisation and execution

time

14 Whale optimisation ✓ ✓ Randomly generated data were used and does not

consider SLA violation

15 HPSOLF-FPO ✓ ✓ Randomly generated data were used and does not

consider load balancing

18 ACLR ✓ Focused only on energy consumption

20 Firefly algorithm ✓ Resource and energy optimization was not

considered

22 Q Learning ✓ Focused only on energy consumption

23 Flower pollination ✓ ✓ ✓ SLA violation is not considered

29 Artificial ant colony ✓ ✓ The work aims to improve only Makespan and

resource utilisation

30 Self-adaptive PSO ✓ The work aims to improve only the cost and

execution time of the task.

31 Multi-agent system ✓ Focused on execution time and parallel resource

utilisation. Energy consumotion is not considered

32 Double deep Q-network ✓ Only to improve power and network load

33 Flower Pollination Algorithm ✓ ✓ Improve power efficiency of host and number of

migration. Does not consider resource utilization

34 krill herd ✓ ✓ Improves only power consumption and minimize

SLA violation. Resource utilization is not considered.

35 Deep reinforcement learning

algorithm

✓ ✓ Does not cosider resource utilization and SLA

violation

36 Ant lion optimizer and sine

cosine algorithm

✓ ✓ ✓ Does not consider execution time

38 Symbiotic Organisms Search

Algorithm

✓ ✓ Doesnot consider execution time and SLA violation

39 Enahnced Cuckoo search

algorithm

✓ ✓ Does not consider resource utilization

40 Squirrel search algorithm ✓ ✓ ✓ ✓ Migration cost is not taken into consideration

41 Clonal optimization ✓ ✓ SLA and resource utilization is not taken into

consideration

42 Hybrid BAT and ABC ✓ Doesnot consider Resource Utilisation and energy

optimization

43 Jelly Fish ✓ ✓ Energy and SLA is not considered in this work

46 Elephand herd ✓ ✓ SLA and migration cost is not taken into

consideration

47 Whale ✓ ✓ ✓ SLA and migration cost is not taken into

consideration

(Continued)
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server utilisation. Placements of the virtual machines onto physical machines are accomplished

based on the fitness values derived from the above objectives.

Adlin Sheeba et al. proposed a VM placement technique using the Firefly Optimisation

Technique [14]. In this work, the authors used the K-Means clustering technique to minimise

the migration time of VMs. An enhanced Firefly Optimisation Algorithm was used to design

the VMP model. To decide the optimal cluster for VMP, a combination of PSO and coyote

algorithm was used.

In [15], the authors proposed a Water Wave Optimisation technique to handle virtual

machine consolidation problems in the cloud. The proposed method is employed to find the

proper migration plan to minimise the load on the overloaded hosts and maximise resource

utilisation. In [16], a Flower Pollination-Based Nondominated Sorting Optimisation

(FP-NSO) algorithm is presented to handle VM placement to minimise energy consumption

and maximise resource utilisation. The method that aids in identifying the most suitable PMs

for deploying VMs in a cloud environment is linked to many resource-constraint parameters.

In a recent work [17], the author has proposed a modified ant colony-based load balancing

algorithm for cloud resource optimisation to improve makespan and resource utilisation in

the cloud. Similar work using self-adaptive PSO (Particle Swarm Optimisation) [18] is pro-

posed to improve cost using a combination of machine learning to predict the cost model and

PSO for finding the best resource over the cloud. The work aims to improve the cost of the

resources and execution time. In [19], a resource allocation algorithm is proposed using The

Flower Pollination Algorithm to improve power efficiency as compared to a genetic algorithm

in the cloud. This work also tried to reduce the number of migrations to improve resource uti-

lisation (CPU and RAM utilisation). From the nature-inspired algorithms, the krill herd

model has been proposed to improve SLA violation and energy efficiency in the cloud [20].

The work shows an improvement in SLA and power efficiency as compared to the genetic

algorithm and the MBFD (Modified Best Fit Decreasing) algorithm. Authors in [21] proposed

a hybrid approach for multi objective virtual machine placement in cloud. Ant lion optimiza-

tion and sine cosine algorithm were used to optimally place VMs over suitable physical

machines. Performance metrics like power consumption, resource wastage, reosuce utiliza-

tion, number of active PMs, VM migrations and SLA were considered.

In [22], authors presented a Variable Neighborhood Search-Based Symbiotic Organisms

Search Algorithm to enhance energy efficiency in cloud. Authors aimed to minimize energy

consumption and maximize resource utilization. A minimum of active hosts and the energy-

saving turnoff of inactive servers allowed for the best VM allocation. Esha Barlaskar et al., [23]

proposed an enhanced cuckko search algorithm to obtain optimal solution for virtual machine

placement in cloud. This work aims to reduce energy consumption, VM migrations and SLA

violation. Hetergeonous hosts were used for experimentation work. In [24] authors has pro-

posed an nature inspired squirel search optimization algorithm for resource scheduling is

cloud. the work is compared with genetic algorithm, PSO and ACO using energy, cost and

Table 1. (Continued)

Reference Algorithm Used Parameters Limitations

Execution

Time

Resource

Utilisation

Energy

Consumption

SLA

Violation

48 Ant Lion ✓ ✓ Resource utilization and SLA is not considered

49 Buterfly optimization ✓ ✓ Energy and SLA is not considered in this work

50 Gray Wolf ✓ ✓ ✓ SLA and migration cost is not taken into

consideration

https://doi.org/10.1371/journal.pone.0289156.t001
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SLA as performance parametrs. In [25] a clonal optimization model is proposed for resource

allocation for cloud infrastructure to improve power efficiency in cloud. In recent years many

other work are been proposed using nature inspired algorithms like work inspired from BAT

algorithm [26], jelly fish [27], wild horse [28], FOX inspired model [29], Elephant herd [30],

Whale Optimization Algorithm (WOA) [31], Ant Lion [32], Butterfly Optimization Algorithm

(BOA) [33] and Gray Wolf Optimization (GWO) [34].

Metaheuristic approaches

A VM allocation policy has been proposed that assigns VMs to hosts proportionally based on

their RAM and CPU use. It employs the idea of skewness to assess the unevenness in host

resource utilisation and assigns VMs to the host machine with the lowest skew value [35].

In [36], a combination of a mixed integer linear program and a heuristic approach was pro-

posed for virtual machine placements in edge-cloud computing. The objective is to meet the

varied latency requirements of applications while minimising the consumption of IT infra-

structures for the placement of VMs in cooperative edge-cloud computing. To defend against

co-location assaults in IaaS (Infrastructure As A Service) cloud providers, the authors in [37]

presented a VM allocation strategy which considers 3 different types of incoming virtual

machines. The proposed algorithm focuses on the secure placement of VMs over physical

machines. This work aims to minimise energy consumption.

In [38], the authors presented an open-source development model algorithm to address

dynamic virtual machines’ placement in the cloud. ODMA(Open Source Development Model

Algorithm) is one of the meta-heuristic approaches that is used in this work to consolidate sev-

eral VMs into a reduced number of hosts. The objectives of this work are to minimise the

number of active hosts, achieve load balancing and improve performance. In [39], the author

has proposed a multi-agent-based resource optimisation algorithm is proposed which aims to

solve the optimisation problem using parallel scheduling and a multi-agent system. The work

proposes a mathematical model to find an optimal solution in parallel resources. Canosa-

Reyes et al., [40] proposed energy tradeoff consolidation with contention-aware resource pro-

visioning, here authors used containers to optimally place the jobs. Cloudsim was used for

experimention purpose. The proposed method reduces resource contention and makes job

placement more efficient with the energy-utilization tradeoff.

Machine learning technquies

Ashawa et al. proposed the LSTM technique for load balancing to enhance cloud efficiency via

resource allocation [41]. LSTM provided a dynamic resource allocation mechanism that evalu-

ates the resource usage of an application using heuristics to determine the optimal additional

resources to make available for that application. Based on the result, the proposed model

shows the accuracy rate is enhanced by approximately 10–15%.

Ali Aghasi et al. employed the Q Learning technique to address virtual machine placement

[42]. Reinforcement learning along with state action representation is utilised. The objectives

of this work were to minimise energy consumption and reduce CPU temperature. In this gen-

eration of machine learning, various hybrid approaches have been proposed using machine

learning and deep learning, like the Double Deep Q-network to improve network performance

in cloud radio access networks [43]. This work [43] aims to improve performance by manag-

ing and optimising the load on network paths using Q-Network approaches. The result show-

cases an improvement in power consumption (Kwh) and network delay. Another work using

deep learning was proposed in [44] to optimise energy efficiency and resource optimisation.

This model tries to predict the best resource of a VM based on the prior performance in terms
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of CPU utilisation and power consumption. The work uses a deep reinforcement learning

model for training and model prediction. The proposed model is compared with a greedy algo-

rithm using power consumption and average waiting time as performance parameters.

Work has also been carried out in job scheduling. For example, Ibrahim Attiya et al. pre-

sented a hybrid job scheduling approach in cloud computing using a modified Harris Hawk

Optimisation and simulated annealing algorithm [45]. This work aims to minimise the make-

span and improve the convergence speed. Both standard and synthetic workloads were

employed to analyze the performance of the this work.

Authors in [46] proposed a multi-objective task scheduling technique, based on Gaussian

Cloud Whale Optimisation Algorithm (GCWOAS2) in cloud computing. A three-layer sched-

uling model was presented in this work. The goal is to reduce the operating cost of the system

by minimising task completion time by effectively utilising virtual machine resources and

maintaining the load balancing of each virtual machine. To develop the best scheduling

scheme in the GCWOAS2 approach, an opposition-based learning mechanism is initially

employed to establish the scheduling strategy. Then, to dynamically widen the search range,

an adaptive mobility factor is provided. To improve the unpredictability of the search, a Whale

Optimisation technique based on the Gaussian cloud model is presented.

To summarise, prior research shows that the meta-heuristic approaches listed above can

identify an appropriate solution for VM scheduling in cloud computing. However, experi-

ments were carried out using randomly generated data in some works and most of the work

focused on two to three objectives without taking into account load balancing, SLA violation

and execution time concurrently. The proposed work in this article focuses on multi-objective

VM placement along with load balancing which was not addressed in the existing approaches.

Motivation

The motivation of this work is to develop a new meta-heuristic algorithm to achieve better per-

formance in the field of cloud computing. Where existing work as shown in the literature

work uses traditional algorithms, this work proposes the Harris Hawk Optimisation (HHO)

model to improve the performance of the cloud environment in terms of power consumption

and utilisation of the system. The existing models are being compared with our proposed

model to study the performance.

Problem formulation

The cloud data centre in this work consists of N VM and K PMs. The resource requirements

of VMs are CPU and RAM. The requirements of CPU and memory of VMi are represented as

VMcpui
. and VMrami

respectively. The CPU and memory capacity of PMj are represented as

PMcpuj
and PMramj

respectively. Table 2 depicts the terminologies used in this work.

Each PM has enough capacity in this cloud data centre to allocate a set of VMs. Let r = (rpm,

pm 2 PM) denote the VM placement approach satisfying the resource allocation policy is feasi-

ble i.e. resources allocated to every VM are fewer than the overall capacity of the PM as repre-

sented in Eq 1.
X

pm:pm2PM

Wpm � rpm � 0; ð1Þ

WhereWpm represents the se’ver’s willingness to offer resources or performance weight.

Considering the proposed VMP method, let γpm be the fairness among the association of PMs.

Once γpm = 1, the utility function of the pm is represented as UTpm(rpm(t)) =Wpmlog rpm(t).
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Next, maximising the cumulative utilities of all PMs in the data centre is expressed as:

max
X

pm2PM

Wpm log rpmðtÞ ð2Þ

Virtual machine placement problem statement

Let Lvp(t) symbolise the load of VM i which is hosted on physical machine pm and Lpm(t)
denote the aggregate load of PM, the following condition (3) must be satisfied:

LpmðtÞ ¼
X

i:i2VMðPMÞ
LvpðtÞ ð3Þ

Here Lvp(t) is the VM’s load requirements as the d dimensional vector, where d = 2 when

CPU and memory are considered, L(t) is given by

LðtÞ ¼ VMcpui
;VMrami

� �
ð4Þ

Further, Capacitypm is defined as the available server capacity on PM j 2 PM regarding its

CPU and RAM. The following formula must hold true to confirm that the overall load on any

PM is not more than its capacity.
X

vm:vm2VMðPMÞ
LvpðtÞ � Capacity pm ð5Þ

Typically, optimal placement of virtual machines on servers and turning off other servers

leads to maximisation of utilisation and minimising server power consumption. To reflect

this, in our analysis, the following equation is utilized:

Y1ð Þ : max
X

pm:pm2PM

UTpm LpmðtÞ
� �

ð6Þ

Subject to
X

vm:vm2VMðpmÞ

LvpðtÞ ¼ LpmðtÞ; 8 pm 2 PM; ð7Þ

X

vm:vm2VMðpmÞ

LvpðtÞ � Capacity pm; 8 pm 2 PM ð8Þ

Over LvpðtÞ � 0; vm 2 VM; pm 2 PM

Table 2. Key terminologies.

Terminologies Description

VM = {vm1,vm2,. . .vmn} Set of VMs

PM = {pm1,pm2,. . .pmk} Set of PMs

VM = (pm) Set of VMs hosted by a PM j 2 PM
rpm(t) = Lpm(t) VM resource needs to be aggregated at a PM

rvp(t) = Lvp(t) The VM resource demands placed on PM

Capacitypm PM capacity (e.g., CPU power, memory)

https://doi.org/10.1371/journal.pone.0289156.t002
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Based on the constraints below, a single PM can host a set of VMs:

Xn

i

VMcpui
� PMcpuj

; 8 vmi 2 VM; and pmj 2 PM ð9Þ

Xn

i

VMrami
� PMramj

; 8 vmi 2 VM; and pmj 2 PM ð10Þ

The above equation ensures that the total resources used by a group of VMs should not sur-

pass the CPU and memory capacities of PM.

When only CPU and RAM are considered, the PM resource utilisation problem (Y1) will be

equivalent to:

Y 0
1

� �
: max

X

pm:pm2PM

UTpm PMcpuj
ðtÞ � PMram j

ðtÞ
� �

ð11Þ

Subject to

X

vm:vm2VMðPMÞ

PMcpuj
ðtÞ � Capacity cpu

pm ; 8 pm 2 PM ð12Þ

X

vm:vm2VMðPMÞ

PMram j
ðtÞ � Capacity ram

pm ; 8 pm 2 PM ð13Þ

Over LvpðtÞ � 0; vm 2 VM; pm 2 PM

To facilitate the subsequent derivation of the formula, let rpm(t) = Lpm(t) To maximise the

data ce’tre’s’ overall aggregate utilities and find the best solution, a Lagrange function is

defined as:

LR rvp; rpm; g; b
� �

¼
X

pm:pm2PM

UTpm rpmðtÞ
� �

þ gpm

X

vm:vm2VM

rvpðtÞ � rpmðtÞ

 !( )

þ
X

pm:pm2PM

bpm Capacity pm �
X

vm:vm2VM

rvpðtÞ � ε2

pm

 !

ð14Þ

Where γ = (γpm, pm 2 PM) and β = (βpm, pm 2 PM) are Lagrange multiplier vectors,

ε2 ¼ ε2
pm; pm 2 PM

� �
is the relaxation factor vector. Let γvm denote the load requirement

of the virtual machine vm. Let βpm be the available capacity of the physical machine pm. Let

the resource occupied by all VMs on physical machine pm be expressed as
X

vm:vm2VMðpmÞ
rvpðtÞ

and
X

vm:vm2VMðpmÞ
rvpðtÞ � ε2

pm � 0 represents the enduring resources present on the physical

machine pm.
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According to Eq (7), we obtain:

LR rvp; rpm; g; b
� �

¼
X

pm:pm2PM

UTpm rpmðtÞ
� �

� gpmrpmðtÞ
n o

þ
X

pm:pm2PM

X

vm:vm2VMðPMÞ

rvpðtÞ gpm � bpm
� �

þ
X

pm:pm2PM

bpm Capacity pm � ε2

pm

� �

ð15Þ

Where Capacity pm � ε2
pm represents the occupied resource of physical machine pm. To

increase the PM utilisation and minimise server energy consumption, optimal packing is per-

formed to place virtual machines then bpm Capacity pm � ε2
pm

� �
can be considered as the gains

of PM from packing.

To save energy any PMs that are not’ in use should be turned off. The power consumption

of active PMs is formulated as follows:

Xk

j¼1

PC PMcpuj

� �
¼

PMidle þ PMmax � PMidleð Þ � PMcpuj
; if PMcpuj

> 0

0; otherwise
ð16Þ

(

where Pidle is the idle-state power of PMj , PMax is the maximum power of PMj , and Pcpuj is the

percentage value 2 [0, 1] that denotes the CPU utilisation.

Harris Hawk Optimisation for virtual machine placement

Heidari and Mirjalili et al. developed the Harris Hawks Optimisation Technique (HHO), a

novel optimisation algorithm [47]. The algorithm mimics the natural behaviour and hunting

strategy of Harris Hawks known as surprise pounce. The hawks collaborate to attack from

many directions to startle the victim. Harris Hawks reveal a variety of pursuit methods depen-

dent on the nature of the schemes and the victim’s’ evasive patterns. Exploration and exploita-

tion tactics are proposed by the conventional HHO algorithm which is driven by exploring

prey, surprise pounce, and Harris Haw’s’ particular attacking approach. The Harris Hawks are

the candidate solutions and the targeted prey in each phase is the best candidate solution

(nearly the optimal one). The exploration phase, transition from exploration to exploitation

phase, and exploitation phase are the three phases of the HHO algorithm and are described

below.

i) Exploration phase. All Harris Hawks are considered solutions during this phase

denoted as a solution matrix H; is a 2 × Nmatrix, where N is the number of VMs. Fig 2 depicts

4 feasible solutions where four hawk agents’ solutions assign 5 VMs to 3 PMs. The four solu-

tions are represented by the setH = H1,H2,H3, and H4. According to the number of VMs, all

solutions are reviewed and ranked in ascending order of PMs that are utilised in this solution

[12]. The order of sorting is H3, H1, H4, and H2. The best solution is H3 because it has the min-

imum number of PMs, which consumes less power.

The solution matrix of a single hawk H is defined in Eq 17. If there are N VMs to be allo-

cated to J PMs, the value of the component of H of the matrix represents the PM index to host
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the VM number n.

H ¼
yi

1
; yi

2
; yi

3;
; . . . :yiN

yi;j1;1; y
i;j
1;2; y

i;j
2;3; . . . :yi;j1;N

" #

ð17Þ

The corresponding variable yi;j1;n is the value j, 8 j 2 [1, J], if the virtual machine VMi is

assigned to PMj 2 PM. Variable yin denotes the virtual machine VMi 2 VM.

The fitness value is determined for all these feasible solutions created on the desired prey in

each iteration. To replicate Harris Hawk’s’ exploring abilities in the search space chosen and

updating the solution matrix is according to two techniques as specified in Eq 18.

Hðt þ 1Þ ¼
Hrand ðtÞ � r1jHrand ðtÞ � 2r2HðtÞj p � 0:5

HrðtÞ � HsðtÞ � r3 LBþ r4ðUB � LBÞð Þ p < 0:5 ð18Þ
�

(

Where H(t + 1) is the hawk’s candidate solution/position in the second iteration t,Hρ(t)
represents the best solution matrix/prey position andHrand(t) is the random solution selected

in the present population.H(t) represents the position vector of hawks in the present iteration

t. r1, r2, r3, r4 and p are the random scaled factor within the range [0,1]. UB and LB are the

upper bound and lower bounds of the variables,Hs(t) denotes the average number of solutions.

The index of the first row is updated according to the hawk agent solutions of the best and ran-

dom solution as per Eq 18.

Hawk placements are generated because of this method inside UB and LB depending on 2

rules 1) Build solutions using a randomly chosen hawk from the present population as well as

other hawks. 2) Construct solutions depending on the location of the prey, the average hawk

position, and random scaled variables. While r3 is a scaling factor, if the value of r4 approaches

1 it will aid in increasing the rule’s’ unpredictability. An arbitrarily scaled measure length is

added to LB in this rule. More diversification strategies to investigate other sections of the fea-

ture space are examined using a random scaled component. The average hawk position

Fig 2. Example of four feasible applicable solutions.

https://doi.org/10.1371/journal.pone.0289156.g002
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(solutions) is formulated as follows:

HsðtÞ ¼
1

M

XM

i¼1

HiðtÞ ð19Þ

Where,Hs(t) is the current iteration’s’ average number of solutions. M denotes all possible

solutions. Hi(t) indicates the location of every solution in iteration t.

The updated indexes in the hawk solutions should be in the range of [1,J]. If the updated

index is outside of the range then the algorithm recalculates it as follows:

yi;j1;nðt þ 1Þ ¼
yi;j1;nðt þ 1Þmod J; if yi;j1;nðt þ 1Þ=2½1; J�

yi;j1;nðt þ 1Þ; otherwise
ð20Þ

(

ii) The transition from exploration to exploitation. Based on the energy of the prey, this

phase shows how HHO moves from exploration to exploitation. HHO posits that the energy

of the prey is gradually depleted as a result of the fleeing activities. R0 is the initial energy range

between [–1,1] as expressed in Eq 21.

R ¼ 2R0 1 �
t
T

� �

;R0 2 ½� 1; 1� ð21Þ

Where t is the current iteration and T represents the maximum number of iterations.

iii) Exploitation phase. The exploitation phase is marked completed by utilising 4 meth-

ods/ways at parameter sets. These methods are created on the position that was discovered

during the exploration phase. The prey, on the other hand, tries to flee often despite the hawk’s

‘efforts to track it down and trap it. HHO exploitation uses four different techniques to imitate

the hawks’ attacking style. Hard besiege, Soft besiege, soft besiege with progressive rapid dives,

and hard besiege with progressive rapid dives are the four methods. These methods depend on

2 factors r and |R|. Where R represents the prey” fleeing energy and r is the likelihood of escap-

ing with r< 0.5 indicating a better chance of the prey escaping successfully and r� 0.5 indicat-

ing an unsuccessful escape. The following is a summary of these approaches:

In the soft besiege approach, where r� 0.5 and |R|� 0.5, while the hawks gently round on

the victim causing it to lose extra energy before completing the surprise pounce the prey still

has some energy to flee. Soft besiege is mathematically formulated in Eq 22.

Hðt þ 1Þ ¼ DHðtÞ � RjJHrðtÞ � HðtÞ j ð22Þ

DHðtÞ ¼ HrðtÞ � HðtÞ

J ¼ 2 1 � r5ð Þ; r5 2 ½0; 1�

Where ΔH(t) is the difference between the prey” position vector and the current location in

iteration t, J is the ‘ prey” jump strength, and r5 is a random variable.

In the hard besiege, where r� 0.5 and |R|< 0.5, the prey is exhausted and has a slight

chance of escaping. In this situation, the hawk barely encompasses the target before launching

the ultimate surprise pounce. Accordingly, the solution is updated using Eq 23.

Hðt þ 1Þ ¼ HrðtÞ � RjDHðtÞj ð23Þ

In soft besiege with progressive rapid dives method with r< 0.5 and |R|� 0.5, the prey has

enough energy to flee. The hawk manoeuvres deftly around the victim and descends tolerantly
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before the attack. This is referred to as a clever soft besiege, in which the hawk’s ‘location is

updated in two phases. In the 1st stage, the hawks approach the prey by calculating the prey”

next move as in Eq 24.

K ¼ HrðtÞ � R j C HrðtÞ � HðtÞj ð24Þ

C represents the jump power of prey. The hawk then determines whether to dive in the sec-

ond stage depending on a comparison of the prior dive and the likely outcome. If it is not,’ the

hawks will produce an uneven dive based on the Levy Flight (LF) notion as expressed in (25)

L ¼ K þ Q ∗ LFðdÞ ð25Þ

Where d is the dimension of solutions, Q is the random vector of size 1*d. LF is the Levy

Flight function designed using Eq 26

LFðdÞ ¼ 0:01 ∗
y ∗ s
jzj

1
b

; s ¼
tð1 þ bÞ ∗ sin pb

2

� �

t 1 þ b

2

� �
∗ b ∗ 2

b� 1
2ð Þ

 !1=b

ð26Þ

Where β is the default constant and y, z are the random variables between [0, 1]. As a result,

a method for updating the Harris Hawk’s ‘locations with advanced quick dives may be devised

as

Hðt þ 1Þ ¼
K if FðKÞ < FðHðtÞ

L if FðZÞ < FðHðtÞ
ð27Þ

(

Here, K and L are performed using Eqs 24 and 25.

In the last approach, hard besiege with progressive rapid dives where r< 0.5 and |R|< 0.5,

the prey has no energy to flee, therefore the Harris Hawks try to approach the prey by diving

quickly before making a surprise pounce to grab it. The hawk movement’ in the situation is

stated in Eq 27

Where K and L are as follows

K ¼ HrðtÞ � R j CHrðtÞ � HsðtÞ j ð28Þ

L ¼ K þ Q ∗ LFðdÞ ð29Þ

The parameters used in this work are presented in Table 3.

Objective function. After the hawk agents’ solutions have been updated the solutions are

evaluated to choose the best oneHρ. Only one HW (Hawk) solution is chosen as the best

where HW denotes the number of hawk agents. The algorithm compares the solutions based

on criteria e1 in Eq 30, this shows the amount of energy consumed by this solution. The best

solution is theHρ solution with the least power consumption and the fewest number of PMs

Table 3. Parameters of HHO.

Name of the parameter Adopted Value

Number of search agents 50

Dimension Number of VMs

Lower bound 1

Upper bound 800

Maximum Iterations 100

https://doi.org/10.1371/journal.pone.0289156.t003
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used [12]. The objective function is formulated as:

min: e1ðHÞ ¼
XJ

j¼1

PC PCPUj
� �

ð30Þ

Pseudocode 1: Harris Hawk Optimisation

Input: Set of virtual machines N and physical machines J

Output: 2 × N allotment matrix mapping N virtual machines to J physical machines asHρ

1. Initialisation: HW: = 50, ItrE: = 100, it: = 0, LB: = 1, UB: = 800

2. while it<ItrE do

3. ProduceHW × 2 × N hawk solution matrices

4. Assess the solutions and assign the best solution using the best solution: = Hρ

5. initialise a: = 1 for each iteration of the search

6. if the solution 6¼Hρ then

7. Update the present solution Ha using Eq (18)

8. if the number of hawks a< HW then

9. set a: = a+1 and go to step 6

10. Assess the fitness of the HW solutions using Eq 30 and assign the best solution toHρ

11. Return 2 × N allotment matrixHρ the best solution.

The pseudocode of HHO is depicted in Pseudocode 1 and the workflow process of the

HHO is represented in Fig 3. The hawk agents start with randomly distributed indexes and

then analyze their solution to determine the best Hρ . The hawk agents then update their solu-

tions based on the best option that has been chosen thus far. The optimal solution is then pre-

sented as matrix indices which map the VMs to the minimum number of PMs at the end of

each iteration. The HHO algorithm has the advantages of simple operation, fewer adjustment

parameters, ease of implementation and use of communication between hawks to improve the

global search capability. But for higher dimensional problems it may have low converge

performance.

Load balancing

To perform the load balancing in the data centre, host overload and host underload detection

mechanisms are incorporated.

Host overload detection. Each host periodically executes an overload detection algorithm

to de-consolidate VMs when needed to avoid performance degradation and SLA violation. In

this work, we used the IQR (Interquartile Range) to detect the overloaded machines in the

data centre and the Maximum Correlation (MC) policy [48] is applied to choose the VMs to

be migrated from overloaded hosts to some other host. MC selects the VMs having a maxi-

mum correlation of the CPU consumption with other virtual machines.

IQR is a method for setting an adaptive CPU utilisation threshold based on robust statistics.

In descriptive statistics, the IQR, also called the midspread or middle fifty, is a measure of sta-

tistical dispersion. It is equal to the difference between the third and first quartiles: IQR = Q3

—Q1. Unlike the total range, the interquartile range is a robust statistic having a breakdown

point of 25% and thus is often preferred to the total range. Using IQR the CPU utilisation
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threshold is defined in Eq 31.

Tu ¼ 1 � s ∗ IQR ð31Þ

where s is a parameter of the method defining the safety of the method.

Host underload detection. First, all overloaded hosts are identified using the overload

detection technique and the VMs that will be migrated are assigned to the destination hosts.

The system then attempts to deploy all the VMs from this host onto other hosts with minimal

utilisation relative to the other hosts while ensuring that they are not overloaded. The VMs are

configured for migration to the determined destination hosts if such a placement is possible.

To save energy the source host is put to sleep mode once the migrations are done. The source

host is maintained operational if all the VMs from the source host cannot be moved to other

hosts. For all non-overloaded hosts, this step is done repeatedly.

Complexity analysis of the proposed method

In further discussion V and P denote the number of VMs and PMs respectively. Each iteration

consists of two steps. The first step is to update the solution. The first step includes applying Eq

19 to each column of all solution matrices. As a result of modifying the VM’s resource utilisa-

tion the PM’s CPU and RAM utilisation may rise or decrease. Thus, the time complexity of

this step is O(V).

Second, to balance the load across the data centre, overloaded PMs are collected as dis-

cussed in the load balancing section. In the worst case when the PM is overloaded, selected

VMs are migrated to other PMs. If the underloaded PM is found the PM is switched to sleep

mode by migrating the VMs to some other PM. The time complexity of this task is O(V × P).

The PM’s CPU and RAM usage increases and decreases with each VM migration from one

PM to another according to Eq 30. Thus, the fitness function can be computed by summing up

the power consumption of each PM in the time complexity of O(P).

Fig 3. Workflow process of HHO algorithm.

https://doi.org/10.1371/journal.pone.0289156.g003
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So, the worst-case total time complexity of the 2 steps and the fitness computation of each

iteration is O(V + (V × P) + P) . As algorithm 1 has ItrE iterations, the worst time complexity

is O(HW × ItrE × V × P) for HW hawks.

Experiment and comparisons

This section covers the experimental setup, performance measurements, and experimental

outcomes.

Experimental setup

To test the proposed method we used the CloudSim 3.0 toolkit simulator. Cloudsim offers a

variety of virtual machine provisioning methodologies and Virtualised resources. We used real

workload traces from PlanetLab to conduct the experiment. PlanetLab is a component of the

CoMon project, which collects CPU utilisation from over 1000 virtual computers running on

various hosts in over 500 locations across the world. We employed four distinct types of virtual

computers in our test setup: Micro, Small, Medium, and Extra-Large instances. A total of 600

HP ProLiant G4 and HP ProLiant G5 heterogeneous hosts have been deployed. Table 4 lists

the characteristics of these servers.

Performance natrix and results

To assess the proposed approach against other algorithms the workloads depicted in Table 5

were used. It shows the workload number and the number of VMs in each of the workloads.

Each of the workload files contains CPU utilisation values measured every 5 minutes in Plane-

tLab’s VMs [49]. These trace files contain traces of CoDeeN, the Coral Content Distribution

Network, and Open DHT. The experiment was carried out using the workloads specified and

the average result of these workloads was used to evaluate different algorithms based on the

five metrics described below.

Experiments were carried out in two scenarios. Firstly, simulation is carried out using the

workloads specified and the average result of these workloads is used to evaluate different algo-

rithms based on the metrics under various workloads and task utilisation. For the second sce-

nario, the performance of the proposed algorithm is done with scaling resources to study the

performance in underloaded and overloaded conditions.

a) Energy consumption. Energy Consumption represents the total amount of energy/

power consumed by all the data centre’s PMs. Fig 4 depicts the energy consumption of the

Table 4. Characteristics of servers.

Host Type Depiction

HP ProLiant G4 1860 MIPS, 2 GB network bandwidth, 4GB RAM and 1.5 GB storage

HP ProLiant G5 2660 MIPS, 4 GB network bandwidth, 4GB RAM, and 2.5 GB storage

https://doi.org/10.1371/journal.pone.0289156.t004

Table 5. Traces of workload from PlanetLab.

Workload No. of VMs

20110306 W1 898

20110309 W2 1061

20110325 W3 1078

20110412 W4 1054

20110420 W5 1033

https://doi.org/10.1371/journal.pone.0289156.t005
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algorithms using scenario 1. As the instance size grows, the power consumption gradually

increases. The result shows that HHO decreases average power consumption by 9% and 27%

compared to PSO (Particle Swarm Optimisation) and PABFD (Best Fit Decreasing) respec-

tively. Fig 5 shows the study with scaling resources using scenario 2 where the proposed algo-

rithm shows the least energy consumption. The simulation is supported by two machines HP

ProLiant ML110 G4 (Intel Xeon 3,040, 2 cores, 1,860 MHz, 4 GB) and HP ProLiant ML110 G5

Fig 4. Energy consumption of data centre using different techniques using Scenario 1.

https://doi.org/10.1371/journal.pone.0289156.g004

Fig 5. Energy consumption of data centre using different algorithms using Scenario 2.

https://doi.org/10.1371/journal.pone.0289156.g005
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Table 6. Energy and utilisation of machine power model.

Server Utilisation 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

https://doi.org/10.1371/journal.pone.0289156.t006

Fig 6. CPU utilisation in the heterogeneous environment using Scenario 1.

https://doi.org/10.1371/journal.pone.0289156.g006

Fig 7. RAM utilisation in the heterogeneous environment using Scenario 1.

https://doi.org/10.1371/journal.pone.0289156.g007
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(Intel Xeon 3,075, (2 cores, 2,660 MHz, 4 GB) [49] as defined in Cloudsim3.0. Table 6 shows

the power consumption by a machine under different utilisation levels.

b) Resource utilisation. Figs 6 and 7 shows the resource utilisation of CPU and memory

for the PMs to host VMs using scenario 1. It is observed from the result that the average CPU

utilisation of HHO is higher by 3% and 12% compared to PSO and PABFD respectively. Simi-

larly, the memory utilisation of HHO is 4% and 17% higher than PSO and PABFD. Figs 8 and

9 shows the performance study of CPU and RAM utilisation with increasing virtual machines

Fig 8. CPU utilisation using Scenario 2.

https://doi.org/10.1371/journal.pone.0289156.g008

Fig 9. RAM utilisation using Scenario 2.

https://doi.org/10.1371/journal.pone.0289156.g009
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using scenario 2, where the proposed algorithm improves the CPU and RAM utilisation as

compared to existing models.

c) Number of VM migrations. The number of VM migrations is another evaluation met-

ric. As the number of requests increases, some of the PMs get overloaded, to balance the load

across PMs some of the virtual machines are selected and migrated to other physical machines

of the data centre as discussed in the load balancing section. According to Fig 10, the number

of VM migrations in HHO is less compared to other algorithms using scenario 1, since HHO

Fig 10. Number of VM migrations in the data centre using scenario 1.

https://doi.org/10.1371/journal.pone.0289156.g010

Fig 11. Number of VM migrations in the data centre using scenario 2.

https://doi.org/10.1371/journal.pone.0289156.g011
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places the VMs on an apt and lesser number of PMs which reduces the chance of migrating

VMs between PMs. Fig 11 shows a decrease in the number of VM migrations as compared to

existing algorithms using scenario 2.

d) SLA violation. The average SLA violation of different algorithms using scenario 1 is

depicted in Fig 12. As shown. the average SLA violation of the HHO algorithm is less by 8%

and 16% compared to PSO and PABFD respectively. Fig 13 shows an improvement in SLA

violation with increasing resources as compared to existing algorithms using scenario 2.

Fig 12. Average SLA violation (%) through different algorithms using scenario 1.

https://doi.org/10.1371/journal.pone.0289156.g012

Fig 13. Average SLA violation (%) through different algorithms using scenario 2.

https://doi.org/10.1371/journal.pone.0289156.g013
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e) Execution time- VM reallocation. Fig 14 shows the mean execution time required for

VM reallocation using scenario 1. As shown in the result, the mean reallocation time of HHO

is less compared to PSO and PABFD. Since the number of VM migrations is less in HHO, as a

result, the mean execution time for VM reallocation is also less. It is observed that HHO execu-

tion time is reduced by 3.2% and 4% compared to PSO and PABFD respectively. Fig 15 shows

the lower mean reallocation time of HHO using scenario 2.

Fig 14. VM reallocation mean (sec) using scenario 1.

https://doi.org/10.1371/journal.pone.0289156.g014

Fig 15. VM reallocation mean (sec) using scenario 2.

https://doi.org/10.1371/journal.pone.0289156.g015
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Conclusion

Developing a multi-objective virtual machine placement strategy has been a prominent

research subject as virtualisation technology has advanced. This work brings in the following

significant contributions: 1) multi-objective model formulation of dynamic VM placement

and 2) a Harris Hawk-based meta-heuristic algorithm to optimise virtual machine placement

according to energy and resource constraints. HHO has been previously used by researchers

for improving performance in various domains like parallel scheduling [49] and memory man-

agement [50].

The proposed algorithm was evaluated through a set of tests. A total of 600 heterogeneous

hosts were deployed and real-time workload from PlanetLab was used to experiment with 2

scenarios. After the VM placement, some of the physical machines became overloaded while

executing the VMs, so to balance the load across physical hosts a VM migration technique was

incorporated. The results demonstrate that the average power consumption of the proposed

algorithm is less by 27%, SLA violation is reduced by 16% and execution time is decreased by

4% compared to other algorithms. Resource utilisation of the proposed method is increased by

17% as compared to PSO and PADEF algorithms. As shown in the result section, the proposed

model outperforms the existing algorithm in underloaded and overloaded conditions. The

proposed algorithm succeeded in efficiently placing VMs on hosts in data centres and mini-

mising power consumption, exaction time, SLA violation and the number of VM migrations.

The proposed algorithm also increases resource utilisation. In the future, the work will be

extended to improve cost efficiency and scalability in the cloud. As an extension of this work,

HHO will be merged with machine learning models to achieve better performance and con-

sider additional constraints, such as security and reliability, in cloud computing environments.

Author Contributions

Conceptualization: Madhusudhan H. S., Punit Gupta.

Formal analysis: Madhusudhan H. S.

Methodology: Madhusudhan H. S., Gavin McArdle.

Supervision: Satish Kumar T.

Validation: Madhusudhan H. S., Punit Gupta.

Visualization: Madhusudhan H. S., Punit Gupta.

Writing – original draft: Madhusudhan H. S.

Writing – review & editing: Satish Kumar T., Punit Gupta.

References
1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems.

2009 Jun 1; 25(6):599–616.

2. Cisco C, Cisco global cloud index: Forecast and methodology, white paper, Cisco Public, San Jose, 2018.

3. Speitkamp B, Bichler M. A mathematical programming approach for server consolidation problems in

Virtualised data centers. IEEE Transactions on services computing. 2010 May 20; 3(4):266–78.

4. Ullman JD. NP-complete scheduling problems. Journal of Computer and System Sciences. 1975 Jun 1;

10(3):384–93.

5. Masdari M, Nabavi SS, Ahmadi V. An overview of virtual machine placement schemes in cloud comput-

ing. Journal of Network and Computer Applications. 2016 May 1; 66:106–27.

PLOS ONE Hawk Optimization-VMP

PLOS ONE | https://doi.org/10.1371/journal.pone.0289156 August 11, 2023 24 / 27

https://doi.org/10.1371/journal.pone.0289156


6. Alresheedi SS, Lu S, Abd Elaziz M, Ewees AA. Improved multiobjective salp swarm optimisation for vir-

tual machine placement in cloud computing. Human-centric Computing and Information Sciences. 2019

Dec; 9(1):1–24.

7. Abdel-Basset M, Abdle-Fatah L, Sangaiah AK. An improved Lévy based whale optimisation algorithm

for bandwidth efficient virtual machine placement in cloud computing environment. Cluster Computing.

2019 Jul; 22(4):8319–34.

8. Fu X, Zhao Q, Wang J, Zhang L, Qiao L. Energy-aware vm initial placement strategy based on bpso in

cloud computing. Scientific Programming. 2018 Feb 14;2018.

9. Pang S, Xu K, Wang S, Wang M, Wang S. Energy-saving virtual machine placement method for user

experience in cloud environment. Mathematical Problems in Engineering. 2020 May 12;2020.

10. Dhanya D, Arivudainambi D. Dolphin partner optimisation based secure and qualified virtual machine

for resource allocation with streamline security analysis. Peer-to-Peer Networking and Applications.

2019 Sep; 12(5):1194–213.

11. Yun HY, Jin SH, Kim KS. Workload stability-aware virtual machine consolidation using adaptive har-

mony search in cloud datacenters. Applied Sciences. 2021 Jan 15; 11(2):798.

12. Al-Moalmi A, Luo J, Salah A, Li K, Yin L. A whale optimisation system for energy-efficient container

placement in data centers. Expert Systems with Applications. 2021 Feb 1; 164:113719.

13. Mejahed S, Elshrkawey M. A multi-objective algorithm for virtual machine placement in cloud environ-

ments using a hybrid of particle swarm optimisation and flower pollination optimisation. PeerJ Comput

Sci. 2022 Jan 12; 8:e834.

14. Sheeba Adlin, and B. Uma Maheswa“i. "An efficient fault tolerance scheme based enhanced firefly opti-

misation for virtual machine placement in cloud comput”ng." Concurrency and Computation: Practice

and Experience 35, no. 7; 2023: e7610.

15. Medara Rambabu, and Ravi Shankar Sin“h. "Dynamic Virtual Machine Consolidation in a Cloud Data

Center Using Modified Water Wave Optimisat”on." Wireless Personal Communications. 2023; 1–19.

16. Singh Ashutosh Kumar, Smruti Rekha Swain, Deepika Saxena, and Chung-Nan L“e. "A bio-inspired vir-

tual machine placement toward sustainable cloud resource managem”nt." IEEE Systems Journal (2023).

17. Mohammadian V., Navimipour N. J., Hosseinzadeh M., & Darwesh A. LBAA: A novel load balancing

mechanism in cloud environments using ant colony optimisation and artificial bee colony algorithms.

International Journal of Communication Systems, e5481.

18. Chen X., Wang H., Ma Y., Zheng X., & Guo L. (2020). Self-adaptive resource allocation for cloud-based

software services based on iterative QoS prediction model. Future Generation Computer Systems,

105, 287–296.

19. Usman M. J., Ismail A. S., Chizari H., Abdul-Salaam G., Usman A. M., Gital A. Y., et al. (2019). Energy-

efficient virtual machine allocation technique using flower pollination algorithm in cloud datacenter: a

panacea to green computing. Journal of Bionic Engineering, 16, 354–366.

20. Soltanshahi M., Asemi R., & Shafiei N. (2019). Energy-aware virtual machines allocation by krill herd

algorithm in cloud data centers. Heliyon, 5(7), e02066. https://doi.org/10.1016/j.heliyon.2019.e02066

PMID: 31372538

21. Gharehpasha S., Masdari M. A discrete chaotic multi-objective SCA-ALO optimization algorithm for an

optimal virtual machine placement in cloud data center. J Ambient Intell Human Comput 12, 9323–

9339. 2021.

22. Abdullahi M., Abdulhamid S. I. M., Dishing S. I., & Usman M. J. (2019). Variable neighborhood search-

based symbiotic organisms search algorithm for energy-efficient scheduling of virtual machine in cloud

data center. Advances on Computational Intelligence in Energy: The Applications of Nature-Inspired

Metaheuristic Algorithms in Energy, 77–97.

23. Barlaskar Esha, Yumnam Jayanta Singh, and Biju Issac. "Enhanced cuckoo search algorithm for virtual

machine placement in cloud data centres." International Journal of Grid and Utility Computing 9, no. 1

(2018): 1–17.

24. Sanaj M. S., & Prathap P. J. (2020). Nature inspired chaotic squirrel search algorithm (CSSA) for multi

objective task scheduling in an IAAS cloud computing atmosphere. Engineering Science and Technol-

ogy, an International Journal, 23(4), 891–902.

25. Shu W., Wang W., & Wang Y. (2014). A novel energy-efficient resource allocation algorithm based on

immune clonal optimization for green cloud computing. EURASIP Journal on Wireless Communications

and Networking, 2014(1), 1–9.

26. Ullah A., & Nawi N. M. (2020). Enhancing the dynamic load balancing technique for cloud computing

using HBATAABC algorithm. International Journal of Modeling, Simulation, and Scientific Computing,

11(05), 2050041.

PLOS ONE Hawk Optimization-VMP

PLOS ONE | https://doi.org/10.1371/journal.pone.0289156 August 11, 2023 25 / 27

https://doi.org/10.1016/j.heliyon.2019.e02066
http://www.ncbi.nlm.nih.gov/pubmed/31372538
https://doi.org/10.1371/journal.pone.0289156


27. Singh S., & Vidyarthi D. P. (2023). An Integrated Approach of ML-Metaheuristics for Secure Service

Placement in Fog-Cloud Ecosystem. Internet of Things, 100817.

28. Saravanan G., Neelakandan S., Ezhumalai P., & Maurya S. (2023). Improved wild horse optimization

with levy flight algorithm for effective task scheduling in cloud computing. Journal of Cloud Computing,

12(1), 24.

29. Mohammed H., & Rashid T. (2023). FOX: a FOX-inspired optimization algorithm. Applied Intelligence,

53(1), 1030–1050.

30. Madhusudhan H. S., Gupta P., Saini D. K., & Tan Z. (2023). Dynamic Virtual Machine Allocation in

Cloud Computing Using Elephant Herd Optimization Scheme. Journal of Circuits, Systems and Com-

puters, 2350188.

31. Gupta P., Bhagat S., Saini D. K., Kumar A., Alahmadi M., & Sharma P. C. (2022). Hybrid whale optimi-

zation algorithm for resource optimization in cloud e-healthcare applications. Comput. Mater. Contin.,

71(3), 5659–5676.

32. Gulati D., Gupta M., Saini D. K., & Gupta P. (2022). Neural Inspired Ant Lion Algorithm for Resource

Optimization in Cloud. In Sustainable Smart Cities: Theoretical Foundations and Practical Consider-

ations (pp. 205–217). Cham: Springer International Publishing.

33. Janakiraman S., & Priya M. D. (2021). Improved artificial bee colony using monarchy butterfly optimiza-

tion algorithm for load balancing (IABC-MBOA-LB) in cloud environments. Journal of Network and Sys-

tems Management, 29(4), 39.

34. Fatima A., Javaid N., Anjum Butt A., Sultana T., Hussain W., Bilal M., et al. (2019). An enhanced

multi-objective gray wolf optimization for virtual machine placement in cloud data centers. Electron-

ics, 8(2), 218.

35. Bala M. Proportionate resource utilisation based VM allocation method for large scaled datacenters.

International Journal of Information Technology. 2018 Sep; 10(3):349–57.

36. Wang Wei, Tornatore Massimo, Zhao Yongli, Chen Haoran, Li Yajie, Gupta Abhishek, et al. "Infrastruc-

ture-efficient virtual-machine placement and workload assignment in cooperative edge-cloud computing

over backhaul netwo”ks." IEEE Transactions on Cloud Computing. 2021.

37. Marwa Thabet, Berrima Mouhebeddine, Hnich Brahim. Approximate Co-Location-Resistant VM

Placement Strategy With Low Energy Consumption. Procedia Computer Science. 2022 Oct 19;

(207) 3761–3769.

38. Li N., Liu X., Wang Y. et al. Improving Dynamic Placement of Virtual Machines in Cloud Data Centers

Based on Open-Source Development Model Algorithm. J Grid Computing 21, 2023; 13.

39. Gao X., Liu R., & Kaushik A. (2020). Hierarchical multi-agent optimisation for resource allocation in

cloud computing. IEEE Transactions on Parallel and Distributed Systems, 32(3), 692–707.

40. Canosa-Reyes R. M., Tchernykh A., Cortés-Mendoza J. M., Pulido-Gaytan B., Rivera-Rodriguez R.,

Lozano-Rizk J. E., et al. (2022). Dynamic performance–Energy tradeoff consolidation with contention-

aware resource provisioning in containerized clouds. Plos one, 17(1), e0261856. https://doi.org/10.

1371/journal.pone.0261856 PMID: 35051195

41. Ashawa M, Douglas O, Osamor J. et al. Improving cloud efficiency through optimised resource alloca-

tion technique for load balancing using LSTM machine learning algorithm. J Cloud Computing. 2022;

11 (87).

42. Aghasi Ali, Jamshidi Kamal, Bohlooli Ali, and Bahman Java“i. "A decentralized adaptation of model-free

Q-learning for thermal-aware energy-efficient virtual machine placement in cloud data cent”rs". Com-

puter Networks 224 (2023): 109624.

43. Iqbal A., Tham M. L., & Chang Y. C. (2021). Double deep Q-network-based energy-efficient resource

allocation in cloud radio access network. IEEE Access, 9, 20440–20449.

44. Karthiban K., & Raj J. S. (2020). An efficient green computing fair resource allocation in cloud computing

using modified deep reinforcement learning algorithm. Soft Computing, 24(19), 14933–14942.

45. Attiya I, Abd Elaziz M, Xiong S. Job scheduling in cloud computing using a modified harris hawks optimi-

sation and simulated annealing algorithm. Computational intelligence and neuroscience. 2020 Mar 11;

2020.

46. Ni L, Sun X, Li X, Zhang J. GCWOAS2: multiobjective task scheduling strategy based on Gaussian

cloud-whale optimisation in cloud computing. Computational Intelligence and Neuroscience. 2021 Jun

10; 2021.

47. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimisation: Algorithm and

applications. Future generation computer systems. 2019 Aug 1; 97:849–72.

48. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and

performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and

Computation: Practice and Experience. 2012 Sep 10; 24(13):1397–420.

PLOS ONE Hawk Optimization-VMP

PLOS ONE | https://doi.org/10.1371/journal.pone.0289156 August 11, 2023 26 / 27

https://doi.org/10.1371/journal.pone.0261856
https://doi.org/10.1371/journal.pone.0261856
http://www.ncbi.nlm.nih.gov/pubmed/35051195
https://doi.org/10.1371/journal.pone.0289156


49. Calheiros R. N., Ranjan R., Beloglazov A., Rose C., and Buyya R., “CloudSim: A toolkit for modeling

and simulation of cloud computing environments and evaluation of resource provisioning algorithms,”

Softw.: Practice Experience, vol. 41, no. 1, pp. 23–50, 2011.

50. Jouhari H., Lei D., Al-qaness M. A., Elaziz M. A., Damaševičius R., Korytkowski M., et al. (2020). Modi-
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