
LAB PROTOCOL

Semi-automated protocol to quantify and

characterize fluorescent three-dimensional

vascular images

Danny F. XieID
1,2, Christian Crouzet1,2, Krystal LoPresti1,2, Yuke Wang1,2,

Christopher Robinson1,2, William Jones1, Fjolla Muqolli1, Chuo Fang3, David H. Cribbs4,

Mark Fisher1,3,4,5, Bernard ChoiID
1,2*

1 Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of

America, 2 Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of

America, 3 Department of Neurology, University of California-Irvine, Irvine, CA, United States of America,

4 Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA,

United States of America, 5 Department of Pathology & Laboratory Medicine, University of California-Irvine,

Irvine, CA, United States of America

* choib@uci.edu

Abstract

The microvasculature facilitates gas exchange, provides nutrients to cells, and regulates

blood flow in response to stimuli. Vascular abnormalities are an indicator of pathology for

various conditions, such as compromised vessel integrity in small vessel disease and angio-

genesis in tumors. Traditional immunohistochemistry enables the visualization of tissue

cross-sections containing exogenously labeled vasculature. Although this approach can be

utilized to quantify vascular changes within small fields of view, it is not a practical way to

study the vasculature on the scale of whole organs. Three-dimensional (3D) imaging pres-

ents a more appropriate method to visualize the vascular architecture in tissue. Here we

describe the complete protocol that we use to characterize the vasculature of different

organs in mice encompassing the methods to fluorescently label vessels, optically clear tis-

sue, collect 3D vascular images, and quantify these vascular images with a semi-automated

approach. To validate the automated segmentation of vascular images, one user manually

segmented one hundred random regions of interest across different vascular images. The

automated segmentation results had an average sensitivity of 83±11% and an average

specificity of 91±6% when compared to manual segmentation. Applying this procedure of

image analysis presents a method to reliably quantify and characterize vascular networks in

a timely fashion. This procedure is also applicable to other methods of tissue clearing and

vascular labels that generate 3D images of microvasculature.

Introduction

The microvasculature facilitates gas exchange, provides nutrients to cells, and regulates blood

flow in response to stimuli [1]. Thus, it plays a fundamental role in the survival and health of

tissues and organs. Vascular abnormalities indicate pathology for various conditions, such as
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compromised vessel integrity in cerebral microvascular disease and angiogenesis in tumors

[2–4]. In addition, impaired blood flow to the brain is associated with neurodegenerative dis-

orders such as Alzheimer’s disease [5, 6]. Traditional immunohistochemistry enables the visu-

alization of tissue cross-sections containing exogenously labeled vasculature. Although this

approach quantifies vascular changes within small fields of view, more practical ways exist to

study the vasculature on the scale of whole organs. Furthermore, traditional immunohis-

tochemistry requires tissue sectioning into thin (6–40 μm) sections, which effectively limits

visualization of features to planar views and thus impedes facile 3D visualization of vascular

architecture.

Volumetric imaging of tissue samples is vital to studying the microvasculature in its native

state. The main limitation of 3D imaging of tissue samples is optical scattering resulting from

the microscopic variations of refractive index occurring in most biological tissues. Organic

and aqueous solvents reduce tissue turbidity by achieving refractive index matching [7, 8].

CLARITY is a popular tissue clearing method involving embedding of the sample into a

hydrogel and using an electric current to remove lipids from the sample [9]. Other tissue clear-

ing procedures have advantages and disadvantages associated with clearing time, the extent of

clearing, and preservation of original tissue characteristics (e.g. size, endogenous

fluorescence).

Quantitative analysis of microvasculature is essential to understand how structural varia-

tions in the microvascular network may change for different pathological states [10]. The feasi-

bility of such analysis depends on accurate, ideally automated segmentation methods for

isolating the microvasculature from the background due to the hundreds of gigabytes of data

generated with high-resolution 3D imaging. Various groups have developed automated algo-

rithms to perform quantitative characterization of vascular images [11, 12]. However, each

method varies in complexity, processing time, and computational requirements.

We currently use iDISCO (immunolabeling-enabled three-dimensional imaging of solvent-

cleared organs) as our primary tissue clearing method [7, 13]. Briefly, iDISCO consists of

methanol dehydration, lipid removal with dichloromethane, and refractive index matching

with dibenzyl ether. iDISCO is a fast, simple-to-implement clearing method that enables deep-

tissue imaging. It is compatible with many exogenous labels often used for traditional immu-

nohistochemistry. We previously demonstrated the effectiveness of iDISCO in combination

with lectin-DyLight-649 for 3D visualization of vasculature in a mouse brain [13]. We also

used Prussian blue labeling of hemosiderin [14–16], a by-product of cerebral microhemor-

rhages, with iDISCO-cleared brains and lectin-DyLight-649 labeling.

In this paper, we first review different methods for vascular labeling in conjunction with

optical clearing that other groups have published. Next, we describe our complete protocol for

imaging the vasculature in different organs in mice (Fig 1A). Specifically, we report on sample

collection and perfusion of lectin-DyLight-649 followed by adding additional labels as desired

and optical clearing. We then describe our procedure to obtain 3D confocal microscopy

images. Finally, we describe our semi-automated approach to process the resulting images and

quantify the vascular architecture in three dimensions. The proposed methodology consists of

simple procedures that require minimal computational resources, which enables other

researchers to produce accurate three-dimensional vascular images.

Vascular imaging with various vessel labels and optical clearing techniques

Reviewing the literature on 3D vascular imaging of cleared tissue will show the large variability

in methodology across different experiments (see Table 1 for specific references). For example,

blood vessels can be visualized with transgenic animals expressing a fluorescent protein in
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endothelial cells, labeled in vivo with intravascular dyes, or labeled ex vivo with immersion-

based antibody labeling. In addition, tissue preparation can vary from thick tissue sections and

whole organs to whole-mount specimens, depending on the purpose of an experiment. Finally,

clearing procedures can be grouped into aqueous solvents [17–22], organic solvents [12, 23–

25], and hydrogel-based [26–29].

When selecting a clearing procedure, it is essential to consider its compatibility with the

chosen vascular label. Endogenous fluorescence intensity is known to be reduced when using

the iDISCO protocol; hence, an alternative vascular label would be preferred. Imaging of

cleared samples is typically performed with confocal microscopy or light-sheet microscopy.

Lastly, vascular-related metrics, such as vessel diameters and vessel density, are quantified with

existing software such as FIJI and Imaris or custom-designed software such as ClearMap 2.0.

Fig 1. Overview of protocol for vascular visualization and quantification with various examples published in

literature. A) Illustrations of the critical steps and workflow for vascular visualization in cleared tissue. B-D) Examples

of vascular visualization in literature. B) Visualization of CD31-labeled mouse tumor vasculature with seeDB [30]. C)

Visualization of DiI-labeled mouse heart vasculature with FocusClear [11]. D) Visualization of liver vasculature from

Tie2-Cre mouse model with PEGASOS [33].

https://doi.org/10.1371/journal.pone.0289109.g001
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Table 1. Summary of different approaches to visualizing 3D microvasculature in optically cleared tissues.

Clearing agent(s) Organ(s) Vascular label Quantification

Method/Tool

Quantified Metrics

iDISCO [7] brain, peripheral nervous

system, kidney, muscle, heart,

whisker pad, entire embryo

PeCAM N/A N/A

iDISCO [12] brain CD31, podocalyxin, collagen IV,

smooth muscle actin, transgelin,

von Willebrand factor

ClearMap 2.0,

TubeMap

vascular density, vascular

organization, vascular remodeling

MACS [17] brain, heart, lung, spleen,

femur, kidney, spinal cord,

embryo, entire body

DiI, tetramethylrhodamine-

conjugated dextran

Custom algorithm via

Python, Imaris: surface

function

glomerulus number and glomerulus

volume; general metrics (imaging

depth, size change, fluorescence

intensity)

ScaleS [18] brain Texas Red lectin custom C++,

commercial Volocity,

commercial Igor Pro

microglia and Aβ plaques with

custom C++, distance between

microglia and Aβ plaques

CUBIC, BABB [19] heart FITC-lectin, 649-lectin, CD31 N/A N/A

ScaleS [20] pancreas lectin-DyLight N/A N/A

FocusClear [21] small intestine DiI N/A N/A

FocusClear, ScaleSQ, RIMS,

sRIMS [22]

brain Lectin-Dylight649 MATLAB optical properties, vascular density

FDISCO [23] brain, kidney AlexaFluor647, CD31, lectin-

DyLight-649

Imaris, ImageJ general metrics (size change, imaging

depth, fluorescence quantification)

3DISCO [24] brain FITC albumin-gelatin hydrogel Imaris, ImageJ vessel density, vessel diameter

vDISCO [25] whole mouse GFP, lectin ImageJ, ClearMap signal level, microglia distribution

CLARITY, TDE [26] brain lectin-FITC, gel-BSA-FITC, gel-

BSA-TRITC

Markov random field-

based algorithm,

ImageJ, Amira 5.3

software

automatic segmentation, vessel

diameter, vessel length

CLARITY [27] brain fluorescein-conjugated tomato

lectin

Amira area, volume, perimeter, and length of

stained vessel

X-CLARITY [28] placenta DiI Imaris, Image-Pro

Premier

N/A

CLARITY [29] retina Griffonia lectin Angiotool, ImageJ,

Vaa3D, MATLAB,

APP-2.0

network tracing, vessel percentage

area, total number of junctions,

junction density, total vessel length,

average vessel length, total number of

endpoints, mean lacunarity

PEGASOS [33] whole mouse αSMA, GS-IB4 isolectin dye,

collagen IV

Imaris vessel density

SeeDB, SeeDB2, 3DISCO,

uDISCO, iDISCO, CUBIC,

simplified CLARITY method,

75% v/v glycerol, Ce3D,

FRUIT [34]

lymph nodes CD31 Imaris: surface

function, ImageJ

general metrics (imaging depth, size

change, fluorescence intensity)

sodium dodecyl sulfate/

sodium deoxycholate with

ScaIeCUBIC-2 [35]

brain RITC-Dex-GMA, Texas red

lectin, CD31, αSMA

N/A capillary diameters, signal-to-noise

ratio

iDISCO with CUBIC [36] ovary endomucin N/A N/A

thiazone with PEG-400 [37] dorsal skin N/A (imaged blood flow via LSI) N/A blood flowblood flow via LSCI

iDISCO [38] brain Dye-conjugated secondary

antibodies

ClearMap Aβ deposits

FACT [39] brain, spinal cord, heart, lung,

adrenal gland, pancreas, liver,

esophagus, duodenum,

jejunum, ileum, muscle,

bladder, ovary, uterus

CD31, autofluorescence Imaris segmentation

(Continued)
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We have reviewed several optical clearing methods utilized to image vasculature. They are

organized in Table 1 by clearing method, tissue type, vessel label, and quantification. Vascular

images in cleared tissue from select publications are included in Fig 1B–1D. Lee et al. (2017)

demonstrated the ability to use seeDB, a water-based clearing method that relies on fructose, to

visualize CD31-labeled endothelial cells in whole mouse tumors (Fig 1B, 1B’) [30, 31]. Our

group visualized vessels with an intravascular fluorescent dye and FocusClear (Fig 1C, 1C’) [11].

In addition, we quantified functional vascular density in different regions of cardiac tissue with

a custom MATLAB algorithm [11, 32]. With a polyethylene glycol-associated solvent system

(PEGASOS), researchers developed a clearing technique that preserved both hard and soft tis-

sue structures (Fig 1D, 1D’) [33], allowing for vascular imaging throughout an entire specimen.

Three-dimensional quantitative analysis of microvasculature imaged in

thick tissue sections

Microvascular labeling is performed by injecting of a lectin conjugated to a fluorophore. In

our work, we have focused on the DyLight-649 fluorophore. As the lectin travels through the

circulatory system, it binds to glycoproteins adjacent to endothelial cells of the vascular wall.

This binding allows for the labeling of the vascular network within every organ of the body.

An overview of our workflow is outlined below in Fig 2. First, we administer lectin-

DyLight-649 via retroorbital injection. The lectin is allowed to circulate throughout the body

before cardiac perfusion with saline, followed by formalin. Mouse brains are then extracted,

bisected into hemispheres, and sectioned into thick (0.5–1.0mm) sections. Each section is then

imaged using confocal microscopy to generate image stacks of the complete section through-

out its entire thickness. Next, segmentation is performed by a custom MATLAB (MathWorks,

Natick, MA) script. Finally, neuTube, an open-source neuron tracing software, is used to

extract diameter measurements of the vessel structures [51].

Table 1. (Continued)

Clearing agent(s) Organ(s) Vascular label Quantification

Method/Tool

Quantified Metrics

BABB [40] heart PECAM1 N/A N/A

DBE, SCALE, CLARITY,

CUBIC [41]

heart and embryo GFP

3DISCO [42] brain tomato lectin N/A N/A

CLARITY with ScaleA2 [43] ovary, uterus, lung, liver tdTomato Ilastik, Imaris segmentation, total vessel length,

vessel mean diameter, vessel

straightness, total number of

branching points

ethyl-cinnamate [44] liver, skin, lungs, heart,

muscles, pancreas, brain,

kidney

In-house developed NIR

fluorescent dye (MHI148-PEI)

Leica LAS X segmentation, volume of glomerulus

CLARITY, iDISCO [45] brain lectin-DyLight, lectin-FITC, anti-

CD31

Imaris, segmentation number of branches, total vessel

length, total vessel volume, total vessel

area, diameter of single segments per

volume, distance between cells and

nearest vessel

PEGASOS [46] bone, teeth tdTomato Imaris blood vessel volume

No clearing approach [47] retina, heart DiI N/A N/A

FRUIT 100 [48] brain tumor DiI N/A N/A

FocusClear [49] brain DiI N/A optical properties

FocusClear [50] brain DiI MATLAB functional vascular density

https://doi.org/10.1371/journal.pone.0289109.t001
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Materials and methods

The protocol described in this article is published on protocols.io (https://doi.org/10.17504/

protocols.io.j8nlkk7m1l5r/v1) and is included as S1 File. All custom-written MATLAB code is

available upon reasonable request made to the corresponding author.

Animals

This work was in compliance with protocols approved by the University of California, Irvine

Institutional Animal Care and Use Committee (approval number: AUP-19-084, AUP-19-032).

Anesthesia is induced at 4% isoflurane within a chamber and maintained at 1.5% isoflurane.

Euthanasia is performed via cardiac perfusion under 4% isoflurane anesthesia.

Fig 2. Workflow for 3D visualization and quantitation of microvasculature in thick tissue sections. A) Vasculature

is labeled via retroorbital injection of lectin-DyLight-649. Brains are then sectioned and cleared. B) Depiction of

multiplane imaging and image stitching to visualize an entire sample in 3D via confocal microscopy. C) From left to

right: representative example of a raw image of the vasculature, segmented vasculature via MATLAB, 2D view of traced

vasculature via neuTube, and 3D view of traced vasculature via neuTube.

https://doi.org/10.1371/journal.pone.0289109.g002
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Anticipated results

The procedures detailed herein present a simple method for producing optically cleared (> 1

mm thick) tissue samples with fluorescently labeled vasculature. Samples can then be imaged

to generate 3D images of the microvasculature. The described segmentation method using cus-

tom MATLAB scripts and neuTube presents an automated method to convert the fluorescent

images into binary images. The binary images can then be used to characterize microvascula-

ture by quantifying vessel density and vessel sizes. The procedures here can be enhanced by

using additional histology dyes or immunohistochemistry to label biomarkers or other struc-

tures of interest in tissue. In doing so, one can visualize and quantify the microvasculature sur-

rounding these biomarkers to gain insight into their relationship.

Validation

Segmentation results

To validate the accuracy of our automatically segmented images, manually segmented images

were created to serve as a ground truth comparison. One author (DFX) used MATLAB to

manually outline every pixel within an ROI of an image that the author determined to belong

to a vessel. Each ROI (n = 100) was presented as a maximum intensity projection (MIP) image

of a 50x50x5 voxel (113x113x38 μm) region. A MIP is used to present a 2D image that is more

feasible for manual tracing. The corresponding 50x50x5 voxel region MIP from the automated

segmented image was compared. Four representative examples of this are depicted in Fig 3.

Across the 100 ROIs, the average sensitivity was 83±11%, and the average specificity was 91

±6%. The Dice similarity coefficient between manually segmented and automated segmented

images was calculated across all ROIs. This coefficient can measure similarity between two sets

of Boolean data and ranges between 0 and 1, where 1 represents identical data, and 0 repre-

sents opposite data [52]. The average Dice similarity coefficient across 100 ROIs was 0.74

±0.09.

Diameter results with neuTube

Manually measured diameters of individual vessels were used as a ground truth comparison

for neuTube approximated vessel diameters. Images from various brain sections across three

different animals were used. One author (DFX) was presented with a randomly generated

50x50x5 voxel (113x113x38 μm) size region as a MIP. Within the image, the user was tasked

with using MATLAB to estimate the diameter of a single vessel in the image at five different

points along the vessel by drawing lines approximately perpendicular to the vessel’s centerline.

In neuTube, five nodes along the corresponding vessel were selected. The average of the five

manual diameter measurements via MATLAB and the five automated diameter measurements

via neuTube were compared. Two representative examples of this are depicted in Fig 4A. The

absolute difference between diameter measurements was 1.16±0.73 μm as shown in Fig 4B

(n = 50 vessels of diameters ranging from 1.78 μm to 3.19 μm).

Discussion

Due to the understood importance of cerebrovascular architecture to brain function, several

groups have reported on similar methods to what we report here. Lugo-Hernandez et al.

(2017) use an injected fluorescent-labeled hydrogel, the 3DISCO optical clearing approach,

and light-sheet microscopy to image the vasculature, but vascular analysis is performed using a

commercial software package (Imaris), which uses both user intervention and proprietary

algorithms to achieve binary vascular maps [24]. Di Giovanna et al. (2018) employed a
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fluorescent gel perfusion approach to fill the vasculature, CLARITY-based optical clearing,

and light-sheet microscopy; they describe the use of an automatic segmentation method based

on a Markov random field, but enabling details of the algorithm are not provided [26]. Quin-

tana et al. (2019) and Wälchli et al. (2021) used a vascular corrosion cast approach and micro-

computerized tomography to visualize the whole-brain vasculature with exquisite detail, along

with automated thresholding approaches (including the same iterative selection method we

describe here); however, this approach requires access to a micro-CT system, and its compati-

bility with fluorescence labels requires further investigation [53, 54]. Kirst et al. (2020) report

on the combination of immunolabeling, iDISCO-based optical clearing, and light-sheet

microscopy to achieve whole-brain three-dimensional maps of the cerebrovasculature. They

provide a sophisticated open-source software package to create binary maps of the vasculature,

but a high-performance dedicated workstation is required to execute their computationally-

intensive approach [12]. Hahn et al. (2021) used the same lectin-Dylight-649 fluorophore as

we describe here, along with the FluoClearBABB optical clearing approach and light-sheet

Fig 3. Representative examples of raw images, automated segmentation, and manual segmentation. A) Automated

segmentation is performed using the iterative selection method as described in the step-by-step protocol (see S1 File).

Manual segmentation is performed by manual tracing of vessels. Each example shown is a 50x50 pixel region from a

different brain section. Scale bar is 25 μm. B) Comparison of vessel pixels identified via manual segmentation (ground

truth) and automated segmentation. The sensitivity, specificity, and Dice similarity coefficient of all 100 ROIs are

shown in the graph. The average sensitivity was 83±11%, the average specificity was 91±6%, and the average Dice

similarity coefficient was 0.74±0.09.

https://doi.org/10.1371/journal.pone.0289109.g003
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microscope; they describe an automated image analysis approach using a trained random for-

est classification scheme “ilastik” (Berg et al. 2019) [55, 56]. Takahashi et al. (2022) used the

Cre/lox approach to induce Td tomato expression in endothelial cells, and combined this with

CUBIC-based optical clearing and light-sheet microscopy to image the vasculature; they too

used the ilastik software module for analysis [57]. Zhu et al. (2022) used different combinations

of vascular labels and optical clearing approaches with light-sheet microscopy, but they also

used Imaris for vascular image analysis [58].

With the work described here, we focused on describing the entire process of vessel label-

ing, brain extraction, and quantitative image analysis, on enabling other researchers to inte-

grate and expand upon our protocol into their individualized workflow. We acknowledge that

other vessel segmentation approaches may offer advantages to our approach described here,

and the vetting of those approaches will be the subject of future work. Here, we emphasize the

transparency of our methodology and ease of implementation of each step, with minimal

computational resources, to achieve an approach that can rapidly yield accurate three-dimen-

sional vascular maps. The vessel segmentation approach readily works with similarly-prepared

whole brains imaged with light-sheet microscopy [13].

There are several potential applications for the methods described here. As angiogenesis

occurs in organs, endothelial cells respond to local signals to adapt vessels to the surrounding

environment [59]. Angiogenesis plays an essential role in tumor formation. In tumors, angio-

genesis directly impacts tumor growth and metastasis. Overexpression of proangiogenic fac-

tors leads to uncontrolled vascular growth in tumors [60]. As a result, anti-angiogenic drugs

are frequently used as a potential treatment option for cancer. Lectin-DyLight-649 combined

with iDISCO presents a robust procedure for labeling the microvasculature in all body areas,

including tumors. Changes in vessel density, tortuosity, and diameters can be quantified to

evaluate the efficacy of novel anti-angiogenic treatments.

Fig 4. Two representative examples of manual diameter measurements and neuTube diameter measurements. A)

Within a 50x50 pixel region, one vessel is chosen by the user for analysis. The manual diameter measurement is

determined by drawing a line approximately perpendicular to the centerline of the vessel at 5 locations (shown with

red lines in the top row of images). The manual diameter measurement for a given vessel is the average of these 5

measurements. The same vessel is identified within the automated neuTube output where each node (shown as a

sphere in the bottom row of images) represents the diameter determined by neuTube at that location in the image. The

neuTube diameter measurement for a given vessel is recorded as the average of five nodes along that vessel Scale bar is

25 μm. B) The absolute difference in diameter between manual measurement and neuTube measurement for 50

different vessels is shown. The mean difference was 1.16±0.73 μm.

https://doi.org/10.1371/journal.pone.0289109.g004
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Ischemic strokes occur when there is a significant drop in cerebral blood flow due to occlu-

sion in a cerebral artery. A major consequence of such an event is necrosis of neurons due to a

deficient blood supply [61]. A method to visualize the microvascular network and the sur-

rounding neurons, astrocytes, and glial cells can provide a detailed 3D snapshot of the brain in

response to an ischemic stroke and monitor potential treatments over time.

In addition to visualizing cerebral microhemorrhages within the surrounding microvascu-

lar network and providing the improved capability to estimate the size range of these lesions,

our approach can provide enhanced imaging for other disease entities. For example, a growing

body of literature suggests a contribution of dysfunctional regulation of cerebral blood flow

and various types of cognitive impairment [5]. The ability to visualize the cerebral microvascu-

lature in three dimensions offers a new gateway, potentially leading to the identification of

novel treatment targets for neurological disorders.

Supporting information

S1 File. Step-by-step protocol, also available on protocols.io. (https://www.protocols.io/
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