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Abstract

Using neurophysiological measures to model how the brain performs complex cognitive

tasks such as mental rotation is a promising way towards precise predictions of behavioural

responses. The mental rotation task requires objects to be mentally rotated in space. It has

been used to monitor progressive neurological disorders. Up until now, research on neural

correlates of mental rotation have largely focused on group analyses yielding models with

features common across individuals. Here, we propose an individually tailored machine

learning approach to identify person-specific patterns of neural activity during mental rota-

tion. We trained ridge regressions to predict the reaction time of correct responses in a men-

tal rotation task using task-related, electroencephalographic (EEG) activity of the same

person. When tested on independent data of the same person, the regression model pre-

dicted the reaction times significantly more accurately than when only the average reaction

time was used for prediction (bootstrap mean difference of 0.02, 95% CI: 0.01–0.03, p <
.001). When tested on another person’s data, the predictions were significantly less accu-

rate compared to within-person predictions. Further analyses revealed that considering per-

son-specific reaction times and topographical activity patterns substantially improved a

model’s generalizability. Our results indicate that a more individualized approach towards

neural correlates can improve their predictive performance of behavioural responses, partic-

ularly when combined with machine learning.

Introduction

Neural correlates quantify the relationship between neurophysiological properties and beha-

vioural variables. Many studies have investigated the neural underpinnings of mental rotation.

The mental rotation task has frequently been used to invoke complex cognitive processes

including visuospatial representations and visual working memory. It involves the judgement

of rotational invariance based on objects rotated in space. Neuroscience techniques such as

positron emission tomography (PET scan), functional magnetic resonance imaging (fMRI),
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and electroencephalography (EEG) have provided insights into task-ongoing brain activity [1].

There is evidence of increased bilateral activity in several cortical areas including posterior

parietal and frontal regions when performing mental rotations [2]. More recent findings sug-

gest that further differentiation of activation patterns based on stimulus characteristics such as

angular disparity [3] and whether or not body parts were represented [4] may benefit the iden-

tification of neural activity important for spatial manipulation. Additionally, the dorsal fronto-

parietal network has been proposed as a neural substrate connecting motor and cognitive

processes [5]. These investigations based on PET scans and fMRI provide insights regarding

the localization of neural processes, however to a lesser degree about when the processing

occurred. To extend these findings, studies recording task-ongoing EEG activity to capture

temporal dynamics have shown oscillatory activities to be involved in mental rotation and

have notably demonstrated the suppression of alpha (8–13 Hz) and beta (13–22 Hz) oscillatory

activity with increasing demands for cognitive processing (i.e., event-related desynchroniza-

tion–ERD [6, 7]). This body of findings indicates that mental rotation invokes consistent

changes in neurophysiological activity which are stable across participants.

In patients showing progressive behavioural and neurological decline, as for example in

those with Huntington’s disease, subtle impairments in visuospatial abilities found in early

stages transition to significant differences in symptomatic stages when compared to healthy

controls [8]. Furthermore, there is evidence that mental rotation performance and corre-

sponding activity of its neural correlates change in the presence of clinical deficits [1]. Com-

pared to healthy participants, patients diagnosed with major depressive disorder showed

reduced mental rotation performance manifesting in both higher reaction times and error

rates [9]. Additionally, the performance decreased proportionally to an increase in depressive

symptom severity [10]. In schizophrenia, an increase in mental imagery accompanied

enhanced visuospatial imagery but did not reliably translate to mental rotation task perfor-

mance with some studies observing an increase and others a decrease in performance [11, 12].

After bilateral stroke, damaging the posterior parietal cortex, patients often show impairments

in visuospatial attention and body awareness [13]. In attention-deficit hyperactivity disorder,

transcranial direct current stimulation demonstrated that increasing cortical excitability in the

right posterior parietal cortex improved the attentional orienting network compared to a sham

control [14, 15]. In summary, mental rotation in individuals with clinical conditions has been

found to be altered; the identification of neural substrates, therefore, may represent a promis-

ing approach for neurophysiological stimulation studies to finally restore impaired behavioural

functionality.

Since early neurophysiological studies, which observed behavioural changes after brain

injuries, researchers have applied various approaches to assess neural underpinnings of behav-

iour [16]. One approach to investigate the neurophysiological basis of cognitive performance

involves the identification of differences in neurophysiological properties for individuals with

superior and for those with inferior performance: the neural efficiency hypothesis emerged

stating that for identical task demands individuals requiring less neural resources outperform

those requiring more resources [17, 18]. To classify participants using a binary performance

representation, methods applied include (a) the median split where the classification is based

on the relative position of a participant’s task performance to the median performance derived

from all participants and (b) contrasting neurophysiological activity between the participants

with the highest and lowest performances [17, 19, 20]. Another approach to extract neural cor-

relates involves the investigation of the continuous association between behaviour and neuro-

physiological phenomena. Quantifying the link between neural activity and cognitive

performance in a continuous manner revealed for instance that lower ERD in alpha oscillatory

activity was related to faster mental rotation [21]. Furthermore, machine learning approaches
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modelling behavioural responses as a function of the preceding EEG power in four to ten fre-

quency sub-bands performed with a mean absolute error between 100 and 600 ms [22, 23].

The overwhelming majority of the studies investigating neural correlates commonly assumed

generalizable associations between brain activity patterns and some task performance parame-

ters, which are stable across participants [24].

In a recent application of advanced algorithms for extracting neural activity patterns of

mental states, researchers have extended previous approaches by making generalizable predic-

tions at an individual level [24]. When training individual models to classify mental states

based on fMRI recordings, they found person-specific features accurately identifying brain

states. More specifically, they demonstrated that accuracy decreased when classifying brain

states using a model trained on the fMRI data from another person. For EEG studies, algo-

rithms to identify associations between electrocortical activity and behavioural measures

included the supervised spatial filtering methods Common Spatial Patterns (CSP) and Source

POwer Comodulation (SPoC) [25]. These methods allow to obtain individual linear combina-

tions of multi-channel EEG and magnetoencephalography recordings that have an increased

signal to noise ratio compared to the original channels. As a common pre-processing step, fre-

quency filter banks decompose the EEG signals into defined frequency bands [26, 27]. While

CSP addresses classification problems, SPoC extends this approach to continuous labels. For

example, individual spatial filters resulting from SPoC related oscillatory rhythms to motor

task performance in a continuous manner [25, 28]. These approaches take person-specific

characteristics into account and notably increase the generalizability of predictions by carefully

avoiding overfitting.

To assess the commonly assumed generalizability of neural correlates across participants

[2–5, 11] and to improve the predictive accuracy of reaction times using EEG signals, we pres-

ent a machine learning approach to extract person-specific neural correlates of mental rota-

tion. We recorded EEG activity in eyes-open resting state and when performing a mental

rotation task with varying levels of difficulty (i.e., angular disparity). We then removed artifacts

and extracted EEG features preceding correct responses in the mental rotation task. To quan-

tify the relationship between EEG features and reaction time (of correct responses), we trained

a ridge regression model and finally evaluated its performance based on data not used for

training (i.e., the hold-out set). For feature importance, we estimated Shapley Additive exPla-

nations (SHAP) values [29] in the hold-out set and thereby measured the contribution of each

feature to the final prediction. Finally, we discuss the relevance and the limitations of our find-

ings for application in personalized neurophysiological interventions.

Materials and methods

Participants

We collected the data in the context of a larger study for which we invited 40 participants (25

female, mean age: 24,97 years, age range: 19–35 years) to single two-hour laboratory assess-

ments at the University of Luxembourg between September and November 2022. For data col-

lection, we pseudonymized every participant’s data, the key to which only the research staff

had access to. To approximate a homogenous sample regarding visuo-spatial working memory

performance, only participants between 18 and 35 years of age were recruited. In addition, par-

ticipants were required to have normal or corrected-to-normal vision, and no history of men-

tal disorders or neurological conditions [30]. The Ethics Review Panel of the University of

Luxembourg approved the study, and all participants gave their written informed consent

prior to participation (ERP 20–068). For reimbursement, participants received gift vouchers

worth 10€ per hour.
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Mental rotation task

As part of the study, we assessed the performance of participants in a computerised mental

rotation task with a total of 192 trials [31]. We will make the implementation of the mental

rotation task available upon reasonable request. Each trial consisted of (1) a fixation cross

which appeared in the centre of the screen for a random duration between 1000 ms and 3000

ms, and (2) the two three-dimensional (3D) figures, which appeared either until a response

was given or for a maximum duration of 7500 ms. We used the Lab-Streaming Layer (LSL)

[32] to synchronize markers defining the onset of a new phase or event (i.e., fixation cross, 3D

figures, response) with the EEG stream. The two figures depicted either mirrored or unmir-

rored 3D objects with varying degrees of angular disparity. We instructed participants to press

the ‘Y’ key on a QWERTZ keyboard whenever the presented 3D figures were unmirrored (i.e.,

rotationally invariant) and to press the ‘N’ key otherwise (i.e., when the 3D figures were mir-

rored). For each participant we randomly sampled without replacement 192 object pairs out of

a pool with a total of 384 object pairs and stratified the sampling by angular disparity (i.e., 0˚,

50˚, 100˚, and 150˚) and by rotational invariance (i.e., mirrored, unmirrored). We instructed

participants to choose a strategy for responding (i.e., either slower and more accurate or faster

and less accurate) and to stick to it throughout the task.

EEG recording

To capture electrocortical activity we mounted 32 Ag/ACl electrodes according to the 10/20

system on the participants’ head and referenced them to FCz. A BrainAmp system then ampli-

fied and digitized the signals with a resolution of 16 bit and a sampling rate of 1 kHz (Brain

Products, Gilching, Germany). To stream the data and to synchronize input timestamps from

other sources (e.g., keyboard, stimuli) we used the LSL protocol [32]. We then accessed the

LSL from within Python 3.7.3 [33] using the PyLSL library version 1.14.0 [32]. We imple-

mented custom scripts based on the MNE library version 0.23.0 [34] for offline EEG process-

ing and used SciPy library version 1.7.3 [35] for machine learning. Prior to the EEG recording

in the mental rotation task, we recorded a one-minute, eyes-open, resting-state segment prior

to which we instructed participants to horizontally move their eyes during the first five

seconds.

Data analysis

The associated source code to reproduce the analyses is available at https://github.com/

UsluSinan/EEG-correlates-of-mental-rotation. The chronological order of processing steps is

summarised below (Table 1). We trained a ridge regression model to predict the reaction time

of correct responses in the mental rotation task based on features extracted from the EEG data

prior to the response (Fig 1). First, we pre-processed the EEG data which involved removal of

artifacts, bandpass filtering, the epoching of the continuous EEG signal and the removal of

epochs with a duration of less than 700 ms (for more technical details, see the subsection on

pre-processing). We then split the remaining data chronologically into a training set (consist-

ing of the first 75% of epochs) and a hold-out set (with the remaining 25% of epochs). For

details on the EEG features used to train our models, see the subsection on feature extraction.

Based on the training data we performed a three-fold sliding window cross-validation to opti-

mize the regularization intensity lambda. Finally, we trained our model with the specified

lambda using all training data and evaluated its generalizability on the hold-out set. For model

interpretation we relied on SHAP values.

Pre-processing. Based on the one-minute resting-state recording we identified indepen-

dent components, which contain artifacts (e.g., muscular activity, eye movements). Prior to
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training the fastICA implementation of the MNE toolbox, we applied a high-pass filter at 1 Hz

[36, 37]. After visually inspecting the components’ topographical activities, power spectral

densities and time courses, we removed components representing artifacts. Using the spatial

filters obtained based on the resting-state recording, this recording but also the EEG signals

obtained during the mental rotation task were cleaned by first zeroing out the corresponding

columns in the unmixing matrix before applying the final unmixing matrix back to the raw,

unfiltered EEG signals.

To prepare the extraction of band power features from the cleaned EEG signals, we applied

ten one-pass, non-causal, zero-phase, Hamming-windowed finite impulse filters that extracted

the central frequencies at 2, 6, 10, 14, 18, 22, 26, 30, and 34 Hz with a width of 4 Hz [26, 38].

Markers defining the start and end of each presentation phase in the mental rotation task

yielded a total of 384 epochs (i.e., 192 epochs with a fixation cross presentation and 192 epochs

with 3D figures presented). From these epochs we removed those during which (a) the fixation

cross appeared, (b) the given response was incorrect, and finally (c) an insufficient amount of

data was recorded (i.e., when participants responded after less than 700 ms). After (a) and (b)

we removed the final 200 ms from each of the remaining epochs to reduce the impact of motor

preparation. As the application of SPoC to extract spatial filters required epochs of equal size,

we exclusively kept the initial 500 ms from each epoch (i.e., from 0 to 500 ms) and removed

epochs with less data available. We chose the initial 500 over the last 500 ms per epoch as EEG

microstates indicate that the initial period contains processes related to the encoding of visual

information and mentally rotating an object [39]. After removing on average 15.3% of epochs

with 3D figures presented due to missing or too early responses, this procedure yielded on

average across all participants 163 epochs (min = 105, max = 186 epochs) with 500 x 32 sam-

ples per epoch.

Table 1. Pseudo code of the data analysis performed.

FOR each participant in participants:

read mental rotation task-related EEG from disk

apply ICA solution from resting-state EEG

apply bandpass filters

FOR each signal in bandpass filtered signals:

epoch the signal

remove fixation-cross epochs

remove epochs with incorrect responses

remove epochs shorter than 700 ms

cut epochs into 0 to 500 ms

split epochs at 75% into training and hold-out set

FOR lambda in lambdas:

cross-validate EEG model given lambda and training set

select lambda with minimum mean absolute error

train EEG model with selected lambda

define RT model

write EEG and RT model to disk

FOR each participant in participants:

evaluate intra-individual performance

evaluate inter-individual performance

This table summarises the processing steps in chronological order. Please see here for more details: https://github.

com/UsluSinan/EEG-correlates-of-mental-rotation.

https://doi.org/10.1371/journal.pone.0289094.t001
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Feature extraction. To transform the recorded data into the same scale and to increase

the signal to noise ratio, we applied a series of transformations to both the reaction time labels

and the EEG signals to finally extract the EEG features based on bandpass filtered EEG signals

(Fig 1). Due to their positively skewed distribution, we log-transformed the reaction times to

approximate a Gaussian distribution. Exclusively in the training set we then calculated the

median absolute deviation of log-transformed reaction time labels per angle (i.e., 0˚, 50˚, 100˚,

150˚) and removed on average 12 epochs which we considered as outliers (i.e., if the label was

beyond a threshold of 2.5 x MAD [40]). This procedure yielded a final set of 110 epochs on

average (min = 76, max = 138 epochs) with 500 x 32 samples each, which we used for training

the regression models. Since the reaction time varied as a function of angular disparity and,

hence, as a function of the degree to which mental rotation was involved to process the 3D fig-

ures, it was crucial for the interpretability of our model to take this relationship into account.

For example, a reaction time of 800 ms may be considered as a) a relatively slow response if

the 3D figures were rotated by 0 degrees, or b) a relatively fast response if the 3D figures were

rotated by 150 degrees. To take the varying difficulty levels based on angular disparity into

account, we standardized per participant the log-transformed reaction times for each angular

rotation (S1 Fig). For hold-out and validation sets, we applied the means and standard devia-

tions from the corresponding training set to standardize the reaction times, and to avoid data

leakage.

Fig 1. Feature extraction and model evaluation. For each participant, the first 75% of epochs were used as a training

set and the remaining 25% as a hold-out set. In the training set, we first removed epochs which we classified as outliers

(not visualized in the figure) and then extracted the EEG features by first bandpass and then spatially filtering the EEG

signal and the labels by standardizing the log-transformed reaction times. We trained a ridge regression model to

minimize for all epochs (N) the sum of squared errors between the reaction time labels and the model predictions with

ten EEG features while penalizing the sum of squared coefficients with the optimized penalty term lambda. For the

evaluation, we applied the same spatial and frequency filters and label standardization procedure to the hold-out set to

extract new features and used the trained model to generate new predictions whose error we finally measured with the

recorded reaction times in the hold-out set (see filled arrow in the figure).

https://doi.org/10.1371/journal.pone.0289094.g001
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For the EEG features, we started with ten bandpass filtered signals each of which consisted

of 32 channels. For each frequency band (e.g., alpha), we then applied a spatial filter transform-

ing the 32-channel signal into a univariate time series to increase the signal to noise ratio.

Finally, we performed per frequency band and epoch (i.e., 500 EEG time points) a log-variance

transformation of the univariate signal to approximate the band power, the final EEG feature,

which yielded ten values per sample (Fig 1). By optimizing spatial filters via SPoC separately

for each frequency band, the spatial filters adapted to the band-specific characteristics to maxi-

mize the comodulation between the spatially filtered EEG time-series and the reaction time

labels. More specifically, we applied the SPoCλ algorithm [25] as implemented in the MNE

framework (version 0.23.0), which maximizes the covariance between the two variables of

interest (more details can be found in the documentation [41]). Given the relatively small

number of epochs available for training, we only kept the component with the highest eigen-

value for each bandpass filtered multivariate EEG signal. Similar to the reaction times, we

applied the same spatial filters, which we extracted from the training set to spatially filter the

hold-out set in order to avoid data leakage.

Hyperparameter tuning. To calibrate the regularization parameter lambda towards mini-

mization of the mean absolute error (MAE) for unseen data, we performed a chronological

sliding window cross-validation procedure based on the first 75% of the available epochs (Fig

2). We applied a chronological cross-validation to take nonstationarities of the recorded EEG

data into account [42] and defined overlapping windows to use most of the limited sample size

for training. Importantly, while we re-used some of the preceding window’s validation set to

train the consecutive window’s train-set, we did not re-use any sample for validation to reduce

the risk of leakage (Fig 2). Candidate values for lambda were exponentially spaced between

10−1 and 104 with each of which we trained and evaluated the model in all windows. In each

window we trained the model with the initial 55% of epochs and evaluated its performance

with the remaining 45% of epochs. For each lambda we stored the average of all three win-

dows’ MAE. Finally, the value for lambda with the lowest average MAE score, which was on

median 241.13 (min = 3.53, max = 2476.37), was chosen for further processing.

Final model evaluation and interpretation. With the hyperparameter lambda minimiz-

ing the MAE in our hyperparameter tuning routine, we finally trained the model with the total

training set (i.e., initial 75% of all epochs available) and evaluated its performance with the

remaining hold-out epochs which had not been used yet (Fig 1). To estimate the ridge regres-

sion coefficients, we trained our models with the extracted features from the training set.

Then, we predicted (log-transformed and standardized) reaction times using the trained

model with the hold-out set’s samples. To evaluate the model, we finally calculated the MAE

between the predicted reaction times and the actual reaction times. For model interpretation

we estimated SHAP values for each frequency band per epoch in the final hold-out set.

To evaluate the intra-individual prediction performance of the EEG model, we measured

for each participant the MAE for (a) the “EEG model” which predicted reaction times based

on the EEG features in the participant’s hold-out set and (b) the “RT model” which estimated

for the hold-out set the average, standardized reaction time per angular disparity (i.e., 0). The

RT model did not take new data from the hold-out set into account and exclusively generated

the new value based on the data from the training set. For the EEG model, we extracted the fea-

tures from the last 25% of epochs using the same reaction time parameters (i.e., means and

standard deviations per angular disparity) for standardization of reaction times and the same

spatial filters for feature extraction from EEG data. Next, we estimated (a) reaction times with

the trained model and the new data from the hold-out set (EEG model) and (b) average reac-

tion times per angular disparity (RT model).
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Similar to the intra-individual model evaluation, we extracted for each participant (“train

participant”) features using reaction time parameters and spatial filters from their training set.

After individually training the EEG model with the cross-validated value for lambda, we evalu-

ated for every other participant (“test participant”) the inter-individual prediction perfor-

mance (i.e., MAE) based on the samples from the test participant’s hold-out set [24]. In the

first iteration, we trained the EEG model with data from participant 1, the train participant,

and evaluated its predictive performance 39 times (i.e., using the data from each test partici-

pant once: participant 2, 3, . . ., and 40). In the second iteration, we trained the EEG model

with data from participant 2 and evaluated its performance with the data from participant 1, 3,

4, . . ., and 40. This procedure continued until we had used all participants once for training.

Finally, we averaged for each train participant the MAE measured in the hold-out sets from

the remaining 39 test participants.

To evaluate the inter-individual prediction performance of the EEG model, we compared

for each participant the MAE of the participant’s EEG model using (a) the same participant’s

hold-out set and (b) the hold-out sets of all other participants (whose MAE we then averaged).

To inspect the impact of person-specific reaction time aggregates and spatial filters (“pre-pro-

cessors”) on the inter-individual predictive performance of EEG models, we evaluated the

inter-individual performance additionally using the test participant’s pre-processors for fea-

ture extraction.

For both the intra- and inter-individual evaluation, we finally performed paired t-tests

using bootstrapping with 9999 iterations to take the skewed distribution into account and to

evaluate the differences between models (a) and (b) based on the measures from all 40

participants.

Fig 2. Procedure of sliding window cross-validation. For each participant, the training set was split into three

consecutive windows of equal size. In each window, the model was trained with a pre-specified lambda on the initial

55% of the window’s samples and then, tested on the remaining 45% samples (i.e., the validation set). After assessing

the predictive performance in all windows, we finally averaged the model’s performance across the windows’

validation sets.

https://doi.org/10.1371/journal.pone.0289094.g002
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Results

Our goal was to develop individually-tailored models predicting reaction times for correct

answers in a mental rotation task based on EEG features. To make generalizable predictions,

we applied a machine learning approach wherein we trained person-specific linear ridge

regressions. After pre-processing the EEG data and removing outliers from the training set, an

average of 110 epochs (min = 76, max = 138 epochs) remained for training and an average of

40 epochs (min = 26, max = 46 epochs) for the hold-out set. For the training, we individually

optimized the hyperparameter lambda through a sliding-window cross-validation procedure

minimizing the prediction error (i.e., the MAE) in the validation sets. Next, we estimated the

regression coefficients of the EEG features from the training set (i.e., the EEG model) to pre-

dict reaction times (S1 Fig). For the testing, we predicted reaction times using the trained

model with new EEG features from the hold-out set and calculated the MAE.

Intra-individual model evaluation

The model comparisons regarding their predictive performance revealed that the EEG model

making predictions based on EEG features with a mean (M) MAE of 0.89 and a standard devi-

ation (SD) of 0.16 performed significantly better (p< .001) than the RT model predicting the

average reaction times (M = 0.91, SD = 0.16) (Fig 3). As a comparison, when we re-ran the

analysis without bootstrapping, the difference remained significant (t(39) = -4.75, p< .001).

When transforming the standardized and log-transformed reaction time labels back to their

original scale (i.e., ms), the EEG model predicted the true reaction time labels with a mean

MAE of 748 ms and the RT model with a mean MAE of 772 ms.

Given the inverse relationship between stimulus difficulty (i.e., angular disparity) and accu-

racy in the mental rotation task [31], the number of samples to train and test our models varied

across rotational angles as we excluded samples with incorrect responses. For training, we had

averaged across participants most epochs for stimuli with 0˚ rotation (M = 41), followed by

50˚ (M = 39), 100˚ (M = 37) and 150˚ rotation (M = 33). To evaluate whether the intra-indi-

vidual predictive performance of the EEG model varied as a function of angular disparity, we

performed a one-way repeated measures ANOVA including participant as a random effect

and angle as a fixed effect nested within participant. The ANOVA revealed that there was no

significant difference in the dependent variable, MAE, between the levels of the independent

variable, rotational angle (F(3, 117) = 0.22, p = .88).

Inter-individual model evaluation

Next, we evaluated the predictive performance of individually trained EEG models to predict

reaction times with the last 25% of epochs from other participants (i.e., the hold-out sets).

Comparing the intra-individually tested EEG model (M = 0.89, SD = 0.16) with the inter-indi-

vidually tested EEG model (M = 1.59, SD = 0.67) revealed that the intra-individually tested

EEG model performed significantly better (p< .001). Due to inter-individual variations in

reaction times and informative oscillatory sources, it is unclear how much the drop in inter-

individual prediction performance can be attributed to either the ridge regression model or to

an unsuitable feature extraction.

To inspect this, we additionally evaluated the impact of individualized pre-processors (i.e.,

person-specific reaction time label aggregates for standardization, and spatial filters belonging

to the same frequency band) on model performance. In contrast to the previous inter-individ-

ual model evaluation where we applied the train participant’s pre-processors (i.e., reaction

time parameters and spatial filters) to each test participant’s data, we used the test participant’s

pre-processors for feature extraction. In both cases, we applied the train participant’s ridge
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regression parameters for the prediction with the test participant’s features. For final compari-

son, we again averaged the test participants’ MAEs for each train participant. The comparison

revealed that the EEG model with the test participants’ pre-processors (M = 0.93, SD = 0.03)

predicted the test participants’ reaction times significantly better than the EEG model with the

train participants’ pre-processors (p< .001). We then compared the outperforming inter-indi-

vidually evaluated EEG model to the intra-individually evaluated EEG model. The intra-indi-

vidually evaluated EEG model slightly outperformed the inter-individually evaluated EEG

model applying the test participants’ pre-processors (p = .1).

Feature importance

To assess person-specific feature importance scores of the trained ridge regression model, we

relied on SHAP values. In contrast to permutation feature importance evaluating the decrease

in model performance, SHAP values partition the contribution of each EEG feature to the

Fig 3. Intra-individual model performance. Boxplots of mean absolute error (MAE) in predicting standardized and

log-transformed reaction times (RTs) using either a model trained on the same person’s EEG features (i.e., the EEG

model) or a baseline model (i.e., the RT model).

https://doi.org/10.1371/journal.pone.0289094.g003
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predicted, log-transformed and (per angle) standardized reaction time. To measure the global

importance, we calculated for each participant and EEG feature the mean absolute SHAP

value. In Fig 4a, we display the SHAP feature importance of a representative participant with

the EEG features sorted in ascending order of frequency band. To inspect the relationship

between feature values and SHAP values, we display the participant’s Beeswarm plot in Fig 4b.

These show that, for this participant, lower frequencies contributed more to the prediction

than higher frequencies with a peak at the alpha frequency and that an increase in alpha activ-

ity was associated with a decrease in reaction time.

Fig 4. Feature importance scores based on log-variance features for a representative participant. a) Barplot of

absolute SHAP values averaged per EEG feature displaying that lower frequency bands contributed more to the final

prediction than higher frequencies with the alpha frequency being the most important feature. b) Beeswarm plot of

SHAP values inspecting the direction of the association between EEG feature and predicted values. For this participant,

the association between alpha and predicted reaction time was negative, hence, the more power in the alpha frequency

band increased the more the predicted reaction time decreased.

https://doi.org/10.1371/journal.pone.0289094.g004
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Next, we aggregated the individual measures of feature importance across all participants to

visualize patterns at the group level. In Fig 5a, we display the median of absolute SHAP values

per EEG feature. These show an inverted-U shape relationship between the frequency bands

and the median SHAP feature importance and, furthermore, substantial inter-individual dif-

ferences in the importance of each EEG feature. Overall, frequency bands in the beta range

contributed the most to the prediction of reaction times. We additionally calculated the differ-

ence in mean absolute SHAP value between all EEG features and visualized it in a heat map

(Fig 5b). The pattern revealed that frequency bands closer to another differed less in their

mean absolute SHAP value than more distant frequency bands.

To inspect the neural source of the SPoC components, we estimated the forward model and

averaged the resulting patterns across all participants (Fig 6). Mostly, we observed an increased

activity in the left frontal cortex and the right posterior parieto-occipital regions. Nevertheless,

the frequency bands differed in their topographic pattern of their SPoC components correlat-

ing the band’s power time course with the time course of reaction time labels. In the alpha and

mid beta range activity relating to mental rotation mainly peaked in left frontal and right pos-

terior parieto-occipital regions. In the upper beta band and lower gamma ranges the activity

increased predominantly in the right occipital region. Despite the ICA routine reducing neural

activity unrelated to mental rotation, we observed source activity in the frontal and lateral tem-

poral regions of faster frequency bands typically associated with physiological artifacts.

Discussion

The present study designed and evaluated a person-specific machine learning approach to esti-

mate the contribution of EEG features predicting the latency of correct responses in a mental

rotation task. Using established methods for modelling mental processes based on neural

activity, in combination with the widely used mental rotation task capturing visuospatial per-

formance, we successfully created person-specific models which accurately predicted reaction

times based on that person’s EEG activity and to a lesser degree based on another person’s

EEG activity. Additionally, we explored the contribution of the various EEG features to the

final prediction.

First, we demonstrated that models using person-specific EEG features (i.e., EEG models)

predicted the reaction times of the same person significantly more accurately than models rely-

ing on the average reaction time (i.e., RT models). Although this difference was small, the

observed MAE for the EEG model are in line with previous research and represent the lower

bound of what can be achieved, especially when considering the slower reaction times com-

pared to previous studies [22, 23]. Since we excluded the reaction time of trials in which partic-

ipants responded incorrectly and given the inverse relationship between angular disparity and

accuracy, the number of available samples decreased with angular rotation. However, we did

not find changes in predictive performance as a function of angular disparity indicating that

this imbalance did not affect model performance or interpretability. These results suggest that

EEG features contributed more to the prediction of reaction times than the average reaction

time. Furthermore, the similarity of predictive performance across levels of rotational angles

in the mental rotation stimuli suggests that the model learned from all difficulty levels (i.e.,

rotational angles) during training. We also found that person-specific EEG features predicted

the same person’s reaction times significantly more accurately than the reaction times from

another person. When taking the other person’s reaction time aggregates and EEG topography

patterns into account, we could increase the generalizability of a person-specific EEG model.

However, the person-specific EEG model continued to predict reaction times of the same per-

son more accurately indicating that associations between EEG activity and mental rotation are
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partly specific to a person. Finally, we found that across all participants alpha and beta band

related activity contributed most to the mental rotation process.

This finding is well in line with previous research, which found alpha and beta ERDs when

performing a mental rotation task [6, 7]. Overall, frequency bands close to one another were

Fig 5. Feature importance scores of all participants. a) Barplot of the median absolute SHAP values per EEG feature

with higher values for the beta frequency range indicating that these features contributed more to the final prediction

than other features. Error bars denote the median absolute deviation (MAD). b) Heat map of the averaged difference

in absolute SHAP value between EEG features indicates that more distant frequency bands differed more in their

contribution to the prediction than frequency bands which were closer to one another.

https://doi.org/10.1371/journal.pone.0289094.g005
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more similar regarding their importance for the prediction of reaction times than distant

bands (Fig 5b) which supports previous work based on highly similar spatiotemporal charac-

teristics between sub-bands [43]. Further, we also measured increased activity in left frontal

and right parieto-occipital regions during mental rotation typically observed in mental rota-

tion of non-bodily stimuli [1, 2]. It is noteworthy that these studies focused on the association

between frequency band activity and mental rotation task performance in the general popula-

tion and did not investigate the predictive performance on unseen data. Hence, our results

extend these findings by demonstrating similar frequency bands minimizing the prediction

error using a machine learning approach. Furthermore, the results of the present study provide

evidence for inter-individual variations of the associations between frequency bands and men-

tal rotation performance. Taking individual topographical patterns into account was of major

importance in generalizing one person’s model to the data from another person. However, the

EEG model continued to predict reaction times more accurately for the same person it was

trained on than for another person suggesting that leave-one-participant-out analyses may fail

to uncover topographical patterns beneficial for within-person predictions. This is in line with

individually trained classifiers to detect task states based on neural activity which performed

well above chance for the same person and (to a lesser degree) for others [24].

Overall, our results indicate that a more individualized approach towards modelling neural

activity and behavioural variables may be a promising approach for neuropsychological

research and clinical applications, particularly when combined with machine learning. This

may enable person-specific adjustments of interventions targeting neural activity to individu-

ally maximize the effect on behavioural outcomes. Our findings also suggest that individual

variations in behaviour and topographical activity patterns have a large effect on the generaliz-

ability of a model trained on one person’s data. To understand which neural activity pattern

the brain relies on when processing visuospatial information, we proposed the use of SHAP

values to estimate the contribution of neural activity patterns to behavioural responses.

Although this should be seen as early evidence, the pattern of SHAP values across partici-

pants–that is, alpha and beta band related activity contributed the most to the final prediction–

replicates previous findings [6, 7]. Furthermore, there was significant inter-individual variabil-

ity in the importance of neural activity patterns for processing visuospatial information sug-

gesting that the reliance on specific frequency bands in brain networks may be partly person-

specific. Notably, these results are based on a small sample size (i.e., between 105 and 186

Fig 6. Topographic patterns of average Source Power Comodulation (SPoC) components per frequency band.

After estimating the topographic patterns using the forward model for each participant, we averaged the activation

pattern across all participants per frequency band.

https://doi.org/10.1371/journal.pone.0289094.g006
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samples per person) indicating that our estimates represent a lower bound of what can be

achieved.

Despite these promising results and their potential implications, it is important to point out

some of the major limitations. For data collection we administered a mental rotation task in

which the duration of each trial was determined either by the participant’s response or a time-

out after 7.5 seconds. While this procedure enabled us to capture neural activity related to

mental rotation (in contrast to other implementations in which the presentation duration of

the 3D objects is fixed in advance), the SPoC algorithm required epochs of equal size as input.

Although our model performed similarly in the prediction of reaction times across varying

degrees of angular rotation indicating that the final epochs contained information of multiple

stages of mental rotation, meaningful information may have been lost when cutting the vary-

ing epoch sizes into a standard size. The relatively small number of epochs used to train per-

son-specific regression models predicting reaction time labels with EEG features risks yielding

non-robust regression parameters (e.g., rank switches in feature importance estimates). To

estimate more robust spatial filters, a regularized SPoC algorithm represents a promising

approach for future studies [44]. While we expected to reduce within-person variation of reac-

tion times unrelated to mental rotation by instructing participants to choose a response strat-

egy, this may have resulted in inter-individual differences of the response strategy, partly

impacting the generalizability of person-specific EEG models. Furthermore, we would like to

point out that the used data were collected in a single session and that we neither assessed the

congruent validity of our models with other tasks measuring visuospatial ability nor the dis-

criminant validity regarding processes unrelated to mental rotation. To tune the shrinkage

parameter, we applied a three-fold sliding-window cross-validation procedure which worked

well for our data and generated the expected U-shaped curve representing the bias-variance

trade-off. However, we did not assess how our hyperparameter optimization procedure com-

pares to other methods for defining the shrinkage parameter which may outperform our rou-

tine. Finally, since we collected observational data of neural activity patterns and behavioural

responses, the models should be interpreted with caution and do not imply causality.

Further research is required to overcome these limitations and to extend our knowledge

about the relationship between neural activity and behavioural variables. Our results indicate

that an individualized machine learning approach towards modelling behaviour with neural

activity could be promising for neuropsychological research. This may be particularly powerful

for changing behaviour based on modulations of neural activity. To test for causality, one

approach would be to experimentally manipulate EEG features contributing the most to the

prediction and to measure the target behaviour before and after the manipulation (e.g., with

neurofeedback, transcranial magnetic stimulation, or transcranial direct current stimulation).

Future research should also investigate the reliability and validity of these individualized mod-

els. Further, the design of an appropriate task and methodology to capture meaningful neural

activity during mental rotation requires further attention. We artificially constrained the dura-

tion of recorded neural activity preceding the behavioural response to apply the SPoC algo-

rithm for further processing. One interesting approach would be to investigate how additional

time for mental rotation would improve modelling the association with neural activity by pre-

specifying the presentation duration of the 3D objects during a mental rotation task in incre-

mental steps. As artificially delaying a response may invoke processes unrelated to the decision

[45], novel algorithms processing EEG signals which deal with varying epoch sizes may be as

beneficial. Finally, comparing different time windows (e.g., initial 500 vs last 500 ms) informed

by EEG microstate analysis may reveal how spectral and spatial EEG features differ between

stages of cognitive processing (e.g., encoding of visual information, mental rotation, and deci-

sion making) [39].
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To conclude, we present an individually-tailored machine learning approach to model

mental rotation as a function of neural activity. Therefore, we trained ridge regression models

to predict reaction times in trials of a mental rotation task where participants responded cor-

rectly using EEG features which take individual topographical activity patterns into account.

To this end, we showed that individualized models generate more precise predictions than

when relying on a model from another person. Furthermore, neural activity preceding the

response in the mental rotation task predicted the time of the response significantly more

accurately than predictions relying on the average reaction time of that person. Finally, we

demonstrated that taking individual variations in response patterns and topographical activity

patterns into consideration significantly improves the generalizability of a model trained on

one person’s data to data from another person. Given the observational nature of the data

used, further research is required to establish the causal effect of specific frequency bands on

the mental rotation performance. Nonetheless, our research represents an early step towards

individualized neurocognitive models and, finally, towards highly specified treatment options.

Supporting information

S1 Fig. Reaction time histograms. Histograms visualizing the distribution of participant-level

reaction time (RT) averages per angular rotation (i.e., 0˚, 50˚, 100˚, 150˚) and unit (i.e., ms, log

(ms)) included as labels in the training set. The dotted lines indicate the average RT per angu-

lar rotation and unit.
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