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Abstract

Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin

resistance. Intramyocellular lipid accumulation is related to an energy imbalance between

excess fat intake and fatty acid consumption. Alternating current electromagnetic field expo-

sure has been shown to enhance mitochondrial metabolism in the liver and sperm. There-

fore, we hypothesized that alternating current electromagnetic field exposure would

ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty

acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and

exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or

a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF).

Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternat-

ing current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis

anterior muscles were collected for measurement of intramyocellular lipids, AMPK phos-

phorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression

levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The

levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the

HFD + EMF than in the HFD group. These results indicate that alternating current electro-

magnetic field exposure decreases intramyocellular lipid accumulation via increased fat

consumption.

Introduction

Long-term high-fat feeding results in lipid accumulation in non-adipose tissue, such as skeletal

muscle (intramyocellular lipids) [1]. Intramyocellular lipid accumulation induces increased
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insulin resistance and altered glucose metabolism [2, 3]. Insulin resistance and altered glucose

metabolism are present in many metabolic disorders, such as type 2 diabetes mellitus and met-

abolic syndrome [4, 5].

Intramyocellular lipid accumulation is associated with an energy imbalance between excess

fat intake and fatty acid consumption [6, 7]. The fatty acid transporter CD-36 (FAT/CD-36)

and carnitine palmitoyl-transferase-1 (CPT-1) are essential for transporting fatty acids into the

mitochondria and consuming fatty acids [8, 9]. Fatty acid consumption also is regulated by the

tricarboxylic acid (TCA) cycle and uncoupling of the mitochondria [9–11]. Citrate synthase

(CS) and succinate dehydrogenase (SDH) activities, which are indicators of TCA cycle activity

in mitochondria, are important energy consumption processes and increase reducing equiva-

lents [9, 10]. Uncoupling proteins (UCPs) constitute a mitochondrial carrier proteins sub-

group (UCP-1–UCP-5) located in the inner mitochondrial membrane [12]. UCPs play a role

in thermogenesis by uncoupling mitochondrial respiration, which controls energy consump-

tion [13]. In particular, UCP-3 is involved in the control of energy consumption in skeletal

muscle [11]. Previous studies indicate that endurance exercise and muscle contraction using

electrical stimulation increase these factors, thus increasing fatty oxidation consumption [14–

16]. Furthermore, exercise prevents intramyocellular lipid accumulation, improves glycemic

control, reduces body fat, and increases insulin sensitivity [17, 18]. On the other hand, severe

peripheral neuropathy caused by long-term high-fat feeding likely increases the risk of skin

ulceration with exercise, including weight-bearing [17]. Therefore, alternate intervention strat-

egies are necessary to stimulate muscle fat oxidation enzymes and attenuate the accumulation

of intramyocellular lipids.

Alternating current electromagnetic field exposure results in a variety of biological effects.

For example, electromagnetic field exposure accelerates electron transport from cytochrome C

to cytochrome oxidase in rat livers [19]. The electromagnetic field also increases mitochondria

metabolism in human sperm [20]. Increasing mitochondrial energy metabolism plays a central

role in fatty acid consumption, leading to less intramyocellular lipid accumulation [21]. There-

fore, an electromagnetic field may increase fatty acid consumption following long-term high-

fat feeding without the need for muscle contraction and/or weight-loading exercise. The pres-

ent study was designed to determine whether an alternating current electromagnetic field

could effectively prevent intramyocellular lipid accumulation induced by high-fat feeding via

increased FAT/CD-36, CPT-1, and UCP-3 protein expression and SDH and CS activities.

Thus, the results of this study may lead to the development of a new countermeasure for high-

fat feeding-induced intramyocellular lipid accumulation.

Materials and methods

Ethical approval

This study was approved by the Institutional Animal Care and Use Committee and was con-

ducted in accordance with Kobe University’s Animal Care and Use Protocol (P180802). The

experiments were performed according to the National Institutes of Health Guidelines for the

care and use of laboratory animals.

Experiment protocol

The study was designed to determine (i) whether alternating current electromagnetic field

exposure could increase lipid metabolism to attenuate intramyocellular lipid accumulation in

the tibialis anterior muscle (TA) induced by long-term high-fat feeding, and (ii) whether alter-

nating current electromagnetic field exposure induced mitochondrial uncoupling in the mus-

cle cells.
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Experiment 1

Animals and diets. Male C57/BL6 mice (3 weeks old; Japan SLC, Shizuoka, Japan) were

housed in cages in a temperature-controlled room (22 ± 2˚C) with a 12-hour light/dark cycle.

The mice were allowed to acclimate to the laboratory environment with free access to a normal

diet (CE-2, CLEA Japan, Tokyo, Japan) and water for one week. Mice were divided randomly

into four groups: 1) mice fed a normal diet with no alternating current electromagnetic field

exposure (ND: 19.4 ± 1.3 g, n = 5), 2) mice fed a normal diet with exposure to an alternating

current electromagnetic field (ND+EMF: 19.8 ± 0.4 g, n = 5), 3) mice fed a high-fat diet (HFD,

D-12492, Research Diets, New Brunswick, NJ) with no alternating current electromagnetic

field exposure (HFD: 18.2 ± 0.4 g, n = 5), or 4) mice fed a high-fat diet with exposure to an

alternating current electromagnetic field (HFD+EMF: 19.2 ± 0.4 g, n = 5). The HFD groups

had free access to the high-fat diet for 16 weeks, and food intake in the normal diet groups was

controlled to match the HFD groups daily. At the end of the experimental period, the rats were

anesthetized deeply by inhalation of 4% isoflurane, then the abdominal cavity was opened, and

an approximately 2ml blood sample was obtained from the inferior vena cava with a syringe.

Blood samples were centrifuged at 3,000 g for 10 min at 4˚C. After blood collection, the mice

were killed by intraperitoneal administration of sodium pentobarbital (100 mg/kg). The tibialis

anterior muscles and epididymal adipose tissues were removed quickly bilaterally, and the

average muscle wet weights were recorded. The tibialis anterior muscles then were frozen

immediately in a dry ice acetone bath and stored at −80˚C.

Alternating current electromagnetic field protocol. Mice were exposed to an alternating

current electromagnetic field from the bottom of the cage throughout the experimental period

using an alternating current electromagnetic field stimulator (Hokoen, Utatsu, Japan)

(Fig 1A). The alternating current electromagnetic field exposure applied for 8 hrs (during the

dark period) per day at a frequency of 60 Hz and maximal amplitude of 180 mT. Animals

showed no signs of discomfort, and the temperature inside the cage did not change in response

to the electromagnetic field.

Insulin tolerance tests and oral glucose tolerance tests. The insulin resistance test (ITT)

was conducted on week 14. Food was removed for 5 hrs before insulin (0.5 U/kg BW Humulin;

Eli Lilly, Kobe, Japan) was injected intraperitoneally [22]. Whole blood samples (2–3 μL each)

were collected from a tail-clip bleed, and glucose was measured by a glucometer (Glutest Neo,

Sanwa Kagaku Kenkyuusyo, Nagoya, Japan) at 0, 15, 30, and 45 min after the insulin injection.

The oral glucose tolerance test (OGTT) was performed at week 15. After 16 hrs of fasting, glu-

cose was administered orally by a catheter (2.0 g/kg BW) [23]. Whole blood samples (2–3 μL

each) were collected from a tail-clip bleed at 0, 30, 60, 90, 120, and 180 min after glucose

administration, and the glucose levels were measured at each time point.

Plasma biochemistry. The glucose concentrations in the plasma were measured using the

BCG method and biuret test (Glucose C-II Test Wako; FUJIFILM Wako Chemicals, Tokyo,

Japan) [24]. The cholesterol concentrations were measured using the GPO-DAOS method

(Cholesterol E-Test Wako; FUJIFILM Wako Chemicals) [24]. Non-esterified fatty acid

(NEFA) levels were measured using the ACS-ACOD method (NEFA C-Test Wako; FUJIFILM

Wako Chemicals) [25].

Histology and immunohistochemical analyses. Transverse tissue sections (12 μm thick)

were cut from the muscle mid-portion in a cryostat (CM-1510S, Leica Microsystems, Mann-

heim, Germany) at −25˚C and mounted on glass slides. The sections were stained for Oil Red

O and succinate dehydrogenase (SDH). The sections were captured with a microscope (CX41;

Olympus, Tokyo, Japan, objective lens: x20), and were quantified using Image J software

(NIH, Bethesda, MD). Raw images were exported as 600 dpi TIFF files using software after
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quantified. Oil Red O staining was used to detect intramyocellular lipids as previously

described [26]. Briefly, serial sections were fixed with 4% paraformaldehyde for 60 min and

exposed to an oil Red O working solution (FUJIFILM Wako Chemicals) for 30 min [27]. The

amount of intramyocellular lipids in each fiber was calculated randomly within the section for

each of the five different fields (92.5mm2/ field) and was quantified as the percentage of the

area occupied by Oil Red O-stained droplets (total area occupied by lipid droplets of a muscle

fiber × 100/total cross-sectional area of the fiber). SDH activity was analyzed as previously

described [25]. Briefly, the sections were incubated in 0.1 M phosphate buffer (pH 7.6) con-

taining 0.9 mM NaN3, 0.9 mM 1-methoxyphenazine methylsulfate, 1.5 mM nitroblue tetrazo-

lium, 5.6 mM EDTA–disodium salt, and 48 mM succinate disodium salt for 45 min at 37˚C.

The SDH activity was captured randomly within the section for each of the five different fields

(92.5mm2/ field), and was converted to 8-bit grayscale and was quantified as a mean gray

value.

Immunohistochemical analyses were conducted as previously described [28]. The sections

were captured with a fluorescence microscope (BX51; Olympus) and quantified by Image J

Fig 1. Illustration of the alternating current electromagnetic field exposure. An alternating current electromagnetic

field was exposed from the bottom of the cages housing the mice for 8 hrs per day (during the dark period). The dotted

line represents the image of alternating current electromagnetic field exposure (A). An alternating current

electromagnetic field was exposed from the bottom of the dish containing C2C12 myotubes once for 60 min. The

dotted line represents the image of alternating current electromagnetic field exposure (B).

https://doi.org/10.1371/journal.pone.0289086.g001
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software. Raw images were exported as 600 dpi TIFF files using the software after quantified.

Briefly, muscle samples were fixed with 4% paraformaldehyde for 30 min, and blocked with

3% bovine serum albumin for 60 min. The sections were exposed overnight at 4˚C to FAT/

CD-36 polyclonal antibody (1:100, NB-400-144SS, RRID AB_920879; NOVUS Biologicals, Lit-

tleton, CO). The sections then were incubated with a DyLight 488-coupled secondary antibody

(1:1000 dilution; Jackson ImmunoResearch, West Grove, PA) and blue fluorescence 4’,6-dia-

midino-2-phenylindole (DAPI; Thermo Fisher Scientific, Waltham MA) for 60 min in the

dark room. The cell surface immunofluorescence was captured randomly within the section

for each of the five different fields (211.6mm2/ field), and a mean percentage was calculated

for each muscle (total area occupied by immunofluorescence of a muscle fiber × 100/total

cross-sectional area of the fiber) [29].

Citrate Synthase (CS) activity. CS activity was analyzed as previously described [25].

Briefly, the supernatants were solubilized in a reaction buffer containing 0.1 mM 5,5-dithio-

bis-(2-nitrobenzoic acid) and 0.3 mM acetyl-CoA. The reaction was initiated by incubating

with oxaloacetic acid (0.5 mM final concentration). The absorbance was measured at 412 nm

for 5 min.

Western blot analysis. Western blot analysis was conducted as previously described [28].

Briefly, tissue samples were homogenized in ice-cold homogenizing buffer (Ez RIPA Lysis kit,

WSE-7420, ATTO, Tokyo, Japan). The homogenates were centrifuged at 15,000 g for 30 min

at 4˚C, solubilized in loading buffer (EzApply, AE-1430, ATTO), and boiled for 10 min at

80˚C. Proteins (30 μg/lane) were separated by 10% sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (e-PAGEL, ATTO) and then transferred to polyvinylidene fluoride mem-

branes. The membranes were blocked for 60 min in 3% bovine serum albumin in Tris-buff-

ered saline with Tween-20 and then incubated with CD-36 (1:1000 dilution; # ab133625, RRID

AB_2716564; Abcam, Cambridge, England), UCP-3(1:1000; #10750-1-AP, RRID

AB_2272729; Protein tech, Rosemont, IL), p-AMPKα (Thr172)(1:1000; #2535, RRID

AB_2799368; Cell Signaling Technology, Danvers, MA), t-AMPKα (1:1000; #2532, RRID

AB_330331; Cell Signaling Technology), or CPT-1b (1:1000; #22170-1-AP, RRID

AB_2713959; Protein tech) antibodies overnight at 4˚C. The membranes were incubated for

60 min at room temperature with anti-mouse or anti-rabbit IgG antibodies conjugated to

horseradish peroxidase (1:5000; HAF018/HAF008, RRID AB_573130/ AB_357235; R&D sys-

tems, Minneapolis, MN). Antibody binding was detected using a chemiluminescent reagent

(Ez West Lumi One, WSE-7110, ATTO) and analyzed with an image reader (Lumino Graph Ⅰ;
ATTO). Ponceau-S (Beacle, Kyoto, Japan) was used as an internal control.

Experiment 2

Cell culture. Undifferentiated C2C12 cells (myoblasts; American Type Culture Collec-

tion, Manassas, VA) were maintained in growth medium (GM) composed of Dulbecco’s mod-

ified Eagle’s medium, 20% fetal bovine serum, 4 mM l-glutamine, and antibiotics (100 IU/ml

penicillin, 100 μg/ml streptomycin). The differentiated phenotype (myotubes) was induced by

culturing cells in GM supplemented with 2% heat-inactivated horse serum (differentiation

medium) for 7–10 days. Both undifferentiated and differentiated C2C12 cell phenotypes were

maintained at 37˚C in a 5% CO2 humidified atmosphere.

Alternating current electromagnetic field exposure and sample collection. Cells were

exposed to alternating current electromagnetic field through the bottom of the dish (Fig 1B).

The stimulation consisted of exposure to an alternating current electromagnetic field for 60

min at a frequency of 60 Hz and a maximal amplitude of 180 mT. The temperature inside the

dish did not change when exposed to the alternating current electromagnetic field.
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Determination of mitochondrial membrane potential. Mitochondrial membrane

potential was determined as previously described [30]. The fluorescence intensities for both

monomeric JC-1 forms and J-aggregates were measured at a constant temperature of 25˚C

with a multifunctional microplate reader (Varioskan LUX, Thermo Fisher Scientific; J-aggre-

gates, excitation/emission 535/595 nm; JC-1 monomers, excitation/emission 485/535 nm;

bandwidth ± 12 nm). Fluorescence was recorded at eight locations in each well of 12-well

plates (63% of the total area/well). The values of fluorescence acquired from each sample were

expressed as the mean ± SD of J-aggregates/JC-1 monomers.

Real-time PCR analysis. Total RNA was extracted from C2C12 myotubes using Trizol

reagent (Life Technologies, Carlsbad, CA) as previously described [31]. Reverse transcription

was carried out using the High-Capacity cDNA Archive Kit (Thermo Fisher Scientific). The

cDNAs were used for subsequent quantitative real-time PCR analysis using the SYBR Premix

Ex Taq II (Takara Bio, Otsu, Japan). The specific primer sequences were as follows: UCP3:

TCAAGCCATGATACGCCTGG (forward) and TGTGATGTTGGGCCAAGTCC (reverse) [32], β-2

microglobulin: CTTTCTGGTGCTTGTCTCACTGA (forward) and GTATGTTCGGCTTCC
CATTCTC (reverse) [33]. The PCR reactions were carried out in 48-well microtiter plates on a

real-time PCR apparatus (Step One; Thermo Fisher Scientific). The PCR consisted of 95˚C (3

mins), 40 cycles at 95˚C (10 sec), and 60˚C (30 sec) [34]. All specific quantities were normal-

ized to β-2 microglobulin. Data were analyzed using the delta/delta CT method.

Statistical analyses

Data are reported as means ± SD. The normality of the data was determined using the Kolmogo-

rov-Smirnov test. For Experiment 1 data, a two-way analysis of variance (groups: Normal diets

and HFDs × Normal condition and alternating current electromagnetic fields) was used for over-

all group comparisons. When a group × diet interaction was found, the Tukey test was used to

determine any significant differences among the groups. The sample size required for a two-way

ANOVA for this study was calculated using G*power 3.1 software (Heinrich Heine University,

Dusseldorf, Germany), based on data from a previous study [35]. A total of more than 20 mice

were required for this study (effect size = 0.70, α error = 0.05, and power = 0.80). The data for

Experiment 2 were analyzed using unpaired two-tailed Student’s t-tests. For all data, P-values less

than 0.05 were considered statistically significant. All statistical analyses were performed using

GraphPad PRISM software version 7.0 (Intuitive Software for Science, San Diego, CA).

Results

Physiological parameters

Daily caloric intake, body weight, and fat mass were higher in both HFD (HFD and HFD

+EMF) groups than in both ND (ND and ND+EMF) groups (Table 1). The relative (ratio of

muscle to body mass) tibialis anterior muscle masses were lower in both HFD groups than in

both ND groups. Exposure to the electromagnetic field had no significant effect on any of these

parameters. Fasting blood glucose, cholesterol, and NEFA levels were higher in both HFD

groups than in both ND groups and lower in the HFD+EMF group than in the HFD group.

Oral glucose tolerance test and insulin tolerance test

Blood glucose levels during the OGTT for each group are shown in Fig 2A, and blood glucose lev-

els during the ITT for each group are shown in Fig 2C. The areas under the curves (AUC) for the

OGTT and ITT were higher in both HFD groups than in both ND groups. The AUCs for the

OGTT and ITT were lower in the HFD+EMF group than in the HFD group (Fig 2B and 2D).
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Intramyocellular lipid accumulation in the tibialis anterior muscles

Representative Oil Red O staining patterns in the tibialis anterior muscles from each group are

shown in Fig 3A–3D. The percentage of the muscle area showing staining by Oil Red O was

greater in both HFD groups than in both ND groups and less in the HFD+EMF group than in

the HFD group (Fig 3E).

Mitochondrial enzyme activity in the tibialis anterior muscles

Representative SDH staining patterns for each group are shown in Fig 4A–4D. The SDH and

CS activities were higher in both HFD groups than in both ND groups and higher in the HFD

+EMF group than in the HFD group (Fig 4E and 4F).

Translocation and protein expression of FAT/CD-36 in the tibialis anterior

muscles

Representative immunohistochemical staining patterns for FAT/CD-36 in each group are

shown in Fig 5A–5L. FAT/CD-36 translocation levels in the tibialis anterior muscles were

higher in both HFD groups than in both ND groups. FAT/CD-36 translocation was higher in

the HFD+EMF group than in the HFD group (Fig 5M). FAT/CD-36 protein levels were lower

in the HFD group than in both ND groups and higher in the HFD+EMF group than in the

HFD group (Fig 5N and 5O).

Levels of phosphorylated AMPK, UCP-3, and CPT-1b in the tibial anterior

muscles

Representative Western blots for phosphorylated AMPK, AMPK, CPT-1b, and UCP-3 in each

group are shown in Fig 6A. The ratio of phosphorylated AMPK to total AMPK (AMPK phos-

phorylation) protein level was lower in the HFD group than in both ND groups and higher in

the HFD+EMF group than in the HFD group (Fig 6B). CPT-1b and UCP-3 protein levels were

higher in the HFD groups than in the ND groups and higher in the HFD+EMF group than in

the HFD group (Fig 6C and 6D).

Table 1. Calorie intake, body mass, fat mass, tibialis anterior absolute and relative muscle mass, and fasting blood glucose, cholesterol, and non-esterified fatty acid

levels.

Normal diet High-fat diet

Non EMF EMF Non EMF EMF

Calorie intake (Kcal/day) 8.9 ± 1.5 8.9 ± 1.5 12.7 ± 2.4* 12.3 ± 2.3*
Body mass (g) 24.2 ± 0.5 24.3 ± 1.0 39.3 ± 4.1* 36.5 ± 1.5*
Fat mass (mg) 356.8 ± 15.9 402.0 ± 47.5 2907.0 ± 415.0* 2380.8 ± 293.9*
Absolute tibial anterior muscle mass (mg) 42.3 ± 2.8 44.0 ± 2.0 48.2 ± 1.0 44.6 ± 1.9

Relative tibial anterior muscle mass (mg/g) 1.8 ± 0.2 1.8 ± 0.1 1.2 ± 0.1* 1.2 ± 0.1*
Fasting blood glucose (mg/dl) 144.9 ± 13.1 152.4 ± 10.2 204.4 ± 23.1* 176.3 ± 7.2*, ]

Cholesterol(mg/dl) 130.0 ± 6.8 123.5 ± 7.9 232.9 ± 16.0* 196.1 ± 12.9*, ]

Non-esterified fatty acids (mEq/L) 0.49 ± 0.08 0.47 ± 0.06 0.81 ± 0.12* 0.57 ± 0.06*, ]

Values are expressed as mean ± SD for each group.

* P < 0.05 vs. control animals fed the same diet.

# P< 0.05 vs. animals fed the normal diet.

https://doi.org/10.1371/journal.pone.0289086.t001
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Mitochondrial membrane potential and UCP-3 mRNA levels in C2C12

myotubes

Representative JC-1 staining images for each group are shown in Fig 7A–7F. The fluorescence

intensity for JC-1 in the C2C12 myotubes was lower in the EMF group than in the Non-EMF

group (Fig 7G). UCP-3 mRNA levels were higher in the EMF group than in the Non-EMF

group (Fig 7H).

Discussion

The main findings of this study demonstrate that daily exposure to an electromagnetic field

lessens the effects of high-fat feeding on fat metabolism in skeletal muscles of adult mice. In

contrast, none of these effects were observed in mice fed a normal diet.

Fig 2. Oral glucose tolerance test and insulin tolerance test. Average values for the oral glucose tolerance tests (OGTT) (A) and

insulin tolerance tests (ITT) (C) for the ND, ND+EMF, HFD, and HFD+EMF groups. Quantification of the area under the curve

(AUC) for the OGTT (B) and ITT (D). Values are expressed as mean ± SD. * P< 0.05 vs. control animals fed the same diet. # P< 0.05
vs. animals fed the normal diet. Abbreviations: ND, mice fed a normal diet with no exposure; ND+EMF, mice fed a normal diet with

exposure to an alternating current electromagnetic field; HFD, mice fed a high-fat diet with no exposure; HF+EMF, mice fed a high-

fat diet with exposure to an alternating current electromagnetic field.

https://doi.org/10.1371/journal.pone.0289086.g002
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The high-fat diet resulted in an increase in intramyocellular lipid accumulation, transloca-

tion of FAT/CD-36, CPT-1 protein, and SDH and CS levels. Intramyocellular lipid accumula-

tion is associated with an energy imbalance between the intake of excess fat and the

consumption of fatty acids [6, 7]. The translocation of FAT/CD-36 and the expression of CPT-

1 proteins are required for the oxidation process in skeletal muscle fatty acid consumption and

are responsive to energy intake [9, 36–38]. SDH and CS activities are important energy con-

sumption processes that increase reducing equivalents [9, 10]. Messa et al. [1] demonstrated

that 16 weeks of high-fat feeding increased the SDH levels in the soleus and extensor digitorum

longus muscles of mice. Furthermore, Tuner et al. [39] demonstrated that 20 weeks of high-fat

feeding increased the CS levels in the quadriceps muscles of mice. Thus, increasing these fac-

tors most likely prevents intracellular lipid toxicity via an adaptive response to the oversupply

of fatty acids [6, 7]. However, the accumulation of intramyocellular lipids, insulin resistance,

and blood glucose levels increased in the high-fat diet group, despite an increased activation of

fatty oxidation and mitochondria metabolism. These results suggest that the oversupply of

fatty acids from the high-fat diet exceeded fatty acid consumption, resulting in insulin resis-

tance and hyperglycemia.

Alternating current electromagnetic field exposure inhibited intramyocellular lipid accu-

mulation, insulin resistance, and hyperglycemia under high-fat diet feeding conditions. Intra-

myocellular lipid accumulation is affected by factors related to energy consumption, such as

the transport of fatty acids into the mitochondria, mitochondrial metabolism, and mitochon-

drial uncoupling [40, 41]. These factors have been shown to interact with and decrease phos-

phorylated AMP-activated protein kinase (AMPK)α in the muscles of mice in response to

long-term feeding with a high-fat diet, consistent with the present results [42–48]. Alternating

current electromagnetic field exposure attenuated the decrease in AMPKα phosphorylation

and increased FAT/CD-36 translocation and protein expression, CPT-1b protein expression,

and SDH and CS activities in mice fed a high-fat diet. AMPKα phosphorylation increases

Fig 3. Intramyocellular lipid accumulation in the tibialis anterior muscles. Representative images of Oil Red O-stained cross-sections of the tibialis

anterior muscles for the ND (A), ND+EMF (B), HFD (C), and HFD+EMF groups (D). The histograms (E) show quantification as a percentage of the

area occupied by Oil Red O-stained droplets (total area occupied by lipid droplets of a muscle fiber × 100/total cross-sectional area of the fiber).

Values are expressed as mean ± SD. Abbreviations are the same as in Fig 2. * P< 0.05 vs. control animals fed the same diet. # P< 0.05 vs. animals fed

the normal diet.

https://doi.org/10.1371/journal.pone.0289086.g003
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FAT/CD-36, which transports fatty acids to the cytosol, and induces translocation to the sarco-

lemma [42, 43]. AMPK is a heterotrimeric serine-threonine kinase composed of the catalytic

α- and noncatalytic β- and γ-subunits [49]. AMPK plays a role in maintaining energy homeo-

stasis and is a target for treating various metabolic disorders [50]. Thus, AMPK activation

likely to mitigates metabolic impairments by controlling energy homeostasis. AMPK phos-

phorylation in C2C12 myotubes increases the mRNA levels of CPT-1, a rate-limiting enzyme

that transports fatty acids from the cytosol to the mitochondria [44]. Furthermore, 5-aminoi-

midazole 4-carboxamide-1-D-ribofuranoside (AICAR), which induces AMPK, increased SDH

and CS activities in rat muscles [45, 46]. Therefore, alternating current electromagnetic field

exposure may increase the transport of fatty acids into the mitochondria and increase mito-

chondrial metabolism by inhibiting the decrease in AMPKα phosphorylation induced by a

high-fat diet.

AMPKα phosphorylation also upregulates UCP-3 protein expression. Suwa et al. [45]

reported that injection of AICAR, an AMPKα inducer, increases UCP-3 protein expression in

rat muscles. UCP3 plays a role in increasing fatty acid metabolism and mitochondrial uncoupl-

ing in skeletal muscle [14, 15, 51, 52]. Indeed, UCP-3 transgenic mice exhibit lower fat mass,

increased fat utilization, and lower mitochondrial membrane potential, which implies

Fig 4. Mitochondrial enzyme activity in the tibialis anterior muscles. Representative images of SDH-stained cross-sections of the tibialis anterior muscles for

the ND (A), ND+EMF (B), HFD (C), and HFD+EMF groups (D). The histograms for SDH activity show quantification of the staining concentration (E). The

histograms for CS activity show quantification of activity intensity (F). Values are expressed as mean ± SD. Abbreviations are the same as in Fig 2. * P< 0.05 vs.

control animals fed the same diet. # P< 0.05 vs. animals fed the normal diet.

https://doi.org/10.1371/journal.pone.0289086.g004
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mitochondrial uncoupling [53, 54]. Mitochondrial uncoupling increases energy consumption

via proton leak, which accounts for a large proportion of resting oxygen consumption in mus-

cles [55]. Tiraby et al. [56] showed that overexpression of UCP-3 resulted in mitochondrial

oxygen consumption in the gastrocnemius muscles of mice fed a high-fat diet. In the present

study, alternating current electromagnetic field exposure increased UCP-3 protein expression

in the tibialis anterior muscle. In addition, alternating current electromagnetic field exposure

Fig 5. Translocation and protein expression of FAT/CD-36 in the tibialis anterior muscles. Representative images of immunohistochemically stained cross-

sections of the tibialis anterior muscles for the ND (A, B, and C), ND+EMF (D, E, and F), HFD (G, H, and I), and HFD+EMF groups (J, K, and L). Serial

images show the expression of FAT/CD36 (green) (A, D, G, and J), DAPI (blue) (B, E, H, and K), and for the three images merged (C, I, F, and L). The white

arrowheads indicate FAT/CD36 positive sarcolemma. FAT/CD36 protein in the tibialis anterior muscles of each group is shown (N). The histograms show

quantification of the intramyocellular FAT/CD-36 positive staining (M) and the band densities (O). Values are expressed as mean ± SD. Abbreviations are the

same as in Fig 2. * P< 0.05 vs. control animals fed the same diet. # P< 0.05 vs. animals fed the normal diet.

https://doi.org/10.1371/journal.pone.0289086.g005
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increased UCP-3 mRNA expression and decreased the membrane potential in C2C12 myo-

tubes. These results suggest that the increase in AMPKα phosphorylation induced by alternat-

ing current electromagnetic field exposure resulted in mitochondrial uncoupling via an

Fig 6. Levels of phosphorylated AMPK, UCP-3, and CPT-1b in the tibial anterior muscles. The bands are arranged in order from top

to bottom: phospho-AMPK, AMPK, CPT-1, and UCP-3 (A). Phospho-AMPK/AMPK (B), CPT-1b (C), and UCP-3 (D) protein

expression levels in the tibialis anterior muscles are shown. Band images are representative of western blots, and the histograms show the

quantification of the band densities (D). Values are expressed as mean ± SD. Abbreviations are the same as in Fig 2. * P< 0.05 vs.

control animals fed the same diet. # P< 0.05 vs. animals fed the normal diet.

https://doi.org/10.1371/journal.pone.0289086.g006
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increase in UCP-3 expression. Consequently, intramyocellular lipid accumulation was reduced

in the muscles of mice fed a high-fat diet, thus attenuating increased insulin resistance and

increased circulating glucose levels. These effects are likely to involve increased fatty acid oxi-

dation, mitochondrial metabolism, and mitochondrial uncoupling as a result of AMPKα
phosphorylation.

In the present study, alternating current electromagnetic field exposure was shown to be an

effective intervention in lessening intramyocellular lipid accumulation, increased insulin resis-

tance, and increased blood glucose levels induced by a high-fat diet in adult mice. These benefi-

cial effects were achieved by increasing fatty acid oxidation, mitochondrial metabolism, and

mitochondrial uncoupling following AMPKα phosphorylation. In general, exercise is a practical

intervention for increasing AMPKα phosphorylation via increased AMP protein, preventing

intramyocellular lipid accumulation [18, 42, 57–59]. Exercise, however, may be difficult for

obese patients or hyperglycemic patients with severe peripheral neuropathies or severe micro-

and macrovascular complications [17]. Thus, it is important to note that the alternating current

electromagnetic field exposure used in the present study changed the AMPKα phosphorylation

levels in adult mice under normal resting cage conditions, i.e., without any exercise interven-

tions. For metabolic disorders such as obesity and type 2 diabetes, patients have low motivation

to exercise and do not continue to exercise, which is a problem in clinical practice. However,

the data indicated that alternating current electromagnetic fields prevented insulin resistance

and hyperglycemia without invasive and muscle contraction like an exercise. Furthermore, this

alternating current electromagnetic may be an effective therapeutic regimen in rehabilitative

strategies for various metabolic disorders because the equipment has an intensity that conforms

to the Japanese Industrial Standards (JIS) and can be safely and continuously performed.

A limitation of the present study is that it is unclear whether the effect of mitochondrial

metabolic capacity was caused directly by the alternating magnetic field or through muscle-

Fig 7. Mitochondrial membrane potential and UCP-3 mRNA levels in C2C12 Myotubes. Representative images of JC-1-stained myotubes from C2C12 cells

for the Non-EMF (A to C) and EMF (D to F) groups. The images show the expression of JC-1 monomers (green) (A and D), J-aggregates (red) (B and E), and

for the images merged (C and F). The histograms show quantification of J-aggregates/JC-1 monomers (G) UCP-3/β-2 microglobulin mRNA expression (H).

Values are expressed as mean ± SD. Abbreviations: Non-EMF, C2C12 with no alternating current electromagnetic field exposure; EMF, C2C12 exposed to an

alternating current electromagnetic field. * P< 0.05 vs. Non-EMF.

https://doi.org/10.1371/journal.pone.0289086.g007
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type shifting. Future studies of alternating magnetic fields on muscle-type shifting should also

be performed under these conditions. Another limitation is that we only studied the effects on

AMPK phosphorylation and do not know what the effects would be on the AMPK pathway,

such as acetyl-CoA carboxylase (ACC). Future studies, however, should be performed to deter-

mine the AMPK pathway individually for a detailed mechanism of alternation magnetic fields.

Conclusion

The present results suggest that alternating current electromagnetic field exposure might be an

effective countermeasure to insulin resistance and hyperglycemia by preventing intramyocel-

lular lipid accumulation associated with high-fat feeding. These mechanisms suggest due to

the increased transport of fatty acids into the mitochondria, mitochondria metabolism, and

mitochondria uncoupling induced by AMPK phosphorylation. Based on these results, further

clinical efficacy studies should be conducted to investigate the effects of alternating current

electromagnetic field on insulin resistance and hyperglycemia associated with various lipid

metabolic diseases, such as type 2 diabetes mellitus.
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