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Abstract

An aneurysm is a pathological widening of a blood vessel. Aneurysms of the aorta are often

asymptomatic until they rupture, killing approximately 10,000 Americans per year. Fortu-

nately, rupture can be prevented through early detection and surgical repair. However, sur-

gical risk outweighs rupture risk for small aortic aneurysms, necessitating a policy of

surveillance. Understanding the growth rate of aneurysms is essential for determining

appropriate surveillance windows. Further, identifying risk factors for fast growth can help

identify potential interventions. However, studies in the literature have applied many differ-

ent methods for defining the growth rate of abdominal aortic aneurysms. It is unclear which

of these methods is most accurate and clinically meaningful, and whether these heteroge-

neous methodologies may have contributed to the varied results reported in the literature.

To help future researchers best plan their studies and to help clinicians interpret existing

studies, we compared five different models of aneurysmal growth rate. We examined their

noise tolerance, temporal bias, predictive accuracy, and statistical power to detect risk fac-

tors. We found that hierarchical mixed effects models were more noise tolerant than tradi-

tional, unpooled models. We also found that linear models were sensitive to temporal bias,

assigning lower growth rates to aneurysms that were detected earlier in their course. Our

exponential mixed model was noise-tolerant, resistant to temporal bias, and detected the

greatest number of clinical risk factors. We conclude that exponential mixed models may be

optimal for large studies. Because our results suggest that choice of method can materially

impact a study’s findings, we recommend that future studies clearly state the method used

and demonstrate its appropriateness.
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Introduction

An aortic aneurysm (AA) is a pathological widening of the body’s largest artery. This condition

is common, with abdominal aortic aneurysms (AAAs) present in about 4–7% of men over age

50, and about 1% of such women [1]. AAAs are often asymptomatic until rupture, a cata-

strophic event that is fatal in at least 75% of cases [1]. In 2018, nearly 10,000 people died from

AAs in the United States [2]. Because rupture can be prevented through surgical repair of the

aneurysm, screening programs have been deemed cost-effective in high-risk groups [1, 3].

However, surgery carries a risk of complications and mortality. For this reason, patients are

not indicated for repair until their risk of rupture exceeds the risks associated with surgery [4].

The main predictor of rupture risk is size; therefore, the threshold for surgical intervention

is largely dictated by the maximum diameter of the AA [5]. However, most newly discovered

abdominal aortic aneurysms are small, and it is unknown when, if ever, a patient’s aneurysm

will cross the threshold for intervention. Therefore, standard of care requires regular imaging

appointments to monitor the size of the AAA [3, 6, 7]. Choosing optimal surveillance windows

is complicated by the fact that the rate of AAA growth can vary markedly among individuals.

If the AAA will grow faster than expected, standardized surveillance windows may permit

unchecked growth and elevated risk of rupture and death. If the AAA will grow more slowly

than expected or even stabilize, the standard surveillance windows may be unnecessarily bur-

densome. In order to optimize the surveillance windows, various attempts have been made to

predict AAA growth rate. An additional goal of such predictions is the potential identification

of intervenable risk factors. For example, the observation that diabetes predicts slower AAA

growth has led to a trial using the diabetes drug metformin to slow the growth of AAAs [8].

In order to predict growth rate or determine the risk factors associated with growth rate, it

is first necessary to select a meaningful mathematic definition of growth rate itself. In the case

of AAAs, this process is non-trivial. Because AAAs are known to grow faster at larger sizes,

non-linear models may be needed. However, real-world datasets may contain only a few mea-

surements of the aortic diameter per patient, cover a short time period, and/or be subject to

substantial noise due to the imprecision of ultrasound measurements. Fitting a curve to a

small number of unreliable datapoints may lead to extreme estimates of growth rate that are

not well-justified. Previous studies have taken a variety of approaches. Many studies have sim-

ply taken the linear slope between each patient’s first and last measurement, i.e. (last diameter–

first diameter)/(last measurement time–first measurement time), disregarding any measure-

ments in-between [6, 9–14]. Some studies have applied linear regression, using a patient’s full

set of observations but still applying a linear model [15–19]. Other studies have addressed the

problem of limited data by applying hierarchical mixed models, which fit parameters to each

patient while simultaneously maintaining a distribution of all the patients’ parameters. This

parent distribution is constrained by meta-parameters, which are derived from all patients.

The hierarchical structure fits individual patient parameters while drawing statistical inference

from the group, especially in cases with less data to justify an extreme or outlier parameter.

This method is sometimes called partial pooling, because it can be seen as an intermediate

between the unpooled approach, where each patient is analyzed separately, and a fully pooled

approach, where all datapoints are combined and fit to a single line or curve [20].

Existing studies have applied linear, quadratic, and exponential hierarchical models to the

AAA growth problem [7, 21–24]. Further clouding the question of an appropriate growth met-

ric, some studies did not appear to specify the exact method used [25–27]. Different studies

have produced widely varying estimates of AAA growth rate, even for similar initial diameters,

and have produced a variety of findings regarding risk factors; a meta-analysis found studies

reporting average AAA growth rates as low as -0.33 mm/yr and as high as 3.95 mm/yr [5]. It is
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unclear which method might be most appropriate for making predictions or comparisons

between patients to identify risk factors. Thus, there is a need for comparisons of the different

methods side-by-side on the same dataset. We therefore present this investigation of AAA

growth metrics. We investigate the stability, temporal bias, accuracy in prediction, and

inferred risk factors across the first point—last point method, unpooled linear regression,

unpooled exponential regression, a linear hierarchical mixed model, and an exponential hier-

archical mixed model.

Methods

Dataset curation and preprocessing

Our dataset comes from an aortic aneurysm surveillance program at Stony Brook University

Hospital. Patients with ectatic or aneurysmal aortas have been entered into our records and

prospectively monitored to ensure timely follow-up care. This study was approved by the

Stony Brook Internal Review Board. Because study activities were limited to records review,

the review board waived consent requirements for this study. The master dataset from the sur-

veillance program contained 943 patients with ectasia or aneurysm of the abdominal aorta.

Patients were considered aneurysmal if the diameter of the abdominal aorta was three centi-

meters or greater, and ectatic if the diameter was 2.5 to 2.9 centimeters. In an oval shaped

aorta, the long and short axis diameters are measured in multiple points. The short axis mea-

surement in the location with the largest diameters is considered the maximum aneurysm

diameter; this measurement is referred to as “AAA size” in this study. 58% of the measure-

ments were taken from computerized tomography (CT) scans, and 41% were taken from ultra-

sound imaging. About 1% of measurements were taken from magnetic resonance imaging

(MRI) or positron emission tomography (PET) scans.

In order to prevent extreme slopes from close-together measurements, we averaged

together datapoints from the same patient that were less than 150 days apart. Details of how

the dataset was filtered for each experiment are shown in Fig 1. To assess risk factors associated

with clinical variables, we queried patient hospital data from a clinical database extracted from

the electronic health records and mapped to the Observational Medical Outcomes Partnership

(OMOP) Common Data Model [28]. A set of diseases, lab tests, medications, and demographic

variables were selected by a clinician, along with the defining codes. Comorbid diagnoses were

determined by mapping to Clinical Classifications Software (CCS) groupings [29]. Laboratory

values were identified by Logical Observation Identifiers Names and Codes (LOINC), OMOP,

and Systemized Nomenclature of Medicine (SNOMED) codes [30, 31]. Medications were

selected by Anatomical Therapeutic Chemical (ATC) codes [32]. History of procedures was

assessed by the International Classification of Diseases 10 Procedure Coding System (ICD-

10-PCS) codes and by regular expressions (regex) [33]. Tobacco history was considered posi-

tive if a relevant ICD-10 code was present or if a text entry indicated tobacco history, negative

if a text entry indicated no tobacco history, and unknown if there was no ICD-code for tobacco

history and no indicative text entry value [34]. Overall, we considered a patient to have a posi-

tive history of a risk factor only if the clinical variable was documented no later than 2.5 years

after the earliest AAA measurement.

Programming and statistical methods

Data processing was performed in Python 3. The Python wrapper for SQL, SQLAlchemy [35],

was used to query electronic medical record data stored in the OMOP Common Data Model.

We also used the Python libraries pandas [36] and NumPy [37] for data processing, as well as

matplotlib [38] for visualization. For the first-last method, we calculated each patient’s total
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time observed by subtracting their earliest measurement date from their latest measurement

date. Their total AAA growth was calculated by subtracting their earliest AAA diameter mea-

surement from their latest AAA diameter measurement. The “first-last” growth rate was then

calculated as total growth divided by total time observed. Traditional, unpooled linear regres-

sion and unpooled exponential curves were fitted to patients’ measurements using the Python

library SciPy [39]. For the linear mixed-effects model, we used the statistical platform Stan [40]

via its Python interface PyStan [41]. For the exponential mixed-effects model, we used the

Fig 1. Study design to assess the stability, predictive accuracy, and statistical power of computational approaches

for modeling abdominal aortic aneurysms. The original dataset was preprocessed and filtered as indicated. For risk

factor assessment, only two measurements were needed for each patient. After combining close-together

measurements, 540 patients had at least two measurements. For the growth estimate stability comparison, a minimum

of three measurements were needed for each patient. After combining close-together measurements, 362 patients had

at least three measurements. Lastly, for forecasting future diameter, each patient’s final measurement was used as the

“target” datapoint to predict, and therefore censored from the models’ training data. To ensure that the forecasting

period represented a substantial gap in time, measurements less than two years prior to the target point were also

censored. After censoring these datapoints, close-together measurements were merged, resulting in 251 patients with

two or more measurements in the training dataset. The dataset summaries in the dashed boxes reflect the quantity of

the raw data, i.e. before averaging close-together points and censoring endpoints.

https://doi.org/10.1371/journal.pone.0289078.g001
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statistical platform OpenBUGS [42]. Code for the Stan model and the OpenBUGS model is

provided in the S1 Appendix and on Github.

For the exponential models, we developed the formula y = ea(t+b)+2, where y is the projected

AAA size in centimeters, t is the time in years since the first measurement, and a and b are

parameters fit by the model. The addition of two adds the assumption that, at an arbitrarily

early time point when t is a large negative number, the estimated aortic diameter should

approach the normal size of 2 centimeters. The parameter a controls the shape of the curve,

whereas the parameter b allows the curve to be effectively translated left or right, thereby

adjusting the curve to fit a wide variety of starting points, since some patients have their aneu-

rysm detected at a smaller diameter and others at a larger diameter. In order to have a single

number to compare the exponential growth rates to the linear models, we used the exponential

models to estimate the dates at which each patient’s AAA would be 4.0 and 4.5 centimeters,

and then calculated the linear growth rate between these two points. We selected 4.0 and 4.5 as

benchmarks because they lie in the middle of a typical curve. For the downstream analyses,

whenever a model returned a negative growth rate, it was replaced with zero.

Experiment setup

Methods for growth estimate stability comparison

First, we designed an experiment to test the stability of each model. A reliable, noise-tolerant

model should be consistent in its conclusions; adding or removing a datapoint should not

drastically change a patient’s estimated growth rate. Conversely, a less reliable model might

output highly variable growth rates for a single patient, depending on which of the patient’s

datapoints are input into the model. We were also interested in whether model outputs might

show a directional bias, tending to increase or decrease their outputs depending on the time

period covered by the input data. This question reflects a real-world problem, since patients’

AAAs are not usually observed over their entire natural history. Some patients may have more

missing data on the left side, i.e. an AAA that happened to be diagnosed late in its course. Oth-

ers may have missing data on the right side, i.e. an AAA that has not yet been followed to a

large size. To simulate the effect of missing data with the available data, we created two new

datasets: one with the earliest datapoint from each patient removed (“left-censored”), and one

with the latest datapoint of each patient removed (“right-censored”). In order for each patient

to have at least two datapoints in each dataset, we excluded patients with fewer than three data-

points in the original dataset, leaving 362 patients. We then fit each model to all three datasets

and compared the estimated growth rates for each patient. In a noise-tolerant model, we

expect to obtain similar estimates for a given patient’s AAA growth rate across each of the

three datasets. If the model is not biased by the direction of censor (removal of the first point

versus the last point) then the error should be symmetrical; if it is biased, then we expect to

observe reduced growth rate estimates on the right-censored data and inflated growth rate esti-

mates on the left-censored data.

Methods for forecasting future diameterNext, we tested whether the models were accu-

rate in predicting a patient’s future AAA size, which is an important clinical task. Instead of

designing a prospective trial, we simulated “future” data by censoring each patient’s last mea-

surement from the model input. Thus, we created a test dataset of each patient’s last observed

measurement, to be used as the prediction target. We then trained each model on the patients’

prior observations, censoring the target point and any measurements less than two years

before the target. We excluded patients with fewer than two time points in the training dataset,

after merging points < 150 days apart, leaving 251 patients. The average time gap between the

last training datapoint and the target point was 3.5 years, and patients had an average of 3.5

PLOS ONE Investigation of commonly used aortic aneurysm growth rate metrics

PLOS ONE | https://doi.org/10.1371/journal.pone.0289078 August 11, 2023 5 / 18

https://doi.org/10.1371/journal.pone.0289078


observations in the training data. After fitting the models to the training datasets, each model

was used to predict each patient’s AAA size at the time of the target point. The error was calcu-

lated as the predicted size minus the actual target size.

Methods for risk factor assessment. Lastly, we wanted to know how the use of different

models might influence the assessment of risk factors for AAA growth. To this end, we applied

each model to the full dataset of patients with at least two measurements after merging points

<150 days apart. We then tested for statistical associations between patients’ growth rates and

their clinical variables. For categorical variables, we performed Mann-Whitney U tests. For

numerical variables, we performed Spearman rank correlations. Both tests were performed

with the Python library SciPy. We used a threshold of p< 0.05 to suggest whether a researcher

would have detected statistical significance if they had relied on a particular model, without

adjusting for repeated comparisons.

We hypothesized that some potential risk factors might influence the time of AAA detec-

tion or the extent of follow-up, since patients with certain conditions receive more medical

attention (affecting the degree of left-censor). Further, older or sicker patients might have a

higher surgery risk and thus be followed to a larger size, affecting the degree of right-censor.

These factors might lead to bias in the estimate of AAA growth rate, especially in linear mod-

els. Thus, to assess the impact of observation period, we also calculated the average AAA size

at detection and average age at detection for each categorical variable. For numerical variables,

we calculated the strength of association between the clinical variable and the starting size and

age at detection.

Results

Applying the models

We applied five growth metrics to patients’ longitudinal AAA data and evaluated the clinical

utility of each model. We successfully applied all five modeling methods to the datasets for

each experiment (Fig 1). In the unpooled exponential model, the optimizer occasionally failed

to fit parameters for certain patients. In these cases, we substituted the estimate from the linear

regression model. This failure typically occurred when the linear regression model assigned a

negative growth rate or a growth rate very close to zero, indicating a situation where a curve fit

was not feasible. For the hierarchical mixed models, trace plots were constructed to assess con-

vergence between chains. No issues with convergence were noted in the linear hierarchical

mixed model. In the exponential hierarchical mixed model, the chains failed to converge for

1–2% of patients, depending on the dataset. Regardless of convergence, parameters were taken

from the central tendency of the values across the chains.

Relationship between estimated growth rate and initial AAA size

As a baseline characterization of each model, we calculated the median of the growth rates

from each model. Table 1 shows the median growth rate assigned by each model on the full

dataset of 540 patients. The distribution of growth rates varied considerably across models.

The unpooled linear model assigned the lowest median growth rate of 1.47 millimeters per

year, and the exponential mixed model assigned the highest median growth rate of 1.89 milli-

meters per year. In addition to having different median growth rates, the models also varied in

their relationship to starting size. The growth rates from the linear models were highly corre-

lated with starting size; patients with larger AAA diameters at detection were assigned higher

growth rates (Fig 2). In the first-last model and the unpooled linear model, growth rates

increased monotonically with starting size groups; the same was true for all but the last size cat-

egory in the linear mixed model. This relationship was highly significant according to the
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Spearman rank test (Table 1). In contrast, the exponential mixed model showed a much

smaller correlation coefficient between growth rate and starting size (0.23 vs 0.40–0.46 for the

linear models), although the relationship was still statistically significant. For the unpooled

exponential model, there was no detectable relationship between growth rate and starting size.

These results suggest that the exponential models were much less biased by the observation

window, which is further explored in the following experiment.

Growth estimate stability comparison. Next, we evaluated model stability and direc-

tional bias in response to missing data. In theory, a reliable model should produce consistent

estimates of growth rate in the same patient, regardless of the time points that happen to be

observed for that patient. To simulate missing data, we created a test dataset by removing each

Fig 2. Impact of AAA diameter at detection on estimated AAA growth rate. The linear models showed a clear

relationship between size at detection and growth rate, in which AAAs discovered at larger sizes were estimated to be

faster growing. In the exponential models, however, a larger size at detection did not necessarily imply a higher growth

rate. (n = number of patients).

https://doi.org/10.1371/journal.pone.0289078.g002

Table 1. Median AAA growth rate according to each model and relationship between growth rate and initial diameter.

Model Median growth rate (mm/year) across 540

patients

Correlation between growth rate and initial diameter

(Spearman R)

P-value of correlation

(Spearman R)

First-last 1.57 0.404 p < 0.001

Linear unpooled 1.47 0.403 p < 0.001

Linear mixed model 1.60 0.456 p < 0.001

Exponential unpooled 1.81 0.030 p = 0.48

Exponential mixed

model

1.89 0.233 p < 0.001

https://doi.org/10.1371/journal.pone.0289078.t001
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patient’s first AAA measurement (“left-censored”) or last measurement (“right-censored.”) In

certain models, the removal of a single datapoint caused dramatic changes, whereas other

models were more stable. Namely, the first-last, unpooled linear regression, and unpooled

exponential models showed substantial instability, represented by a broad spread in the distri-

bution of changes (Fig 3). For some patients, growth rate estimates increased by more than 1

centimeter per year after removal of a single datapoint. In contrast, the linear and exponential

mixed models were relatively stable, showing few extreme changes in patients’ estimates. The

distribution of changes in patients’ growth rates in these models was more narrow, with most

changes near zero. In addition to the magnitude of changes, we were also interested in whether

the errors were symmetrical. We expected linear models to increase their estimates when early

data was lost, and decrease them when late-stage data was lost. Indeed, all the linear models

Fig 3. Impact of the removal of the earliest (left-censored) or latest (right-censored) aortic diameter measurements on

estimation of aneurysm growth rates. We evaluated the magnitude and direction of changes in growth rate estimates

from each model. A wider-spread histogram was seen in the unpooled models, meaning more patients had large

changes in their growth rate estimate, indicating that the model was unstable and sensitive to noise. The two mixed

models showed a narrower distribution, indicating stability and noise tolerance. A similar distribution of changes from

left-censoring the data (orange) and right-censoring the data (blue) was seen in the exponential models, indicating that

the direction of change was unrelated to the direction of censor. In the linear models, the left-censored distribution

was shifted right, meaning the model tended to assign higher growth rates after losing the earliest datapoint, and vice

versa. This asymmetry suggested that the linear models were more vulnerable to bias from the observation window,

such as assigning higher growth rates to aortic aneurysms detected at large sizes, and assigning lower growth rates to

aortic aneurysms not yet followed to a large size.

https://doi.org/10.1371/journal.pone.0289078.g003
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showed some directional bias, meaning they assigned decreased estimates of growth rate on

the right-censored dataset and increased estimates on the left-censored dataset. The unpooled

exponential model and exponential mixed model, however, showed a relatively symmetrical

error. Again, this result suggests that the exponential models suffer less bias from the observa-

tion window. Notably, the only model that showed both stability and symmetry was the expo-

nential mixed model.

Forecasting future diameter. Prediction of future aortic diameter is an important clinical

task, because expectations about a patient’s future size are used to determine safe follow-up

intervals and to inform decisions about surgical intervention. In our forecasting experiment,

we simulated this clinical task by withholding each patient’s final measurement from the data

used to fit the models. We found substantial variation in the ability of the models to accurately

forecast patients’ final AAA measurement, as well as their tendencies to overestimate or under-

estimate (Table 2). A typical measure of error is mean squared error, which inflates the penalty

against large errors. Considering the mean of the squared errors between predicted and actual

measurement (“projection error”) revealed that the linear mixed model had the smallest error,

closely followed by the exponential mixed model (about 0.3 cm2). The unpooled linear model

and first-last model had substantially higher error (about 0.75 cm2). The error from the

unpooled exponential model was orders of magnitude larger, which was due to a small number

of extreme values. Overall, in terms of the mean squared error metric, the mixed models

showed a clear advantage.

To reduce the penalty to outliers, we also considered the median size of the error, still

removing the effect of the error’s sign by taking the absolute value instead of the square (“abso-

lute” projection error). This metric was similar across the models (0.29 cm to 0.31 cm), sug-

gesting that the differences in mean squared error were mostly driven by the tails of the error

distributions. Clinicians may also want to know the average magnitude of the error in centime-

ters, i.e. how far, on average, the prediction will be from the actual future size. This metric (the

mean of “absolute” projection errors) was lowest in the exponential mixed model at 0.389 cen-

timeters, but was only slightly higher in the linear models. Again, the metric was orders of

magnitude higher in the unpooled exponential model, further illustrating that this model pro-

duced some extreme outliers.

Table 2. Differences between projected and actual AAA diameters.

Model Mean of squared

projection errorsa (+cm2)

Median of absolute*
projection errorsa (+cm)

Mean of absolute*
projection errorsa (+cm)

Mean of raw+ projection

errorsa (+/-cm)

Mean of mean squared errors

to training datab (+cm2)

First-last 0.758 0.290 0.474 -0.057 0.01324

Linear unpooled 0.748 0.294 0.468 -0.053 0.00814

Linear mixed

model

0.297 0.300 0.406 -0.150 0.01286

Exponential

unpooled

49274.202 0.309 15.896 15.480 0.00782

Exponential

mixed model

0.312 0.293 0.389 0.002 0.01735

aProjection error (all but the final column) is error in predicting the “future” point that was withheld from the models.
bError to training data (shown in the final column) is distance between the models and the training points for each patient.

*Absolute error indicates magnitude of error, regardless of direction, i.e. absolute value of error. A smaller value indicates that the model tends to be close to the actual

value, regardless of whether the error is an overestimate or an underestimate.
+Raw error indicates directional error, which includes the error’s sign (+/-). Overestimates and underestimates cancel out. If the mean raw projection error is negative,

the model tends to underestimate future aortic diameter.

The value closest to zero in each column is bolded.

https://doi.org/10.1371/journal.pone.0289078.t002
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We were also interested in the models’ tendencies to overestimate or underestimate future

size, which we measured by averaging the models’ prediction errors, while retaining the sign

of the error instead of using the absolute value (“raw” projection error). Across all the linear

models, the predicted measurement was an average of about one millimeter less than the actual

measurement, suggesting a tendency to underestimate future size. In the exponential mixed

model, however, the mean of the errors was very close to zero, suggesting that the exponential

mixed model achieved the best balance of overestimates and underestimates.

Model closeness of fit to training data

To examine how models interact with training data, it is important to consider the degree of

error between a model and its training data. Minimal error relative to the training data indi-

cates that a model is able to fit the known datapoints very closely, whereas higher training

error indicates a less optimized fit. However, there can be a trade-off between training error

and testing error, where a model that “over-fits” the training data tends to lose external valid-

ity. For our models, we found the lowest training error in the unpooled exponential model, fol-

lowed by the unpooled linear model. The training error was higher in the first-last method,

which makes sense considering that this method does not consider all of the datapoints for

patients with more than two datapoints. The training error was also higher in the mixed mod-

els, which reflects the hierarchical nature of these models. Namely, they select parameters that

strike a balance; they seek parameters that fit the individual patient’s datapoints, but also seem

probable given the overall distribution of parameters being learned from the cohort as a whole.

Therefore, it follows expectation that the models with lower training accuracy had higher accu-

racy in predicting the censored, final measurement. Ultimately, the exponential mixed model

had the largest error relative to the training data, low error in prediction, and the best balance

between over-estimating and under-estimating future size.

Risk factor assessment

Lastly, we examined the association of patient-level risk factors, such as smoking history and

diabetes status, with fast AAA growth. Identification of risk factors is important for making

predictions at the patient level, as well as determining possible interventions, such as smoking

cessation. Therefore, a model with greater statistical power to detect risk factors may be pre-

ferred by clinicians and researchers. Thus, we evaluated whether different models might detect

different risk factors for AAA growth rate. We excluded the unpooled exponential model from

this experiment due to its large error in the forecasting experiment. Across the remaining four

models, we found some variation in the number of clinical variables detected as risk factors, as

well as the strength of the associations. Among the categorical variables, five clinical factors

appeared statistically significant (p<0.05) or borderline (p<0.1) in all four models: diabetes,

hypertension, cerebrovascular disease, coronary artery disease, and chronic kidney disease

(Table 3). Diabetes was found to be a strong negative risk factor according to all the models

(p<0.03 or less). Interestingly, the mixed models produced a more confident result for diabe-

tes (p<0.001). However, the exponential mixed model also reported a smaller effect size.

According to the linear models, AAAs in patients with diabetes grew about 0.5 mm slower per

year than patients without diabetes. In the exponential mixed model, the difference was halved,

at just 0.25 mm slower. In all four models, five categorical variables were not associated with

AAA growth rate: race, metformin use in patients with diabetes, insulin use in patients with

diabetes, statin use, and chronic obstructive pulmonary disease (Table 4). It should be noted

that some of these categories suffered from small sample sizes, particularly non-white race,

metformin use, and insulin use. Lastly, three variables were reported as significant or
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borderline according to the exponential mixed model, but insignificant in the other models:

female gender, tobacco history, and history of coronary artery bypass graft surgery (Table 5).

According to the exponential mixed model, female gender and tobacco history were both asso-

ciated with faster growth, whereas coronary artery bypass graft surgery was associated with

slower growth. Overall, the exponential mixed model detected the greatest number of risk

factors.

In addition to statistical sensitivity, we were interested in the potential impact of the obser-

vation window on the associations with potential risk factors. Previous experiments showed

that linear models are heavily influenced by starting size. Many clinical risk factors may influ-

ence the likelihood of screening tests, potentially causing earlier or later detection and there-

fore different starting sizes. To examine potential effects, we compared patient starting

diameter and age at detection by calculating the average values in each clinical category

(S1 Table). Patients with diabetes had a significantly smaller size at detection than patients

without diabetes. Patients with diabetes were also an average of 1.5 years younger at detection

than patients without diabetes, although this difference only bordered on statistical signifi-

cance. Also bordering on significance was a smaller detection size in female patients and in

patients with cerebrovascular disease. In addition to the categorical variables, we also tested

associations with several numerical variables, such as hemoglobin A1C, blood lipid levels, and

Table 3. Clinical variables that were significantly associated (p< 0.1) with average growth rate by all four models. Average growth rate is shown in mm/year for each

clinical category.

Diabetes Present (n = 121) Absent (n = 375) Difference p value

First-last 1.69 2.17 -0.48 0.028

Linear unpooled 1.65 2.15 -0.5 0.02

Linear mixed model 1.43 1.83 -0.4 <0.001

Exponential mixed model 1.74 1.99 -0.25 <0.001

Hypertension Present (n = 427) Absent (n = 69) Difference p value

First-last 2.16 1.38 0.78 0.005

Linear unpooled 2.14 1.35 0.79 0.002

Linear mixed model 1.8 1.34 0.46 0.007

Exponential mixed model 1.96 1.76 0.2 0.041

Cerebrovascular disease Present (n = 95) Absent (n = 401) Difference p value

First-last 1.67 2.14 -0.47 0.035

Linear unpooled 1.63 2.13 -0.5 0.028

Linear mixed model 1.5 1.79 -0.29 0.084

Exponential mixed model 1.81 1.96 -0.15 0.071

Coronary artery disease Present (n = 366) Absent (n = 130) Difference p value

First-last 2.19 1.66 0.53 0.033

Linear unpooled 2.17 1.63 0.54 0.026

Linear mixed model 1.8 1.55 0.25 0.058

Exponential mixed model 1.97 1.83 0.14 0.06

Chronic kidney disease Present (n = 164) Absent (n = 332) Difference p value

First-last 2.25 1.95 0.3 0.035

Linear unpooled 2.24 1.93 0.31 0.031

Linear mixed model 1.95 1.63 0.32 0.028

Exponential mixed model 2.07 1.86 0.21 0.016

Average growth rate (mm/year) is shown for each clinical category. The difference was calculated as the second group’s average growth rate minus the first group’s

average growth rate. The p value corresponding to the difference between groups was calculated from the Mann-Whitney U test. p values less than 0.05 are bolded.

https://doi.org/10.1371/journal.pone.0289078.t003
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blood pressure (S1 Table). These results were mostly non-significant across the models, with

the exception of hemoglobin A1C among diabetic patients. Higher A1C was associated with

slower AAA growth rate; this effect was significant (p<0.05) in the unpooled linear model, but

borderline to non-significant in the other models. Overall, the hierarchical mixed models

reported more statistically significant effects, and the exponential mixed model reported the

greatest number of significantly associated variables.

Discussion

A wide variety of statistical models have been applied in the literature to characterize AAA

growth rates. The estimated growth rates from these models have been used to detect risk fac-

tors, test interventions, determine optimal surveillance windows, and even aid in decisions

about surgical repair. Our study examined the suitability of five different methods. We com-

pared their stability, temporal bias, predictive accuracy, and statistical sensitivity. We found

that mixed models offer excellent stability and predictive accuracy. Exponential models reduce

temporal bias by effectively modeling curves. Exponential mixed models combine all of these

benefits, which may explain why our exponential mixed model detected the greatest number

of risk factors.

Table 4. Clinical variables that were not significantly associated (p< 0.1) with average growth rate by all four models. Average growth rate in mm/year is shown for

each clinical category.

Race White (n = 446) Other (n = 78) Difference p value

First-last 2.05 2.09 -0.04 0.489

Linear unpooled 2.03 2.08 -0.05 0.476

Linear mixed model 1.75 1.71 0.04 0.432

Exponential mixed model 1.94 1.87 0.07 0.22

Metformin (diabetics only) Present (n = 14) Absent (n = 107) Difference p value

First-last 2.06 1.64 0.42 0.274

Linear unpooled 1.95 1.61 0.34 0.378

Linear mixed model 1.67 1.39 0.28 0.234

Exponential mixed model 2.01 1.71 0.3 0.126

Insulin (diabetics only) Present (n = 9) Absent (n = 112) Difference p value

First-last 1.15 1.73 -0.58 0.101

Linear unpooled 1.19 1.68 -0.49 0.138

Linear mixed model 1.18 1.45 -0.27 0.305

Exponential mixed model 1.7 1.75 -0.05 0.486

Statins Present (n = 128) Absent (n = 368) Difference p value

First-last 2.29 1.97 0.32 0.45

Linear unpooled 2.3 1.94 0.36 0.386

Linear mixed model 1.83 1.7 0.13 0.343

Exponential mixed model 1.99 1.91 0.08 0.357

Chronic obstructive pulmonary disease Present (n = 210) Absent (n = 286) Difference p value

First-last 2.15 1.98 0.17 0.154

Linear unpooled 2.15 1.95 0.2 0.138

Linear mixed model 1.79 1.69 0.1 0.424

Exponential mixed model 1.96 1.91 0.05 0.282

Average growth rate (mm/year) is shown for each clinical category. The difference was calculated as the second group’s average growth rate minus the first group’s

average growth rate. The p value corresponding to the difference between groups was calculated from the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0289078.t004

PLOS ONE Investigation of commonly used aortic aneurysm growth rate metrics

PLOS ONE | https://doi.org/10.1371/journal.pone.0289078 August 11, 2023 12 / 18

https://doi.org/10.1371/journal.pone.0289078.t004
https://doi.org/10.1371/journal.pone.0289078


Until now, rarely has there been a direct comparison of the different potential methods

using the same dataset, especially the potential impact on risk factors. One study attempted a

linear, quadratic, and exponential mixed model, but presented risk factors against linear

growth rates only [7]. Since AAAs are well-known to grow faster as they grow larger, we sus-

pected that linear descriptions might fail to characterize them fully, and might fall victim to

bias, especially when potential risk factors are related to the time of AAA detection. For exam-

ple, studies have shown that diabetic patients are more likely than non-diabetic patients to

receive a variety of diagnostic tests, including chest CTs [43–46]. Correspondingly, we found

that diabetic patients had their AAAs detected at a significantly smaller average size than non-

diabetic AAA patients. Such a detection bias could effectively cause non-diabetic patients’

AAA data to be more left-censored than that of diabetic patients. Our experiments suggest that

left-censoring can increase the estimated growth rate of an AAA, which could potentially

inflate the AAA growth rates of non-diabetic patients, and thus cause the protective effect of

diabetes to be overstated. Indeed, our linear models suggested that diabetic patients’ AAAs

grow half a millimeter slower per year on average, whereas the exponential mixed model sug-

gested only a quarter of a millimeter difference. However, the mixed models in general tended

to show smaller effect sizes, which might be due to the suppression of extreme values that

occurs during partial pooling.

While in the case of diabetes, linear bias might lead to overestimating the effect size, other

situations could cause a washout effect. For example, female AAA patients tend to be detected

at a smaller AAA diameter, but have faster AAA growth rates [19]. If the impact of starting size

is uncontrolled, it could lead to underestimating the effect of gender on AAA growth. Such an

effect could potentially explain why our exponential mixed model detected female gender as a

risk factor for faster AAA growth, when our linear models did not.

Some studies attempt to control the effect of initial size on growth rate by separating the

cohort into bands, where each band encompasses a limited range of starting sizes. A limitation

of this approach is the reduction in sample size. For example, Solberg et al. divide their cohort

of 234 patients into 7 bands, with some bands having fewer than ten patients, and the largest

Table 5. Clinical variables that were significantly associated (p< 0.1) with average growth rate by the exponential mixed model only. Average growth rate in mm/

year is shown for each clinical category.

Gender Male (n = 381) Female (n = 142) Difference p value

First-last 2.0 2.17 -0.17 0.137

Linear unpooled 1.98 2.16 -0.18 0.137

Linear mixed model 1.73 1.8 -0.07 0.185

Exponential mixed model 1.89 2.03 -0.14 0.02

Tobacco history Present (n = 293) Absent (n = 29) Difference p value

First-last 2.02 2.57 -0.55 0.121

Linear unpooled 2.02 2.57 -0.55 0.122

Linear mixed model 1.75 1.68 0.07 0.181

Exponential mixed model 1.99 1.79 0.2 0.064

Coronary artery bypass graft surgery Present (n = 130) Absent (n = 366) Difference p value

First-last 1.89 2.11 -0.22 0.151

Linear unpooled 1.87 2.09 -0.22 0.162

Linear mixed model 1.65 1.76 -0.11 0.122

Exponential mixed model 1.81 1.97 -0.16 0.02

Average growth rate (mm/year) is shown for each clinical category. The difference was calculated as the second group’s average growth rate minus the first group’s

average growth rate. The p value corresponding to the difference between groups was calculated from the Mann-Whitney U test. p values less than 0.05 are bolded.

https://doi.org/10.1371/journal.pone.0289078.t005
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band having only 87 patients [19]. Also, since there is still variation within each band, unless

the band is infinitely narrow, the effect of starting size would in theory be reduced rather than

eliminated. Other studies attempt to control the effect of starting size by including it as a vari-

able in the regression formula. A limitation of both this approach and the banding approach is

that they are unable to control for any effects from right-censoring, which could occur if

patients with certain risk factors were more likely to be indicated for surgery or more likely to

be followed for a longer period of time. Our experiments suggest that our exponential model

may reduce such effects, but we have not proven that it eliminates them altogether.

Overall, our results suggest that exponential mixed models are feasible and can successfully

model curves without sacrificing predictive accuracy or stability. Further, they may wield

more statistical power for detecting risk factors and suffer less bias from varying observation

windows. However, their added complexity may not be justified in all applications. In particu-

lar, small study cohorts with fewer patients may see less benefit from a using a hierarchical

model.

At the other extreme is the simplest method, the first-last metric. Our expectations for this

metric were poor, given that it ignores data between each patient’s first and last measurements.

Yet, we found that the forecasting accuracy from this approach was similar to that of unpooled

linear regression, and not far behind the other models. The average magnitude of the predic-

tion error was only about a tenth of a millimeter greater in the first-last method than the expo-

nential mixed model, although the mean squared error was substantially higher. In some

clinical applications, the simplicity of first-last or unpooled linear regression approaches may

be prized over other factors. These methods can be applied to an individual patient in isolation,

and do not require advanced statistical software or programming. Notably, the first-last

method is extremely accessible; it can even be computed by hand. Our results suggest that

although these methods are less accurate, the difference is modest. Still, according to our

results, clinicians should be aware that every linear model tended to underestimate future

diameter, which errs on the side of inattentive monitoring and thus increased risk for rupture

and death.

Further, we note that some of the differences between models that we observed may be

dataset-dependent. For instance, many patients in the forecasting experiment had only two

datapoints to use for modeling, making first-last and unpooled linear regression equivalent for

these patients. Linear regression might outperform the first-last method more noticeably in

datasets with many observations per patient. Likewise, the benefit from exponential models

may be greater when the observation time is longer, making curves more pronounced.

This study has addressed five mathematical options for modeling changes in maximal aortic

diameter, which is the standard metric reported in clinical radiology documents. However, it

is important to note that other geometric properties may be used instead of or in addition to

aortic diameter. Existing studies have examined the predictive utility of several other aortic

properties including eccentricity, tortuosity, undulation, radius of curvature, and spherical

diameter [9, 47, 48]. For study teams that have the necessary resources to compute them, these

additional metrics may be helpful in increasing the accuracy of AAA growth rate descriptions

and predictions.

Overall, we suggest that future studies attempt to validate the methods they use, perhaps by

comparing different methods, or assessing accuracy in forecast or goodness of fit. At mini-

mum, studies should state the method they used, as it may be a pivotal detail that could explain

puzzling results. For example, a randomized clinical trial of propranolol for AAA treatment

found no statistical difference in the primary outcome, AAA growth rate. Yet, participants

who received propranolol had lower risk of surgical AAA repair [25]. Given that the decision

for surgery is mostly dependent on AAA diameter, it is puzzling that this difference could
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occur without a difference in growth rate. Perhaps the method used to assess growth rate

might not have characterized differences sufficiently. Such possibilities are difficult to assess,

however, when the exact method of growth rate modeling is not stated. Our results indicate

that AAA growth rate metric is an important methodological choice, which can affect a study’s

outcomes. We recommend that researchers make this choice with care.

Conclusion

We found that linear models of AAA growth rate were subject to directional bias and tended

to underestimate future AAA diameters. We also found that unpooled models were sensitive

to noise, whereas mixed models were more reliable. The choice of model also affected which

risk factors were associated with growth rate; our exponential model detected the greatest

number of risk factors. The exponential mixed model also offered excellent pruning of noise

while successfully modeling curves. Therefore, exponential mixed models may be an optimal

choice for sufficiently large studies. Regardless of the application or method chosen, we recom-

mend that future studies of AAA growth rate should state the method used and provide valida-

tion when possible.
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