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Abstract

When a disaster occurs, disaster management goes through a number of phases, namely

normal, emergency response, adaptation, and recovery. Being able to identify the transition

between these phases would be useful for policymakers, for example, in order to shift their

focus from meeting the travel needs of affected people during the emergency response

phase, to meeting travel needs for adaptation and recovery activities. This study proposes a

data-driven method which may be useful for assessing phase transitions for transport man-

agement during a disaster. Specifically, we argue that changes in elasticities of travel

demand with respect to changes in the transport network can be a useful indicator of phase

transition, since they depict changes in consumers’ tastes, i.e., changes in the degree of

travel necessity during disaster. Two hypotheses are formulated to investigate the changes

in elasticity during a disaster: 1) the elasticity of travel demand is more elastic soon after a

disaster as travel becomes a luxury good, and 2) it becomes less elastic afterwards as travel

goes back to being a necessity good. To empirically confirm the hypotheses, we develop a

multilevel log-log linear model, where the transport network service level information varying

over time during a disaster is used as an explanatory variable, and tested mobile phone

location and transport network data captured during the heavy rain disaster in Japan in July

2018. We also utilized a change point detection algorithm to identify a structural change that

occurred in these elasticities. We confirm that our empirical results support our hypotheses,

i.e., in the affected areas, the elasticity was more elastic soon after the disaster, while the

elasticity tended to go back to normal around one month later. These results suggest that

the proposed method can be useful to judge the phase transition for disaster management.

Introduction

Disasters often lead to transport network disruptions. The ways in which the government can

utilize disrupted transport systems after a disaster occurs will evolve as the disaster manage-

ment phase changes. In the emergency response phase, the highest priority is given to
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emergency vehicles to save lives. In practice, roads are often designated as emergency routes

for emergency vehicles to conduct rescue activities immediately after a disaster, for example,

in Japan [1], in Tehran [2, 3], and in Indonesia [4]. The priority is then shifted to demand aris-

ing from disaster recovery activities and daily travel demand. Policy decisions, such as deci-

sions on the timing of emergency route designation and its cancellation, should take the phase

transition into consideration. However, policymakers do not have a well-established way to

identify the phase transition, hindering them from making optimal decisions. For example,

during the heavy rain disaster in Japan in July 2018, the toll prices of expressways were reduced

with the intention of providing a better service to residents, but this resulted in heavy traffic

congestion that may have negatively affected disaster recovery activities. To properly assess

such trade-offs in policy decision-making processes, the disaster management phase and the

timing of transitions should be properly recognized by policymakers.

There are several possible ways to identify the transition between disaster phases. The sim-

plest way would be to look at the changes in transport network conditions over time, i.e., to

identify the phase based on the transport network capacity. However, defining the phase based

on such supply-side conditions would not be sufficient, because the way the transport network

is utilized during a disaster also depends on who wants to use it and for what purpose. Hence,

policy decisions should be made not only by looking at the supply side, but also by looking at

the demand side. At the same time, it is also clear that the phase transition cannot be identified

based solely on information about demand, since policy decisions would vary depending on

the level of transport supply; if the road capacity is high enough, there is no reason to activate

emergency routes and assign all road space to emergency vehicles. In summary, it may not be

sufficient to define the phase transition for transport policies during disasters based solely on

either transport supply or demand. Rather, interactions between supply and demand need to

be explored. However, it is not easy to understand the interactions from direct observation of

supply and demand conditions, calling for better monitoring system.

The current monitoring system in managing transport systems during disaster primarily

relies on direct observation, e.g., how many links are disrupted (supply) or how many trips

we have (demand). However, as mentioned above, this direct observation may not be suffi-

cient to effectively manage the transport system. There is a need to translate direct observa-

tion into useful indices that help the policymakers to manage the system. The effort to

improve the monitoring system has been widely made in many different domains. For

example, direct observation of precipitation data cannot be immediately utilized to predict

the risk of having landslides. This calls for an advanced monitoring system, such as the rain-

fall index R’ proposed by Nakai et al. [5]. Similarly, the direct observation of pedestrian tra-

jectories cannot be immediately used to identify the risk of accidents involving pedestrians

in an autonomous vehicle (AV) environment. This calls for an advanced monitoring system,

such as the AV-pedestrian collision index by Alozi and Hussein [6]. These examples clearly

indicate that, by upgrading the monitoring system and carefully utilizing the data, we can

generate information that may provide more useful indices for policymakers to effectively

make management decisions.

Given the above, this study proposes to use a transport service necessity index, which is

defined by the service elasticity of travel demand, for upgrading the monitoring system of

transport conditions during disaster. We argue that changes in elasticities are an useful indica-

tor of phase transition since they depict changes in consumers’ tastes, i.e., changes in the

degree of travel necessity during disaster.

The proposed method is data-driven that is important because questionnaire surveys and

interviews under disaster conditions may be mental burdens for affected people, especially as

it may remind them of the disaster [7]. However, to the authors’ knowledge, no study has
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proposed a data-driven method for assessing phase transitions. This is the first study to show

the method to achieve it.

At the same time, it should be noted that in this paper, the identification of the phase transi-

tion is based on the detected change points in order to make it easier to understand the results;

in practice, the phase transition should be decided not only based on the structural changes,

but also other types of information available at that time. To achieve the above-mentioned

objective, we first calculate changes in elasticity of travel demand with respect to transport ser-

vice levels, using data obtained during the heavy rain disaster which took place in Hiroshima,

Japan, in July 2018. We then identify the timing of the phase transition by applying a change

point detection algorithm to the elasticity values. We propose two hypotheses, as follows:

H1: Immediately after the disaster, the elasticity of travel demand becomes more elastic. This
may be because people tend to stop traveling and doing non-emergency activities such as lei-
sure activities.

H2: Once the urgent situation is over, the elasticity of travel demand becomes less elastic, mainly
because of the increase in recovery activities.

In short, H1 indicates that people might consider travel as a luxury good soon after a disas-

ter, while H2 indicates that after a period of time, travel reverts to being a necessity good. To

empirically test these hypotheses, we use the Mobile Spatial Statistics data, which are popula-

tion movement statistics generated from mobile terminal network operational data, and trans-

port network data with disruption and recovery history captured during the heavy rain

disaster of 2018. We then develop a multilevel log-log linear model to calculate the changes in

elasticity with respect to the transport network service level changes. In this study, the service

level is expressed as the expected minimum generalized cost obtained from a route choice

model that takes into account the impacts of road network disruptions on the service level [8].

Note that the cost represents the transport network’s service level.

This paper is organized as follows. The following section introduces the relevant literature.

We then explain the methods used to obtain the changes in elasticity values during the disaster

period. We then describe the study area and data, followed by the results and discussion. We

conclude our study with future research agendas.

Literature review

Many studies have examined interactions between supply and demand in normal (i.e., no dis-

ruption) situations. One traditional transportation research exploring the interactions is on

traffic congestion (e.g., Sheffi [9]; Dial [10]; Nicholson and Du [11]). In general, the interaction

is assumed to be stable under normal conditions. However, during disasters, both supply and

demand, and hence the interactions, can rapidly change over time. Several studies have exam-

ined the interactions during disaster situations. For instance, Saadi et al. [12] investigated the

impacts of floods on both transport supply and demand in Belgium using the MATSim frame-

work. Another study examined the effects of flood-induced station closures on travel behavior

under normal operation and when the water level rose to 5 meters [13]. The results demon-

strated that, as the water level increased and stations were closed, up to 25% of journeys are

unfulfilled. However, the above studies did not explore changes in the interactions, while some

exceptions exist, many of which utilized elasticity indices. Elasticity is generally used to mea-

sure the sensitivity of demand with respect to changes in price or income in the economic liter-

ature [14]. For example, Chikaraishi et al. [15] examined changes in demand elasticity with

respect to gasoline prices by using traffic volume data from 53 expressway routes in Japan,

showing that the elasticity was changing over time. Tanishita [16] examined the change in
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price and income elasticity of gasoline demand in several cities in Japan. The results indicated

that the price elasticity of demand for gasoline was not stable over time, particularly during the

1980s and 1990s. The study revealed a decrease in the elasticity values in both major and non-

major cities during that period.

The elasticity concept has also been used to understand various societal responses to disas-

ters [17–20]. Khan and Anwar [17] used the elasticity of foreign exchange reserves with respect

to the occurrence of natural disasters to understand how a disaster disturbs the inflow of foreign

exchange reserves, which would result in the reduction of social welfare. Soltani-Sobh et al. [18]

identified the effect of a disaster on road network performance by measuring the elasticity of

travel demand with respect to travel cost and time, and explored how the elasticity was changed

due to the disaster. However, they only test the proposed method on a test network and have

not applied it to a real disaster situation. Wu et al. [19] calculated the elasticity of direct eco-

nomic losses in China with respect to three components of disaster risks: hazard (measured by

earthquake magnitude), exposure (measured by the level of exposure of capital stock), and vul-

nerability (measured by the proportion of non-steel-concrete residential buildings and the

physical environment, such as precipitation). Taghizadeh-Hesary et al. [20] calculated the

changes in elasticity of oil consumption with respect to oil prices, GDP (Gross Domestic Prod-

uct), consumer price index, and the interest rate, before and after the Fukushima Nuclear Disas-

ter in 2011. They found that all of these elasticities were reduced after the disaster due to the

increased dependency on oil consumption (i.e., oil became a necessity good). However, no

studies have explored changes in the elasticities of travel demand during disaster.

Given the brief literature review above, our study is the first study to monitor change in

elasticities and to identify the timing of phase transition for managing the transport systems

during disasters.

The definition of phase transition varies across studies. The following is a summary of the

definitions in the existing literature:

• 1st phase (Normal): the phase prior to a disaster or disruption.

Anticipation [21], robustness [22], prevention [23–26], reliability [27], mitigation, prepared-

ness [28–30], pre-disturbance [31].

• 2nd phase (Emergency response): the phase where an initial response has been made to the

disaster event.

Absorption [21, 32, 33], survivability [22, 27], mitigation [23], degradation [24], damage

propagation [25], response [26, 28, 29], withstand [30], disturbance [31], loss [34]

• 3rd phase (Adaptation): the phase where the system adapts to the disruption.

Adaptation [21, 32, 33], response [22].

• 4th phase (Recovery): the phase where the system is gradually restored to its original func-

tion.

Recovery [21–30, 32, 34], restore [24, 31].

Although different names and definitions have been used, we found that the following four

phases are shared across studies. The first phase is preparedness, which we call the normal
phase in this study, meaning the phase before the disaster occurs. The second phase is response
or emergency response, where emergency activities are carried out soon after the disaster. The

main objective of the emergency response phase is usually to save lives. The Japanese govern-

ment also describes emergency responses as a critical time to save lives and defines it as the 72

hours after the occurrence of the disaster [35, 36]. The third is adaptation, where people start

to adapt to disrupted situations, e.g., can utilize the current resources, conduct temporary
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repairs, etc. The last is recovery, where recovery activities are carried out. We used these four

names, i.e., normal, emergency response, adaptation, and recovery phases, as the disaster man-

agement phases of the transport system.

Methods

To identify the phase transition, we first calculate the elasticity of travel demand with respect

to the expected minimum generalized cost, which is obtained from the recursive logit-based

route choice model. The multilevel log-log linear model is then used to obtain the elasticities

which vary across time and space. After that, we use the change point detection method to sys-

tematically identify the timing of structural changes in elasticity, which help to identify the

phase transition. The details of each method are explained in the following sub-sections.

Recursive logit model

Following the work of Safitri and Chikaraishi [8], we use the recursive logit-based route choice

model to obtain the expected minimum generalized cost, which is used as a variable of trans-

port service level for each origin i–destination j (O-D) pair on date c and time of day τ
(denoted as x1ijcτ). The recursive logit model was originally proposed by Fosgerau et al. [37],

where they modeled route choice decisions as a series of link choice decisions on a road net-

work under the dynamic discrete choice modeling framework. Mai et al. [38] further proposed

an efficient procedure to simultaneously obtain the expected minimum generalized costs for

many-to-many O-D pairs. This model framework is suitable for the current study, where the

cost needs to be repeatedly computed whenever a link is disrupted or recovers.

In the empirical analysis, we use travel time (timea|k) and travel cost (costa|k) in specifying

the instantaneous utility u(a|k;β) obtained by traveling from link k to link a. More specifically,

the random utility is defined as u(a|k;β) = v(a|k;β) + με(a), where v(a|k;β) = βtimetimea|k +

βcostcosta|k, μ is a scale parameter, and ε(a) is a random term. We borrow the travel cost

parameter (βcost) in units of 100 Japanese Yen and travel time parameter (βtime) in hours from

Oka et al. [39]; these are -18.45 and -445.0 respectively, where scale parameter μ is fixed as one.

These parameter values were obtained using vehicle GPS trajectory data for freight vehicles. In

the recursive logit model, a traveler is assumed to choose the next link a from a set of available

links Acτ(k) on date c and time of day τ, which maximizes the sum of instantaneous utility

u(a|k;β) and downstream utility Vj(k;β), i.e., v(a|k;β) + Vj(a;β) + με(a). As Fosgerau et al. [37]

show, the expected maximum utility Vj(k;β) can be obtained recursively using the Bellman

equation, as follows:

1

m
Vj k; bð Þ ¼ ln

X

a2Act kð Þ

exp
1

m
v ajk; bð Þ þ Vj a; bð Þ

� � !

8k 2 A ð1Þ

We then obtain the expected minimum generalized cost x1ijcτ as

ln
P

a2Actðki0Þ
exp 1

m
v ajki0; bð Þð Þ þ Vj a;bð Þ

� �� �
=bcost where ki0 denotes the dummy link of origin

i.

Multilevel log-log linear model

We use a multilevel log-log linear model to test the hypotheses introduced in the introduction,

which is defined as follows:

ln Qijct

� �
¼ bo þ b1 lnðx1ijctÞ þ bzxz þ u0ijc þ u1ijc ln x1ijct

� �
þ εijct ð2Þ
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where Qijcτ represents the total trips from origin i to destination j on date c and time of day τ;

βo, β1, βz are parameters to be estimated; xz represents all other explanatory variables including

time of day, day of week and holiday dummies, i.e., dummy variables (in hour), Saturday, Sun-

day, and Obon holiday (a summer Buddhist holiday when people return to their hometowns to

pay respect to their ancestors); u0ijc is the random term representing the deviation in the inter-

cept across origin i, destination j, and date c; u1ijc is the random term representing heteroge-

neous responses to ln(x1ijcτ) across origin i, destination j and date c; and εijcτ represents the

white noise (residual), where var εijct

� �
¼ s2

e0. Since we employ the multilevel log-log linear

model, b1 þ û1ijc represents the elasticity of travel demand, i.e., the ratio of the percentage

change in travel demand with respect to the percentage change in the expected minimum gen-

eralized cost, which varies across origin i, destination j, and date c.

Change point detection

To detect structural change points in the elasticity values, we first take the average of the ori-

gin-destination-date-specific elasticities, which is obtained using the BLUP (Best Linear Unbi-

ased Prediction) estimator (e.g., [40]). We then identify multiple change points, which can be

used to judge the timings of phase transitions. There are several methods to achieve this. In

this study, we use changepoint package in R [41]. More specifically, we use the segment neigh-

borhood algorithm, where the algorithm identifies exact multiple change points of the succes-

sive important features (mean and variance detection in our case) in the sequence data [42].

The algorithm computes the fit measure for each segment and the optimal partition for the

predetermined number of segments. The predetermined number of segments we employed is

three (i.e., two change points). Note that if the identified change point does not improve the

likelihood value, we omit the point following Akaike Information Criteria (AIC). Another

point to note is that for the phase transition from emergency response to adaptation, we set

the timing as 72 hours after the disaster occurred, following the Japanese government’s defini-

tion [35, 36]. Thus, the identified change points using the algorithm are expected to be (1) the

phase transition from normal to emergency response, and (2) the phase transition from adap-

tation to recovery.

Variance decomposition

The variance decomposition analysis is then performed to identify the relative contribution of

explanatory variables to the travel demand in each disaster management phase. In the empiri-

cal analysis, we decompose the total variation of logarithm of total trips from origin i to desti-

nation j at date c and time τ into (1) log of expected minimum generalized cost, (2) other

explanatory variables, (3) random effects representing heterogeneous responses to log of

expected minimum generalized cost, (4) random effects representing the deviation of the

intercept, and (5) white noise. We decomposed the variance of the objective variable as fol-

lows:

var ln Qijct

� �� �
¼ var b̂1 ln x1ijct

� �� �
þ varðb̂z xzÞ þ var �u0ijc

� �
þ var ln �u1ijc � ln x1ijct

� �� �

þ ŝ2

e0 ð3Þ

where the hat symbol indicates estimated value of parameters, and �u1ijc represents the BLUP

value obtained using the estimated parameters.
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Study area and data

The study area covers selected cities in Hiroshima Prefecture, namely Hiroshima City, Higa-

shi-Hiroshima City, Kure City, and Aki District, which are further divided into 24 zones based

on regional borders. We prepare network data which includes data on travel time, travel cost,

and train fares of 62 major road links (i.e., highways, toll roads, expressways, and prefectural

roads) and 24 rail links. Note that these major road links are mainly arterial roads, and that

minor road links are excluded from the network. The details of the transport network and the

study area can be found in Safitri and Chikaraishi [8].

We utilize the Mobile Spatial Statistics data obtained from Docomo Insight Marketing Inc.,

which are population movement statistics generated from mobile terminal network opera-

tional data. The data contains estimated origin-destination (O-D) travel demand for every

hour among 24 zones. The travel modes are not included in the data. The data period used in

this study is from June 1 to October 31, 2018. In the analysis, we excluded data from July 29

(Typhoon Jongdari) and September 30, 2018 (Typhoon Trami).

This study focuses on the heavy rain disaster which took place in western Japan from late

June to mid-July 2018 [43]. Floods and landslides happened in Hiroshima Prefecture. More

than one hundred people died and thousands of houses were damaged. Based on a govern-

ment report put out by the Cabinet Office [44], the number of deaths in Hiroshima Prefecture

was 109, with 9 missing persons, 138 injured persons, and 15,176 houses damaged. As a conse-

quence of the heavy rain, massive transport network disruptions occurred on July 6 and 7 in

Hiroshima Prefecture on both road and train networks [45]. Fig 1 shows the number of avail-

able links under the recovery process over time. Before the disaster, the total number of links

was 86 links. When the disaster occurred the number of links fell to 42, consisting of 29 road

Fig 1. Number of available links over time.

https://doi.org/10.1371/journal.pone.0288969.g001
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links and 13 rail links. The number of links then increased as the recovery process proceeded

across the transportation network.

To reflect differences in the degree of damages among zones in the analysis, we define the

“affected” or “non-affected” areas by using the information of (1) house damage, i.e., the infor-

mation of the number of houses completely destroyed (d1), number of houses half destroyed

(d2), number of houses partially damaged (d3), number of houses flooded (d4), and number of

houses which suffered from underfloor flooding (d5); and (2) the number of deaths (d6). We

obtained these figures from the municipality of each city [46–49]. We then made an indicator

(Di) to decide whether the area is an “affected” or “non-affected” area. We define Di = ∑m I,
where m represents each category of information and i is the area. If dim > dim, I = 1, otherwise

0. Finally, if Di> 3 (more than half of the total category), we define it as an “affected” area, oth-

erwise it is a “non-affected” area. As a result, there are four “affected” areas, and 24 “non-

affected” areas (refer to Table 1).

Results and discussion

The estimation results of the multilevel log-log linear model are shown in Table 2. The average

elasticity value β1 is -1.253, indicating that increasing 1% of the expected minimum generalized

cost would produce a 1.253% change in travel demand. The results also show that the travel

demand has two peaks: in the morning, at around 07:00 AM, and in the afternoon, at around

Table 1. Property damage, life loss, and identified “affected” areas.

No Area d1ðd1 ¼ 25Þ d2ðd2 ¼ 78Þ d3ðd3 ¼ 51Þ d4ðd4 ¼ 62Þ d5ðd5 ¼ 89) d6ðd6 ¼ 4Þ Di

1 Chuo 0 0 0 0 0 2 0

2 Tennou 84 163 155 1 109 12 5/6a

3 Showa.Yakeyama 7 25 82 1 54 0 1/6

4 Hiro 6 22 104 0 137 0 2/6

5 Ondo.Kurahashi 38 62 127 5 77 2 3/6

6 Kawajiri.Yasuura 75 376 403 1 195 4 5/6a

7 Takaya 1 2 9 28 31 1 0

8 Saijo 2 4 7 21 36 5 1/6

9 Hachihonmatsu 3 2 1 40 47 0 0

10 Kurose 6 33 3 65 103 1 2/6

11 Fukutomi.Toyosaka.Kochi 16 12 14 47 45 4 1/6

12 Akitsu 12 47 8 202 112 1 2/6

13 Fuchu 2 16 39 6 42 0 0

14 Kaita 7 35 11 139 138 1 2/6

15 Kumano 24 21 18 19 32 12 1/6

16 Saka 195 687 106 0 0 17 4/6a

17 Naka ward 0 0 3 7 1 0 0

18 Higashi ward 20 17 22 38 86 1 0

19 Minami ward 11 30 18 19 38 1 0

20 Nishi ward 1 2 6 6 3 0 0

21 Asaminami ward 0 0 1 1 83 0 0

22 Asakita ward 21 157 15 394 216 3 3/6

23 Aki ward 58 152 59 429 550 20 6/6a

24 Saiki ward 0 0 6 0 1 0 0

a”Affected” areas.

https://doi.org/10.1371/journal.pone.0288969.t001
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05:00 PM. Day of week and holidays show negative values, meaning that the increase in the

expected minimum generalized cost would negatively influence people to travel on Saturday,

Sunday, and the Obon holiday, although those effect sizes are small. The marginal r-squared

index shows that the proportion of variance explained by fixed effects is 42.3%, while the pro-

portion of variance explained by both fixed and random effects is 81.1%. Additionally, we also

perform a chi-square test to confirm the significance of the random components. The results

reveal that two random components are significant, implying that these cannot be ignored in

the analysis.

We then identify changes in elasticities for each combination of origin i, destination j, and

date c. Since travel demand decreased on holidays, we calculated the moving average of the

Table 2. The results of multilevel log-log linear analysis.

β t-value σ2 X2 value

Fixed effects
Intercept 1.804 262.73

Expected Minimum Generalized Cost -1.253 -192.93

Time (01:00 AM) -0.371 -47.47

Time (02:00 AM) -0.677 -83.01

Time (03:00 AM) -0.637 -79.35

Time (04:00 AM) -0.287 -39.66

Time (05:00 AM) 0.673 106.32

Time (06:00 AM) 1.579 262.76

Time (07:00 AM) 1.997 335.92

Time (08:00 AM) 1.897 318.74

Time (09:00 AM) 1.628 271.80

Time (10:00 AM) 1.514 251.53

Time (11:00 AM) 1.486 246.43

Time (12:00 AM) 1.516 251.30

Time (01:00 PM) 1.505 249.78

Time (02:00 PM) 1.529 254.31

Time (03:00 PM) 1.638 273.94

Time (04:00 PM) 1.785 299.97

Time (05:00 PM) 1.967 331.60

Time (06:00 PM) 1.929 324.46

Time (07:00 PM) 1.725 287.60

Time (08:00 PM) 1.430 234.91

Time (09:00 PM) 1.162 186.81

Time (10:00 PM) 0.819 127.15

Time (11:00 PM) 0.407 59.73

Sunday -0.048 -5.40

Saturday -0.008 -0.91

Obon holiday -0.002 -0.19

Random effects
Origin-Destination-Date (Intercept) 0.32 14,662

Origin-Destination-Date (Expected Minimum Generalized Cost) 0.66 46,216

Residual 0.41

Final log-likelihood -1,029,119

Marginal R2/ Conditional R2 0.423/0.811

Number of observations 953,255

https://doi.org/10.1371/journal.pone.0288969.t002
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elasticity value for every successive 7 days. Fig 2 shows the results. The first vertical line in the

figure shows the date when the disaster happened. From the figure, we can confirm that two

hypotheses are supported, except on July 7, where the hypotheses are (1) immediately after the

disaster, the elasticity of travel demand becomes more elastic; and (2) travel demand becomes

less elastic, once the urgent situation is over. We think that the elasticity values became less

elastic on July 7 because travelers did not fully recognize the massive road network disruptions

on that day, and thus, travelers did not change their behavior. From July 8, as we expect, the

elasticities became more elastic, implying that the reduction in supply level was recognized by

travelers, resulting in the reduction in the demand. This confirms the first hypothesis. Once

the urgent situation is over, the elasticities become less elastic, indicating that travelers’

responses go back to the normal state. Note that changes in elasticities may vary depending on

the degree of damage in origin and destination areas. To confirm this, in the later part, we fur-

ther divide areas based on degree of damage and re-confirm the hypotheses.

The reduction in elasticity of demand some time after the disaster indicates that the trans-

port reverted back to being a necessity good. Being a necessity good implies that travelers are

less reactive to the changes in supply. In such a situation, traffic congestion may be happening.

Hence, it is important for policymakers to properly control the traffic, particularly when trans-

port becomes a necessity good. Fig 2 displays the detection points and the phase transition in

utilizing transport systems. We aggregate the elasticity values and detect two different points

based on the change point detection (first and third vertical lines), and then set one point

based on the Japanese government’s initial response system to the disaster (second vertical

line), covering the four main phases, i.e., normal, emergency response, adaptation, and

recovery.

Fig 2. Changes in elasticities and its change point detection.

https://doi.org/10.1371/journal.pone.0288969.g002
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The normal phase is the phase when there is no disruption, i.e., before the disaster occurs.

In our study, the normal phase refers to June 1 to July 5, 2018. The elasticity values also seem

stable in this phase, as suggested by the moving average of the elasticity values. The change

point detection detects the first transition in point 36 (July 6, 2018), reflecting the starting

point of the emergency response. The regulations regarding the closure of road sections in the

transportation network start on July 7, 2018 [45]. The floods and landslides had already

occurred on the night of July 6, 2018 [50] and had broken some links in the transportation net-

work in Hiroshima area [51]. This condition confirms that the emergency response phase

occurs on the day when the disruption happened. During the emergency response phase, the

main objective is usually to save lives, so a higher priority is given to emergency vehicles that

support the rescue activity. As discussed previously, this phase continues for 72 hours (July

6–8, 2018) according to the Japanese government’s disaster response system. In this case, the

identification of emergency phase is well known and established and is the norm all around

the world. On the other hand, the identification of the end of adaptation phase may not really

be clear to policymakers. One major contribution of our method is the ability to identify the

timing of phase transition from adaptation phase to recovery phase. The phase then shifts to

the adaptation phase (July 9 –August 9, 2018), where people started to adapt to the disrupted

situation. Based on the change point detection, we also found that the next transition is on

August 9, 2018, around one month after the disaster. During the recovery phase, the elasticity

values gradually returned to the values from the normal phase. Details of the timing of the

phase transitions are shown in Table 3.

To understand changes in factors affecting travel demand by phase, we further implement a

variance decomposition. Fig 3 displays the results. We found that the total relative contribu-

tion of expected minimum generalized cost tends to be smaller than before the disaster, and it

gets back to normal around a month after the disaster. More specifically, in the emergency

response phase, the contribution of the cost decreased to 26.8%, and are more heterogenous

across origin-destination-date. In the adaptation phase, the fixed effect of the cost seems to be

back to normal, while the heterogeneities across origin-destination-date remain. In the recov-

ery phase, the heterogeneities also get back to normal. Additionally, the results imply that the

total random variables and residuals have a high proportion in the emergency response phase

(31.3%), which suggests that variables not covered in this study may have a great influence on

changes in the elasticity of travel demand during that time.

As mentioned above, since the change in elasticities would vary depending on damages in

origin and destination areas, we calculate changes in elasticities for the following four different

origin-destination combinations: (1) from "affected" to “affected” area (between “affected”

areas), (2) from “affected” area to “non-affected” area, (3) from “non-affected” area to

“affected” area, and 4) from “non-affected” to “non-affected” area (between “non-affected”

areas). We could not obtain the elasticities of areas which were isolated due to network disrup-

tions. For those missing values, we implement mean imputation within the group. Fig 4 shows

the results of the elasticity values.

Table 3. Timing of phase transition in utilizing transport systems.

No Phase Change Point Detection Period (Point) Time Period (Date)

1 Normal - 1–35 June 1 –July 5, 2018

2 Emergency response 36 36–38 July 6–8, 2018

3 Adaptation - 39–69 July 9 –August 8, 2018

4 Recovery 70 70–153 August 9 –October 31, 2018

https://doi.org/10.1371/journal.pone.0288969.t003
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We found that there are significant differences among groups. First, the elasticities in 4(a),

4(b), and 4(c) become more elastic soon after the disaster, although we could not calculate the

elasticities in 4(a) in the immediate two days after the disaster due to the isolation of the areas.

Second, we found that the elasticities in 4(d) become less elastic on the disaster day, presum-

ably because some people shifted their destination from “affected” area to “non-affected” area.

Based on Fig 4, the first hypothesis is confirmed for groups 4(a), 4(b), and 4(c), which are O-D

pairs involving “affected” areas. This suggests that transport tends to be viewed as a luxury

good in “affected” areas, implying that people tend to stop traveling and doing leisure activi-

ties. We also found that the elasticity values become less elastic, once the urgent situation is

over, supporting the second hypothesis. This would be because people need to resume travel,

e.g., to work or school. Under this condition, transport becomes a necessity good. In summary,

the hypotheses that we tested in the changes of elasticities based on degree of damages reveal

that transport becomes a luxury good immediately after the disaster in the O-D pairs involving

“affected” areas, and then becomes a necessity good. Additionally, we identify the change

point detection by group to see how the change point detection results differ across groups.

The details change points detection in the elasticity values based on degree of the damage’s

group (O-D pairs) can be seen in S1 and S2 Tables, while the change point detection of the

elasticity (aggregate values) can be seen in S1 Fig, and the change point detection of elasticities

based on different O-D pairs can be seen in S2 Fig. The results show differences across groups,

though some change points are overlapping. Note that the points in time where we could not

estimate the elasticity values in group 4(a) were excluded as missing values.

Due to the heavy rain in July 2018, one of the affected areas, Tenno (Kure) experienced con-

gestion due to high travel demand which continued for several months [52]. The prolonged

disruptions to the transport network forced people to consider the transport as a luxury good,

Fig 3. Variance decomposition.

https://doi.org/10.1371/journal.pone.0288969.g003
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but then it was considered a necessity good even though the transport network conditions had

not fully recovered and total travel costs were higher. This led to congestion. These results sug-

gest that understanding the timing of phase transition could help policymakers to make better

decisions in transport management under disaster situations, for example, to shift their focus

from meeting travel needs for immediate responses to travel needs for recovery activities. Our

findings also show that during the recovery phase, the elasticities of travel demand fluctuated

less. These results indicate that the proposed method based on systematic data analysis can be

useful for assessing the phase transition, which would help policymakers to make better deci-

sions on transport management during and after a disaster.

Overall, our results indicate that, people tend to consider travel as a luxury good soon after

the disaster (and it was back to the normal after around a month in the case study), indicating

that people tend to stop traveling. While this contributes to the reduction of traffic congestion

and thus makes emergency activities more efficient, it also has a negative impact on local econ-

omies. For example, in the case of July 2018 heavy rain disaster, Mazda Motor Corporation

stated that, due to the disruption of transport network, factory employees had difficulty com-

muting to work, resulting in the monetary loss which was around 28 billion yen [53]. Thus, as

long as the negative impact on disaster-related activities is minimum, policymakers should

also consider supporting travel needs for non-affected people. However, such a policy decision

Fig 4. Changes of elasticities based on different O-D pairs. (a) changes elasticities between affected areas, (b) changes elasticities from the affected area to non-affected

area, (c) changes elasticities from non-affected area to the affected area, (d) changes elasticities between non-affected areas.

https://doi.org/10.1371/journal.pone.0288969.g004
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is quite challenging, essentially because it is not easy to make sure that the impact on disaster-

related activities is minimum. Our method would help policymakers to judge the timing when

disaster-related activities would get reduced and thus could allocate more transport resources

to non-affected people. In our case study, it was identified as August 9, 2018, around a month

after the disaster. Although we should not employ this date without any doubt as discussed in

Introduction, this would offer a good basis for discussion to have a consensus among relevant

stakeholders to decide the direction for transport management.

Conclusion

When a disaster occurs, the situation shifts from normal to emergency response, adaptation,

and recovery, calling for changes in policy goals: in emergency response phase saving lives

would be the main policy goal and the congestion reduction may be secondary, while in the

latter phases the weight will be different. To quickly adapt with the phase transition, upgrading

the monitoring system of transport conditions is essential. In this study, we propose a data-

driven method to identify the phase transition based on changes in the transport service neces-

sity index. Specifically, we argue that the elasticity of travel demand could be an indicator of

phase transition as it depicts changes in consumers’ tastes, i.e., changes in the degree of travel

necessity during a disaster. We focus on the heavy rain disaster which took place in Hiroshima,

Japan, in July 2018, and utilize mobile phone location data to calculate the elasticity of travel

demand and its changes.

The elasticity of travel demand indicates the degree to which travel demand responds to

changes in the transport network’s service level under disaster situations. We confirm the first

hypothesis (H1: Immediately after the disaster, the elasticity of travel demand becomes more
elastic. This may be because people tend to stop traveling and doing non-emergency activities
such as leisure activities) in areas involving “affected” areas and confirm the second hypothesis

(H2: Once the urgent disaster is over, the elasticity of travel demand becomes less elastic, mainly
because of the increase in recovery activities) in both “affected” and “non-affected” areas.

In short, transport becomes a luxury good soon after a disaster, and then becomes a

necessity good, once the urgent situation is over. These results indicate that the proposed

method can be used for judging the phase transition based on a systematic data analysis,

which could help policymakers make better decisions of transport management under disas-

ter situations, e.g., the timing for opening roads for non-emergent travel needs. However, at

present, information about road disruption and travel demand information, such as the

Mobile Spatial Statistics used in this study, are not available to policymakers in real time.

This is partially because there is no official rule on how to record and share road disruption

information among road administrators. Putting this data into a single platform would be

necessary to apply this methodology and monitor how phases are shifting in real time during

a disaster.

In principle, we can evaluate the effectiveness of the monitoring system by comparing its

performance with and without the use of the index proposed. This will be the focus of our

future study. Additionally, the current study does not take into account the congestion

aspects directly, though it was a serious problem during the disaster studied in this research

[54]. This is an area for future research. Our study also does not take into account the magni-

tude of the disaster, as we specifically targeted the July 2018 heavy rain disaster in Japan.

Despite these limitations, this study offers an innovative methodology for identifying phase

transition of the transport system during a disaster, which can become an important tool for

transport management during disasters that can be utilized and applied to other types of

disasters.
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