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Abstract

Recurrent neuroinflammation in relapsing-remitting MS (RRMS) is thought to lead to neuro-

degeneration, resulting in progressive disability. Repeated magnetic resonance imaging

(MRI) of the brain provides non-invasive measures of atrophy over time, a key marker of

neurodegeneration. This study investigates regional neurodegeneration of the brain in

recently-diagnosed RRMS using volumetry and voxel-based morphometry (VBM). RRMS

patients (N = 354) underwent 3T structural MRI <6 months after diagnosis and 1-year fol-

low-up, as part of the Scottish multicentre ‘FutureMS’ study. MRI data were processed

using FreeSurfer to derive volumetrics, and FSL for VBM (grey matter (GM) only), to estab-

lish regional patterns of change in GM and normal-appearing white matter (NAWM) over

time throughout the brain. Volumetric analyses showed a decrease over time (q<0.05) in

bilateral cortical GM and NAWM, cerebellar GM, brainstem, amygdala, basal ganglia, hippo-

campus, accumbens, thalamus and ventral diencephalon. Additionally, NAWM and GM vol-

ume decreased respectively in the following cortical regions, frontal: 14 out of 26 regions

and 16/26; temporal: 18/18 and 15/18; parietal: 14/14 and 11/14; occipital: 7/8 and 8/8. Left

GM and NAWM asymmetry was observed in the frontal lobe. GM VBM analysis showed

three major clusters of decrease over time: 1) temporal and subcortical areas, 2) cerebel-

lum, 3) anterior cingulum and supplementary motor cortex; and four smaller clusters within

the occipital lobe. Widespread GM and NAWM atrophy was observed in this large recently-

diagnosed RRMS cohort, particularly in the brainstem, cerebellar GM, and subcortical and

occipital-temporal regions; indicative of neurodegeneration across tissue types, and in

accord with limited previous studies in early disease. Volumetric and VBM results empha-

sise different features of longitudinal lobar and loco-regional change, however identify con-

sistent atrophy patterns across individuals. Atrophy measures targeted to specific brain
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regions may provide improved markers of neurodegeneration, and potential future imaging

stratifiers and endpoints for clinical decision making and therapeutic trials.

1. Introduction

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease affecting two

million people worldwide [1–3]. Disease progression and severity varies between individuals,

and symptoms are diverse, including mobility and vision problems, pain, depression, fatigue

and cognitive impairment [4]. Several MS subtypes have been identified, of which relapsing-

remitting disease (RRMS) is the most common [5,6]. There is currently no cure for MS. More

accurate biomarkers of disease progression and improved understanding of disease mecha-

nisms, particularly in terms of neurodegeneration, are required for more suitable treatment of

MS. Magnetic resonance imaging (MRI) allows for studying neurodegeneration in vivo,

through measurement of tissue volume change (atrophy) over time, and may thus provide

such valuable biomarkers of MS severity and progression.

White matter lesions (WMLs) on MRI, reflecting underlying inflammatory demyelinat-

ing lesions, are considered an imaging hallmark of RRMS and are required for RRMS diag-

nosis [7]. Modulating neuroinflammation is also the primary target for currently available

disease modifying treatment (DMT) for RRMS. However, these appear to have only a lim-

ited effect on reducing associated neurodegenerative processes [8,9]. Previous studies have

shown that neurodegeneration also plays a prominent role in the disease evolution of

RRMS and is importantly already present in the early stages of the disease [10–15]. Early-

stage grey matter (GM) atrophy has been observed in specific brain areas, including the cin-

gulate gyrus, precuneus, thalamus, basal ganglia, brainstem and cerebellum [11,16–18]. Less

is known about regional patterns of WM atrophy in RRMS, but WM atrophy also occurs in

early disease and has been suggested to occur independently of WML development

[10,19,20]. Furthermore, previous studies have shown microstructural changes reflective of

neurodegeneration within the normal-appearing WM (NAWM) [21]. Importantly, atrophy

appears to be a better predictor of clinical disability and deterioration than WMLs

[13,17,22–32]. This suggests it could provide a useful surrogate for neurodegeneration, to

help stratify patients and evaluate the efficacy of disease-slowing treatments. Existing stud-

ies investigating the effect of current DMTs on atrophy suggest a slowing of neurodegenera-

tion after DMT use [33–38]. Further research is required to investigate the effect of current

DMTs and possible future neuroprotective therapies on brain atrophy. Such studies would

benefit from detailed knowledge of the location and extent of early-stage GM and WM atro-

phy in RRMS [39].

Current literature does not provide detailed insights into regional WM volume loss

in recently-diagnosed RRMS, and only a limited number of studies have examined

specific regional GM volume in early stages of the disease [11,16–18]. The aim of this

study was to investigate neurodegenerative changes reflected in loco-regional atrophy in

recently-diagnosed people with RRMS. Additionally, two analysis approaches were used to

understand disparate results in the literature and the degree to which they result from dif-

ferent measurement methodology. Baseline and 1-year follow-up MR imaging data was

used from the FutureMS study [40,41], a large multicentre cohort of RRMS patients within

six months after diagnosis. This allows for identification of brain areas affected by early

atrophy in RRMS, which may provide possible biomarkers of disease progression for DMT

trials.
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2. Methods

2.1 Participants

Participants with a recent diagnosis of RRMS according to the 2017 McDonald criteria (< 6

months) [7], were recruited (2016–2019) across five neurology sites in Scotland: Aberdeen,

Dundee, Edinburgh, Inverness and Glasgow, as part of the FutureMS study [40,41]. Partici-

pants were 18 years or older and had the capacity to provide informed consent. Exclusion cri-

teria were participation in a clinical trial prior to baseline assessment,contraindications for

MRI, and intake of DMTs prescribed prior to baseline assessment. The latter criteria was

selected because DMT intake in the Scottish population is very low compared with other coun-

tries, creating a unique opportunity to develop natural history predictive tools. Study visits

took place at baseline (wave 0 [w0])) and 1-year follow-up (w1) and participants underwent

brain MRI and expanded-disability status scale (EDSS) assessment at both time points. Full

details of the FutureMS study have been previously described in Kearns et al. 2021 [40].

N = 431 participants underwent MR imaging at w0 and N = 382 participants underwent

MR imaging at w1. The main reasons for not returning for w1 were not being able to reach

participants at the provided contact details or participants having moved away from Scotland

and not wanting to travel back. Additionally, the COVID-19 pandemic prematurely termi-

nated w1 visits, which prevented several participants returning for their second visit. Addition-

ally, 77/431 participants were excluded for various reasons (see Fig 1), resulting in N = 354

available MRI datasets for analysis.

All participants provided written informed consent before study entry. The study received

ethical approval from the South East Scotland Research Ethics Committee 02 under reference

15/SS/0233 and was conducted in accordance with the Declaration of Helsinki and ICH guide-

lines on good clinical practice. Authors did not ave access to information that could identify

individual participants during or after data collection. All data were anonymised with unique

study identifiers.

2.2 MR image acquisition

MR image acquisition was performed across four sites in Scotland using comparable 3T MRI

systems (Siemens in Glasgow, Dundee and Edinburgh; Philips in Aberdeen). Protocol harmo-

nisation was implemented during the course of the study to increase between-site comparabil-

ity and facilitate image analysis. Importantly, each participant underwent both MRI scans at

the same centre using the same protocol. All participants underwent T1-weighted,

T2-weighted, and 2D FLAIR imaging. Full details have been previously described in Meijboom

et al. (2022) [41] (see S1 Table for an overview of all MR parameters).

2.3 MR image processing

Image processing methods have been previously described in full in Meijboom et al. (2022)

[41] and are briefly summarised in the sections below.

Fig 1. Overview of data exclusions.

https://doi.org/10.1371/journal.pone.0288967.g001
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2.3.1 Registration and ICV. All images were registered to the T1W image with a rigid

body transformation (degrees of freedom = 6) using FSL FLIRT (FSL v6.0.1) [42,43] separately

for each time point. Brain tissue was isolated using FSL BET2 (FSL v6.0.1) [44], followed by

manual editing (i.e. removal of any non-intracranial tissue) of the resulting w0 intracranial

image using ITK-SNAP v3.8.0 [45]. For each participant, the edited w0 intracranial image was

registered to the w1 T1W image, to avoid within-subject variability between time points. Intra-

cranial volume (ICV) was extracted using fslstats (FSL6.0.1).

2.3.2 WML segmentation. Hyperintense voxels on 2D FLAIR were identified by thresh-

olding intensity values to 1.69 SDs > mean, using an adjusted method from Zhan et al. (2014)

[46]. Resulting hyperintense areas unlikely to reflect pathology were removed using a pre-

defined lesion distribution template [47], followed by Gaussian smoothing. Resulting WML

masks were manually edited using ITK-SNAP [45]. WML volumes were extracted using

fslstats and expressed as a ratio of ICV (r-ICV) to correct for head size.

2.3.3 Tissue segmentation. Tissue segmentation was performed on T1W images using

the longitudinal processing stream [48] in FreeSurfer v6.0 (http://surfer.nmr.mgh.harvard.

edu/) with default settings and the edited intracranial image as brain mask. Tissue segmenta-

tions were based on the Desikan-Kiliany atlas [49] and pial surfaces were improved using addi-

tional contrast from T2W images. Freesurfer output was manually edited by a trained

neuroscientist where necessary using FreeView v2.0 (FreeSurfer v6.0) and following FreeSurfer

editing guidelines (https://surfer.nmr.mgh.harvard.edu/fswiki/Edits). WML masks were then

subtracted from the resulting tissue segmentations using fslmaths (FSL6.0.1), to create final tis-

sue masks. Global and regional tissue volumes (see Table 1) were calculated from the final tis-

sue masks using fslstats, and subsequently expressed as r-ICV to correct for head size.

2.3.4 Voxel-based morphometry. Longitudinal voxel-based morphometry (VBM), apply-

ing a voxel-wise comparison of local GM concentration between w0 and w1, was performed

using the FSL VBM pipeline (FSL6.0.1; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) [50–53].

Table 1. Global and regional GM/WM and subcortical areas.

Global WM and GM Brainstem

Cortical GM

Cerebellar GM

Cerebral WM

Cerebellar WM

Subcortical regions Amygdala

Basal ganglia

Hippocampus

Nucleus accumbens

Thalamus

Ventral diencephalon

Regional WM and GM Frontal Parietal Temporal Occipital
Superior frontal Superior parietal Superior temporal Lateral Occipital Insula

Caudal middle frontal Inferior parietal Middle temporal Lingual

Rostral middle frontal Supramarginal Inferior temporal Cuneus

Pars opercularis Postcentral Superior temporal sulcus banks Pericalcarine

Pars triangularis Precuneus Fusiform

Pars orbitalis Posterior cingulate Transverse temporal

Lateral orbitofrontal Isthmus cingulate Entorhinal

Medial orbitofrontal Temporal Pole

Precentral Parahippocampal

Paracentral

Frontal pole

Caudal anterior cingulate

Rostral anterior cingulate

Left and right hemisphere were separately included for all areas, excluding the brainstem. WM = white matter, GM = grey matter.

https://doi.org/10.1371/journal.pone.0288967.t001
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It was performed for GM only, because GM VBM is a more commonly used and accepted

method (e.g. a WM VBM pipeline is not implemented in FSL). The first step of the VBM pipe-

line (i.e. brain extraction) was omitted, as we were able to use the previously created intracra-

nial brain images, as described above. In step two, GM, WM and CSF were segmented from

T1W images and the study-specific GM template was created. Specifically, all subject GM

images at both time points were affine-registered to the GM ICBM-152 template, and then

concatenated and averaged to create a study-specific GM template. The subject GM images

were then non-linearly registered to this study-specific template, and concatenated and aver-

aged again to then create a final study-specific GM template in standard space (2x2x2mm3 res-

olution). In the last step, subject GM at both time points was then non-linearly registered to

this study-specific template, after which a Jacobian modulation was applied, resulting in mod-

ulated GM images for each time point per subject.

As an additional step, to allow for longitudinal VBM analysis, we subtracted the modulated

GM images for w1 from those at w0 using fslmaths, resulting in a GM difference file for each

subject. Modulated GM difference files were then smoothed with a Gaussian size 2 kernel

using fslmaths, and concatenated using fslmerge (FSL6.0.1) to form a final 4D group GM dif-

ference image for statistical analysis.

2.4 Statistical analyses

2.4.1 Volumetrics. Statistical analysis for tissue volumes was performed using R v4.0.2

[54] and package lmerTest [55], with further packages ggplot2 [56] and lattice [57] used to cre-

ate figures. A linear mixed-effects model was applied for each tissue volume (Table 1) with

time point (w0, w1) as regressor of interest and age, sex, imaging site, WML change (w1 – w0)

and DMT status at w1 as covariates. WML volume change was added as a covariate to correct

for GM and WM volume changes induced by enlarging and/or receding WMLs. DMT status

was included as a covariate to correct for the difference in effect of undergoing or not undergo-

ing DMT (between baseline and follow-up) on GM and WM volume change. Additionally, to

correct for any differences in volume change over time due to older and younger participants,

the interaction between time and age was added. The interaction was removed from the model

if not significant. For each outcome variable, extreme outliers (>3 SD) as well as participants

with missing data at either time point were excluded. In case of missing DMT data, the mode

of the group was used instead, i.e. yes to DMT use at w1. Subsequently, continuous variables

were scaled before being entered into the linear model. False discovery rate (FDR) correction

was performed to adjust p-values for multiple comparisons, with corrected p-values (q-values)

considered significant at q<0.05.

2.4.2 Voxel-based morphometry. FSL Randomise (FSL v6.0.1) [58] was used to perform

nonparametric permutation analysis on the VBM output. A general linear model (GLM)

design matrix was created with GM difference, age, sex, imaging site, DMT status at w1 and

subject-specific WML mask as explanatory variables (EV). In case of missing DMT data, the

mode of the group was used instead, i.e. yes to DMT use at w1. The interaction of age and time

was not added here. Given the interaction was not significant in 98% of volumetric regions

studied, it is unlikely it will have a significant effect on the overall VBM results. EVs were

recentered to zero where appropriate.

WMLs were included as EVs to ensure their exclusion from the GM images. Subject-spe-

cific WML EVs were created by a) registering all subject-specific WML masks at w0 and w1 to

the subject’s modulated GM segmentation image at respectively w0 and w1, with the VBM

transformation matrix that was created for registration of the native T1W to the group-specific

template (fslmaths), and b) using FSL tool ‘setup_masks’ (FSL6.0.1; https://fsl.fmrib.ox.ac.uk/
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fsl/fslwiki/Randomise/UserGuide) to generate a concatenated 4D subject-specific WML image

from the step a output images, as well as add a WML EV for each subject separately to the

design matrix.

One t-contrast was defined, which assessed GM change over time, corrected for the remain-

ing EV’s. The ‘randomise’ function was run using 5000 permutations, and with threshold-free

cluster enhancing (TFCE) [59] to perform a voxel-wise analysis with a specific focus on voxel

clusters. Cluster (FSL6.0.1) was used to extract resulting clusters and atlasquery (FSL v6.0.1)

was used to obtain labels for the included anatomical regions. Results were family-wise error

(FWR) corrected for multiple comparisons (p<0.001).

3. Results

3.1 Demographics

Data from N = 315 participants were used for tissue volume analysis and data from N = 351

were used for VBM analysis. Specifically, for tissue volume analysis, 39/354 cases were

excluded due to segmentations of insufficient quality and for VBM analysis, 3/354 datasets

were excluded for data processing purposes. In addition, for the tissue volume dataset, for par-

ticipants where segmentation failed for one or a small number of areas only (usually subcorti-

cal), the appropriate areas were excluded from analysis, but the remaining data of the

participant was included in analysis. See Table 2 for participant demographics for each analysis

type.

Participants were DMT-naïve at w0, but most started receiving DMTs between w0 and w1

(Table 2). Post-hoc regression analyses showed tissue volume change was not significantly dif-

ferent between participants positive or negative for DMTs at w1 (S2 Table). The majority of

DMTs administered to this cohort consisted of dimethyl fumarate (97 volumetrics sample; 104

VBM sample), but glatirimer acetate (31; 37), beta interferon (16; 20) and alemtuzumab (22;

24) were also used. A few participants received natalizumab (8 volumetrics sample; 9 VBM

sample), fingolimod (7; 7), teriflunomide (5; 9), azathioprine (1; 1), a combination of the

Table 2. Participant demographics.

Tissue volumes VBM

N (fenale) 315 (237) 351 (264)

Mean age at w0 (SD) 38.18 (10.21) 38.22 (10.38)

Median EDSS at w0 (IQR) 2 (1.5) 2 (1.5)

Median EDSS at w1 (IQR) 2.5 (1) 2.5 (1)

Mean diagnosis to w0 in

days (SD)

63.77 (39.12) 64.02 (39.04)

DMT use w0: none | w1: 224 (8 unknown) w0: none | w1: 252 (unknown 13)

MRI sites ABN = 15, ED1 = 74, ED2 = 71,

DUN = 34,GLA = 121

ABN = 17, ED1 = 84, ED2 = 77,

DUN = 38,GLA = 135

MRI protocol protocol A = 134, protocol B = 181 protocol A = 149, protocol B = 202

Mean WML volume %ICV at

w0 (SD)

0.82 (0.67) 0.91 (0.89)

Mean WML volume %ICV at

w1 (SD)

1.00 (0.66) 1.09 (0.84)

N = sample size, SD = standard deviation, IQR = interquartile range, EDSS = expanded disability status scale,

VBM = voxel-based morphometry, w0 = baseline, w1 = 1-year follow-up, MRI = magnetic resonance imaging,

WML = white matter lesion, ICV = intracranial volume, ABN = Aberdeen, ED1 = Edinburgh site 1,

ED2 = Edinburgh site 2, DUN = Dundee, GLA = Glasgow.

https://doi.org/10.1371/journal.pone.0288967.t002

PLOS ONE Patterns of brain atrophy in early RRMS

PLOS ONE | https://doi.org/10.1371/journal.pone.0288967 July 28, 2023 6 / 20

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide
https://doi.org/10.1371/journal.pone.0288967.t002
https://doi.org/10.1371/journal.pone.0288967


aforementioned DMTs (16; 18) or a DMT not further specified (21; 24). Additionally, 9 partic-

ipants received a short course of oral or intravenous steroids in keeping with UK guidelines

for managing MS relapse [60], within six weeks prior to the MRI scan (range 3 to 31 days; 7/9

prior to w0 and 2/9 prior to w1).

3.2 Global GM/WM, subcortical and whole-brain volumes

Whole-brain, brainstem and left and right cerebral GM and WM, right cerebellar GM, brain-

stem, amygdala, basal ganglia, hippocampus, nucleus accumbens, thalamus and ventral dien-

cephalon volumes significantly (q<0.05) decreased over time, whereas left and right cerebellar

WM did not significantly (q>0.05) change over time (Table 3, Fig 2). Additionally, atrophy

rates for the left cerebellar GM were significantly different across age (See S3 Table for interac-

tion effects). Covariate significance (p<0.05) was variable across regions. Age and sex were sig-

nificant in nearly all regions, except the bilateral cerebral NAWM (age and sex), brainstem

(sex), right cerebellar GM (sex), and bilateral cerebellar NAWM (age).Site was significant for

the bilateral amygdala, left accumbens, right cerebellar GM, bilateral cerebral GM, bilateral

hippocampus, bilateral cerebellar NAWM, left cerebral NAWM, left thalamus (site), and

Table 3. Global GM/NAWM, subcortical and whole-brain volumes results for change over time.

Bstandardised SE df t Puncorrected CI 2.5. CI 97.5. Mean w0

(%ICV)

SD w0

(%ICV)

Mean w1

(%ICV)

SD w1

(%ICV)

Mean 1-year % change

Accumbens L -0.0546 0.0210 313 -2.6078 0.0096 -0.0958 -0.0135 0.0371 0.0070 0.0367 0.0071 -1.0328

Accumbens R -0.0787 0.0229 288 -3.4413 0.0007 -0.1236 -0.0338 0.0407 0.0063 0.0403 0.0064 -0.8147

Amygdala L -0.0963 0.0222 312 -4.3368 <0.0001 -0.1398 -0.0527 0.1018 0.0119 0.1007 0.0120 -1.1297

Amygdala R -0.1458 0.0217 313 -6.7159 <0.0001 -0.1885 -0.1032 0.1156 0.0117 0.1139 0.0116 -1.4730

Basal Ganglia L -0.1510 0.0192 313 -7.8818 <0.0001 -0.1887 -0.1134 0.6456 0.0826 0.6359 0.0832 -1.5068

Basal Ganglia R -0.1646 0.0200 313 -8.2182 <0.0001 -0.2039 -0.1253 0.6477 0.0779 0.6362 0.0761 -1.7785

Brainstem -0.0671 0.0136 312 -4.9164 <0.0001 -0.0938 -0.0403 1.3243 0.1193 1.3165 0.1196 -0.5904

GM cerebellar La -0.0520 0.0115 313 -4.5135 <0.0001 -0.0745 -0.0294 3.4160 0.3488 3.3981 0.3459 -0.5247

GM cerebellar R -0.0615 0.0127 313 -4.8253 <0.0001 -0.0865 -0.0365 3.4578 0.3922 3.4367 0.3888 -0.6097

GM cortical L -0.0861 0.0165 313 -5.2088 <0.0001 -0.1186 -0.0537 15.5401 1.0006 15.4544 0.9889 -0.5513

GM cortical R -0.0608 0.0169 313 -3.5949 0.0004 -0.0941 -0.0276 15.5598 0.9803 15.5002 0.9790 -0.3829

Hippocampus L -0.1005 0.0177 313 -5.6859 <0.0001 -0.1352 -0.0658 0.2669 0.0254 0.2645 0.0255 -0.8973

Hippocampus R -0.0951 0.0163 313 -5.8384 <0.0001 -0.1271 -0.0632 0.2784 0.0673 0.2762 0.0696 -0.8018

NAWM cerebellar L -0.0215 0.0168 313 -1.2787 0.2019 -0.0546 0.0115 0.9693 0.5568 0.9658 0.5386 -0.3551

NAWM cerebellar R 0.0096 0.0162 311 0.5956 0.5519 -0.0221 0.0414 0.9165 0.1113 0.9169 0.1098 0.0444

NAWM cerebral L -0.1378 0.0121 311 -11.3639 <0.0001 -0.1617 -0.1140 14.0731 1.1201 13.9223 1.1618 -1.0716

NAWM cerebral R -0.1263 0.0120 313 -10.5151 <0.0001 -0.1498 -0.1027 14.0646 1.0971 13.9226 1.1497 -1.0100

Thalamus L -0.1163 0.0116 313 -10.0684 <0.0001 -0.1390 -0.0937 0.4972 0.7444 0.4908 0.7296 -1.2765

Thalamus R -0.1055 0.0107 311 -9.8826 <0.0001 -0.1265 -0.0846 0.4456 0.0441 0.4409 0.0450 -1.0525

Ventral DC L -0.0763 0.0173 311 -4.4036 <0.0001 -0.1103 -0.0423 0.2568 0.0230 0.2550 0.0231 -0.6912

Ventral DC R -0.1306 0.0186 289 -7.0225 <0.0001 -0.1671 -0.0941 0.2587 0.0246 0.2560 0.0245 -1.0304

Whole-brain -0.1001 0.0146 313 -6.8463 <0.0001 -0.1288 -0.0714 74.1152 3.7355 73.7433 3.7808 -0.5018

Global GM/NAWM, subcortical and whole-brain volumes results for change over time (w1-w0) as assessed with a linear mixed-effects model, corrected for age, sex,

imaging site, DMT status at w1 and WML change. Regression coefficient shown are standardised. Mean and SD are shown for volumes as % of intracranial volume (%

ICV), without covariate correction. B = standardised beta value, SE = standard error, df = degrees of freedom, CI = confidence interval for beta value, SD = standard

deviation, w0 = baseline, w1 = 1-year follow-up, L = left, R = right, GM = grey matter, NAWM = normal-appearing white matter, WML = white matter lesion,

DC = diencephalon, ICV = intracranial volumep-values surviving FDR correction (q<0.05) are highlighted in bold.
aThe model for GM cerebellar L included the significant interaction term for time*age.See S3 Table.

https://doi.org/10.1371/journal.pone.0288967.t003
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whole-brain (site). WML change was significant for the bilateral amygdala and right thalamus

only. DMT status at w1 did not reach significance for any brain region. See S3 Table for an

overview of all significant covariates and interaction effects.

3.3 Regional cortical GM and cerebral WM

Regional GM and NAWM volume decrease (q<0.05) was observed in most regions and pre-

dominantly in the temporal, parietal and occipital lobe. GM volume decreased over time in

15/18 temporal regions, 16/26 frontal regions, 11/14 parietal regions, 8/8 occipital regions and

the bilateral insula. NAWM volume decreased over time in 18/18 temporal regions, 14/26

frontal regions, 14/14 parietal regions, 7/8 occipital regions and the insula (L). More GM and

NAWM regions showed volume loss in the left than in the right hemisphere, particularly in

the frontal lobe. See Figs 2 and 3, and S4 Table. Covariate significance was variable across

regions, but age was most consistently significant and sex as well as site to a lesser extent. In

contrast, WML change and DMT status at w1 only reached significance for very few brain

regions. Additionally, 2/14 frontal NAWM regions, i.e. the left and right superior frontal

NAWM, showed differential atrophy rates across age. See S3 Table for an overview of all signif-

icant covariates and interactions.

3.4 Voxel-based GM change

Twelve clusters of various sizes (Table 4) showed a change in local concentration of GM over

time. The largest clusters were centred within 1) the temporal lobe and subcortical areas, 2)

Fig 2. Manhattan plot of longitudinal brain volume change. Each point represents a tissue region within the given brain area category (x-axis). P-values were

inverse log transformed (y-axis). Insignificant p-values (p>0.05) are shown in blue. Significant (p<0.05) false discovery rate (FDR) corrected p-values at

q = 0.05 are shown in pink, and in red for q = 0.001. Regardless of significance, the direction of all effects – but one frontal NAWM area (in grey)—showed a

longitudinal volume decrease. BS = brainstem, GM=grey matter, NAWM = normal-appearing white matter.

https://doi.org/10.1371/journal.pone.0288967.g002
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cerebellum, 3) anterior cingulum and supplementary motor cortex. Additional smaller clusters

were also observed in the temporal lobe and cerebellum. Furthermore, four smaller clusters

were observed in the occipital lobe, as well as one cluster in the posterior frontal lobe and one

in the parietal supramarginal and angular gyrus. See Fig 4 for VBM results. See Fig 5 for a

visual comparison of volumetric (regional GM, cerebellar GM and subcortical areas) and

VBM results.

Fig 3. Volumetric results. For illustration purposes, regional grey matter (GM) (A) and normal-appearing white matter

(NAWM) (B) areas with significant volume decrease (w1-w0; q<0.05) are shown on an example subject’s axial T1-weighted

image. Colours were chosen to emphasise borders between regions and have no further meaning in terms of results. This

figure was created using MRIcron (https://www.nitrc.org/projects/mricron).

https://doi.org/10.1371/journal.pone.0288967.g003

Table 4. Voxel-based morphometry results.

Cluster

Index

Voxels MAX X

(mm)

MAX Y

(mm)

MAX Z

(mm)

COG X

(mm)

COG Y

(mm)

COG Z

(mm)

MAX anatomical location COG anatomical location

1 7415 34 4 -44 3.03 -1.47 -4.59 Temporal Pole, Anterior Temporal

Fusiform Gyrus,

Anterior Inferior Temporal Gyrus

Right thalamus

2 2882 20 -64 -52 1.76 -65.2 -32.1 Cerebellum Cerebellum

3 794 0 22 20 -0.111 -1.98 45.5 Anterior Cingulate Gyrus Anterior Cingulate Gyrus,

Supplementary Motor Cortex

4 83 42 12 26 42.1 9.71 30.8 Inferior/Middle Frontal Gyrus,

Precentral Gyrus

Inferior/Middle Frontal Gyrus,

Precentral Gyrus

5 74 -24 -76 -12 -22.8 -73.9 -11.4 Occipital Fusiform Gyrus, Lateral

Occipital Gyrus, Lingual Gyrus

Occipital Fusiform Gyrus, Lingual

Gyrus

6 62 34 -96 -10 27.1 -97.8 -5.35 Occipital Pole, lateral occipital cortex Occipital Pole

7 39 14 -98 18 10.7 -95.4 22.9 Occipital Pole Occipital Pole

8 38 60 -48 18 55.7 -47.2 20.9 Angular Gyrus, Posterior

Supramarginal Gyrus

Angular Gyrus, Posterior

Supramarginal Gyrus

9 37 -44 -20 -36 -45.9 -19.1 -31.5 Posterior Inferior Temporal Gyrus,

Posterior Temporal Fusiform Gyrus

Posterior Inferior Temporal Gyrus,

Posterior Temporal Fusiform Gyrus

10 32 20 -102 4 16.8 -101 7.44 Occipital Pole Occipital Pole

11 27 -62 -24 4 -63.3 -23.6 8.96 Posterior Superior Temporal Gyrus,

Planum Temporale

Posterior Superior Temporal Gyrus,

Planum Temporale

12 26 -32 -44 -42 -31.6 -40.5 -40.9 Cerebellum Cerebellum

VBM cluster results (cluster-size>20, pcorrected<0.001) for GM change over time (w1-w0) in RRMS (N = 351). VBM = voxel-based morphometry, GM = grey matter,

RRMS = relapsing-remitting multiple sclerosis, MAX X/Y/Z = maximum cluster coordinates, mm = millimetres, COG X/Y/Z = centre of gravity cluster coordinates.

https://doi.org/10.1371/journal.pone.0288967.t004

PLOS ONE Patterns of brain atrophy in early RRMS

PLOS ONE | https://doi.org/10.1371/journal.pone.0288967 July 28, 2023 9 / 20

https://www.nitrc.org/projects/mricron
https://doi.org/10.1371/journal.pone.0288967.g003
https://doi.org/10.1371/journal.pone.0288967.t004
https://doi.org/10.1371/journal.pone.0288967


4. Discussion

The current study used imaging data from the FutureMS cohort, a large longitudinal multicen-

tre cohort of people with recently-diagnosed RRMS in Scotland. The aim of our study was to

establish a profile of regional NAWM and GM atrophy in recently-diagnosed RRMS. In addi-

tion, the effects of different imaging analysis approaches on observed patterns of atrophy were

compared.

Widespread NAWM and GM atrophy was observed using both approaches. With the volu-

metric approach, people with recently-diagnosed RRMS showed brain volume loss in the

brainstem, all subcortical regions and the cerebellar GM but not NAWM, over one year. Fur-

thermore, cerebral NAWM and GM volume loss over one year was also evident. Specifically,

GM and NAWM volume decreased in nearly all temporal, parietal and occipital regions and in

about half of frontal regions. Slightly more NAWM regions showed volume decrease in the

temporal-parietal lobes and slightly more GM regions showed a volume decrease in the frontal

lobe. Additionally, more left frontal GM and NAWM regions showed volume decrease than

right frontal regions. With the VBM approach (GM only), most of these subcortical and corti-

cal GM findings in recently-diagnosed RRMS were replicated. Large areas of change in GM

concentration were observed in temporal and subcortical regions, as well as in the cerebellum

and the anterior cingulum, with some smaller areas in the occipital lobe. However, overall,

Fig 4. Voxel-based morphometry (VBM) results. VBM results for significant grey matter (GM) change over time

(w1-w0; pcorrected<0.001; N = 351) in RRMS are shown in blue on a template axial (top row) and sagittal (bottom row)

T1-weighted image. This figure was created using MRIcron (https://www.nitrc.org/projects/mricron) and the

implemented ‘ch2’ template (http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27).

https://doi.org/10.1371/journal.pone.0288967.g004

Fig 5. Comparison of voxel-based morphometry (VBM) and volumetric results in relapsing-remitting multiple

sclerosis (RRMS). For illustration purposes, VBM results for significant grey matter (GM) change over time (w1-w0;

pcorrected<0.001) (green) are overlaid on volumetric results (red) for regional GM, cerebellar GM and subcortical areas

with significant volume decrease (w1-w0; q<0.05) (red). Areas where VBM and volumetry overlap are shown in yellow.

Overlays are shown on an example subject’s axial (top row) and sagittal (bottom row) T1-weighted image. This figure

was created using MRIcron (https://www.nitrc.org/projects/mricron).

https://doi.org/10.1371/journal.pone.0288967.g005
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fewer regions of GM change were observed than with the volumetric approach, particularly in

the parietal and frontal lobes, without prominent hemispheric differences.

4.1 Subcortical atrophy

The importance of subcortical neurodegeneration in MS has been recently summarised by

Ontaneda et al. (2021), emphasising that atrophy of deep GM structures is common in MS and

may be a suitable target for DMT treatment [61]. In this study, we observed prominent subcor-

tical volume changes as well as a large cluster of GM concentration changes within subcortical

regions in early RRMS. These result are in line with previous studies reporting early-stage sub-

cortical atrophy, specifically in the thalamus and basal ganglia [11,16,22]. The thalamus has

been suggested to play an important role in MS disease symptomatology, with lower volumes

being predictive of clinical worsening [62], even in the early stages [63]. Basal ganglia changes

have also frequently been observed and related to clinical change [64,65]. Additionally, our

study showed that other subcortical regions, such as the amygdala, hippocampus, ventral dien-

cephalon and nucleus accumbens, also show early-stage atrophy. This is in line with previous

studies reporting similar subcortical volume changes as well as associations with clinical

changes in clinical isolated syndrome (CIS) or later stages of RRMS [65–72].

4.2 Cerebellar and brainstem atrophy

The observed GM volume changes are in line with previous reports of early-stage cerebellar

atrophy [16] and they are unsurprising as the cerebellum has been shown to play an essential

role in both sensorimotor and cognitive dysfunction in MS [73–76]. VBM analysis also indi-

cated a large cluster of GM changes within the cerebellum. Cerebellar NAWM change was not

observed, which is in line with previous studies reporting absence of cerebellar NAWM vol-

ume change in CIS and RRMS [77,78]. In contrast, some studies do report cerebellar NAWM

atrophy in MS [79,80], however this may be explained by different disease stages being studied

as well as study samples lacking a distinction between MS subtypes. Moreover, studies using

diffusion tensor imaging (DTI) to explore cerebellar changes in RRMS have observed early-

stage NAWM microstructural changes in absence of macrostructural NAWM volume change

[81]. This suggests that microstructural cerebellar damage is already present in early-stage

RRMS, which may go on to develop into macrostructural cerebellar NAWM atrophy in later

stages.

The brainstem is also known to be involved in MS, showing both evidence of WMLs as well

as volume loss, which are associated with clinical symptomatology [82–84]. Here we observed

brainstem volume loss in recently-diagnosed RRMS, which is corroborated by findings from

Eshaghi et al. (2018) [11]. Overall, this may suggest that atrophy of both the brainstem and cer-

ebellar GM plays an important role in early-stage neurodegeneration in RRMS.

4.3 Cerebral regional NAWM and GM atrophy

This study suggests that both regional NAWM and GM are evident in recently-diagnosed

RRMS in all brain lobes in variable degrees. Using volumetrics, cerebral GM volume loss was

observed more prominently in the temporal, parietal and occipital lobes than in the frontal

lobe. Similarly, with VBM, prominent GM changes were observed in the temporal, occipital

and posterior frontal lobes, but less so in the anterior frontal lobe and parietal lobe. This dis-

crepancy may be explained by the changes within the latter regions being less localised which

may have left them undetected by VBM. The early GM changes observed here are partly in

line with previous studies showing prominent early changes in the occipital [16], temporal

[17,72,85], parietal (posterior cingulum) [11] and frontal lobe [85]. However, these
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observations differ from the current results in that they do not report on GM changes in all

lobes simultaneously. This is likely explained by differences in methodology [86] (e.g. process-

ing methods, inclusion of healthy controls, design), which is also supported by the discrepancy

shown between VBM and volumetric results within this study.

Cerebral NAWM loss has been observed in previous studies [10,19,20], but to our knowl-

edge, regional NAWM atrophy has not been investigated before. Similar to regional GM

change, we observed widespread cerebral NAWM loss, independent of lesion accumulation,

which was most prominent in the temporal, occipital and parietal regions. This suggests that

NAWM neurodegeneration is also evident in recently-diagnosed RRMS. In comparison with

cerebral GM volume loss, cerebral NAWM volume loss was observed in slightly more regions

in temporal and parietal lobes, but not in the frontal lobe where more GM regions showed vol-

ume loss. This may support the notion that pathological processes underlying GM and

NAWM change are at least partly dissociated [87].

More frontal NAWM and GM regions were affected in the left than in the right hemisphere

- using the volumetric approach - whereas the temporal, parietal and occipital lobes were sym-

metrically affected. A left-hemispheric predilection for atrophy in all brain lobes has been

observed previously in MS, although only in a small number of studies [88–90]. Moreover,

conflicting results have been reported in studies investigating hemispheric asymmetry in dam-

age accumulation, in both ageing and neurological disease [88]. Overall, it remains unclear

whether asymmetry of neurodegeneration is a feature of MS, and whether the degree of differ-

entially-affected cognitive functions is associated with the left and right frontal hemispheres;

further research is required to elucidate this.

Surprisingly, we did not detect volumetric changes within areas in the frontal lobe associ-

ated with sensorimotor functioning, typically impaired in MS, such as in the precentral GM/

NAWM and paracentral GM. However, paracentral NAWM volumetric change was indeed

observed and the VBM results were also indicative of a small cluster of GM change within the

supplemental motor area and precentral gyrus. Previous literature has shown GM volume

change in the precentral gyrus in early RRMS compared with healthy controls [91], as well as

abnormal iron deposition in the precentral gyrus in later stage MS [92]. This suggests that

motor cortex abnormalities are involved in MS as expected, however the lack of volumetric

precentral GM changes observed in our study may indicate that widespread motor cortex

change over time may not be as fast as in other frontal regions in early RRMS.

4.4 Volumetry and VBM

The findings of this study emphasise that different analysis approaches can lead to significantly

different results from the same data. Although GM change was observed in overlapping areas,

there were key differences between the VBM and volumetric output. A volumetric approach

like FreeSurfer segments brain regions, allowing calculation of the total number voxels within

these regions. VBM on the other hand does not require regions to be pre-defined and looks for

changes voxel-by-voxel, allowing for detection of local and possibly smaller changes [53]. Fur-

thermore, FSL VBM also uses TFCE, which enhances clusters of voxels that show change

increasing focus on spatially-localised changes, even when these changes are small in overall

magnitude [59]. Conversely volumetry may not detect such subtle localised change, but it is

more sensitive to distributed change across a region, which would be likely missed by VBM.

Further differences in processing steps and statistical methods are also likely to cause out-

come differences. For example, VBM treats all data as one group and registers all participants

to a common template, which may lead to some individual change being lost. FreeSurfer

avoids this by processing participant data separately in their own native space. However,
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between-subject cortical variability can affect accuracy of atlas-based approaches and may thus

bias the volumetric results [93]. Another example is that FSL VBM uses FWE correction for

multiple comparisons, whereas we have applied FDR for the volumetric analysis. As FWE is

considered to be more stringent than FDR, it is possible that VBM underestimated and FDR

overestimated actual change, leading to a difference in results [94]. Additionally, a larger num-

ber of data failed quality checks with FreeSurfer than with VBM, leading to a difference in

sample size between the two methods. Although this may suggest that VBM is a more robust

method in case of lower data quality, alternatively, this may also indicate that FreeSurfer has a

better and stricter quality-check procedure in place.

Specifically, for our RRMS cohort, the difference in results may indicate that the frontal and

parietal changes observed with the volumetric approach are more widespread and more vari-

able across participants. On the other hand, the overlapping temporal, occipital and subcortical

results, may be indicative of prominent changes within these regions. Overall, both VBM and

volumetric approaches have advantages and important limitations that should be taken into

consideration when interpreting results.

4.5 Limitations

This study has some limitations. First, FutureMS is a multi-centre study involving five different

MR systems and two different (although very similar) MR protocols, which may have influ-

enced the results. The parameters for the T1W acquisition, upon which the current analyses

were mainly based are, however, nearly identical between protocols. Additionally, all partici-

pants underwent their MR assessment with the same system and protocol at both time points.

Pooling of data across centres is important for clinical studies, as it allows for drawing conclu-

sions based on larger datasets. Second, we have not studied the relationship between atrophy

and clinical features in this study. The reason for this is that divergence in clinical disease

course is limited over one year in early MS and may be confounded by recovery from acute

inflammatory episodes that led to initial diagnosis. We are therefore initially concentrating on

patterns of atrophy between the point of diagnosis and one year and will focus our future

research on clinical correlates of atrophy as they develop over a longer timescale. Third, pseu-

doatrophy may have been caused by spontaneous recovery from inflammation and associated

swelling. This cannot be corrected for, and should be taken into consideration when interpret-

ing results. Pseudoatrophy may also have been caused by DMTs, which we have carefully cor-

rected for by including adding DMT as a covariate. Results showed that DMTs did not have a

significant effect on whole-brain, cerebral, cerebellar, brainstem or subcortical atrophy, and

only in 6 out of 105 WM/GM regions that showed significant atrophy, which was corrected for

accordingly. Finally, matched healthy control data were not available for comparison, which

may also be considered a limitation. It is worth noting, however, that overall whole-brain vol-

ume decrease observed in this study was 0.5%; this exceeds brain atrophy expected to occur in

healthy individuals within the same age range (30-40 years) [95], as well as the atrophy thresh-

old (0.4%) proposed in the 2020 MAGNIMS guidelines [39]. Importantly, the longitudinal

study design mitigates significant variations in brain volume between individuals, and allows

regional and global atrophy to be mapped in MS patients at an early disease stage and com-

pared between disease phenotypes as they evolve with disease progression.

4.6 Conclusion

Widespread WM and GM atrophy is present in recently-diagnosed RRMS, suggesting neuro-

degeneration across tissue types. This is observed particularly in the brainstem, cerebellar GM,

subcortical regions and temporal-occipital GM and NAWM, which accords with limited
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previously published data in other MS cohorts. Analyses based on volumetry and VBM dem-

onstrate different patterns of atrophy, albeit with some regional overlap. Atrophy measures

targeted to these specific brain regions may provide improved markers of neurodegeneration,

and potential future imaging stratifiers of disease progression and endpoints for therapeutic

trials. Our future aims are directed at mapping neurodegenerative patterns across a ten-year

time-period in the FutureMS cohort, as well as correlating regional atrophy with evolving clin-

ical disability and other imaging and liquid biomarkers of neurodegeneration available in

FutureMS.
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