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Abstract

Varieties that tolerate low nitrogen (N) application rates can reduce fertilizer costs, minimize

nitrate leaching and runoff losses, and lower overall CO2 emissions associated with fertilizer

manufacturing. The goal of our research is to show the usefulness of path models to identify

key phenotypic traits for screening plants with a tolerance to low N application rates. We

grew tolerant and sensitive cultivars of poinsettia (Euphorbia pulcherrima) using a water-sol-

uble fertilizer (15-5-15 Cal Mag) in both optimal (electrical conductivity of 2.5 dS�m-1) and N-

deficient (electrical conductivity of 0.75 dS�m-1) treatments and measured 24 different traits

at the cellular, leaf, and whole-plant scales in both cultivars and treatments. The experiment

was laid out as a split-plot design with N treatments as main plots and cultivars as sub-plots,

with five replications. Path analysis was conducted to develop sequential relationships

among these traits. Statistical comparisons between tolerant and sensitive cultivars in the

N-deficient treatment indicated an increase in shoot biomass (19.9 vs 14.4 g), leaf area

(2775 vs 1824 cm2), leaf dry weight (14.7 vs 10.0 g), lateral root dry weight (3.7 vs 2.4 g),

light-saturated photosynthesis (14.5 vs 10.1 μmol�m-2�s-1), maximum electron transport rate

(119 vs 89 μmol�m-2�s-1), chlorophyll content (28.1 vs 12.9 g�100g-1), leaf N content (27.5 vs

19.9 mg�g-1), and fine root N content (26.1 vs 20.9 mg�g-1), and a decrease in anthocyanin

content (0.07 vs 0.16 ΔOD�g-1). The path model indicated that an increase in the lateral root

growth and fine root N content can lead to an increase in the leaf N content, in the N-defi-

cient treatment. There were three separate paths that connected higher leaf N content to

increased shoot biomass. These paths were mediated by the levels of anthocyanin, chloro-

phylls, and light-saturated photosynthesis rate (or rubisco capacity). The light-saturated

photosynthesis model suggested that the increased uptake of N by fine roots in the tolerant

cultivar was likely supported by the photosynthates translocated from the shoot to the root.

Leaf N content was associated with multiple plant responses in the N-deficient treatment,

and can be a useful screening trait for developing new cultivars, especially in marker-assis-

ted molecular breeding.
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Introduction

Most of the N fertilizers are manufactured from ammonia synthesized in the Haber Bosch pro-

cess. This process consumes a significant amount of energy (using natural gas and coal) and is

responsible for more than 1.2% of global CO2 emissions [1]. Recent increases in energy costs,

especially that of natural gas, have significantly increased the cost of N fertilizers (US $235/mt

in April 2020 to US $925/mt in April 2022; Source: World Bank). Reducing N application to

crops may lead to lower production costs and the carbon footprint; however, N is essential for

the growth and development of crops [2] and lower N application can result in reduced growth

[3, 4] with significant economic losses to growers [5]. A more practical approach to reducing

overall N application is to develop varieties that can tolerate low rates of N application during

production. Molecular breeding is one of the popular methods to develop new crop varieties.

This method requires identifying key trait(s) and genetic markers related to key traits. Once

genetic markers are developed, thousands of plants can be screened rapidly using high-

throughput genotyping methods [6] for the presence of a trait (i.e., without actually screening

for the phenotype). Although a large volume of information is known about physiological

traits in plants that are affected by N, limited information exists on key traits with a large influ-

ence on tolerance to low N application rates. Such information can increase the overall sound-

ness of crop improvement programs.

Knowledge of the growth and development responses in plants to N supply is essential to

develop key traits. Plants exposed to N- deficient conditions can respond by increasing N-

uptake from the substrate and/or N-utilization in metabolic processes. To increase N-uptake

efficiency under N-deficient conditions, plants can specifically increase root growth to explore

more soil volume [7–9]. An increase in root-to-shoot ratio (i.e., a ratio of root biomass to

shoot biomass) was observed in plants exposed to N- deficiency [10]. Plants can increase the

lengths of both primary and lateral roots [11] to explore deeper and larger soil volumes. In

addition, an increase in the number of fine roots was observed in plants [12], likely to increase

nutrient absorption. Plants with increased N-utilization efficiency invest more N in chloro-

phyll and rubisco [13]. Nitrogen is a component of the chlorophyll molecule [14], a pigment

involved in the light absorption process of photosynthesis. A majority of leaf N is present in

rubisco [14] and increased levels of leaf N can increase rubisco activity [15, 16]. In addition, N

is a component of thylakoid proteins, cytochrome complex, and ATP synthase, all of which are

involved in the electron transport process of photosynthesis [17]. Given this, a strong positive

correlation exists between the rate of photosynthesis and leaf N status in plants [15, 18, 19].

The goal of the present research is to show the usefulness of path models to identify key

traits in plants associated with tolerance to low N application rates. We used poinsettia in our

research due to its economic importance as a holiday ornamental plant and high N demand/

sensitivity during production. The objectives of this study were to (i) measure and compare

physiological traits at the cellular, leaf, and whole-plant scales in sensitive and tolerant poinset-

tia cultivars exposed to both optimal and N-deficient conditions, (ii) develop statistical path

models that sequentially connect the physiological traits at different scales in the N-deficient

treatment, and (iii). identify key trait(s) which directly influence multiple traits with positive

effects on tolerance to low N application rates.

Materials and methods

Plant materials

Cuttings of poinsettia (Euphorbia pulcherrima) cultivars (Jubilee Red and Peterstar Red) were

obtained from Dummen Orange (Columbus, OH, USA). Based on the producer catalog
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information, Jubilee Red is dark green in appearance with heat and cold stress tolerance than

Peterstar Red. Therefore, Jubilee Red and Peterstar Red were treated as tolerant and sensitive

cultivars respectively in the study. The cuttings were dipped in 0.1% indole butyric acid root-

ing hormone (Rhizopon1 AA #, Earth City, MO, US) and inserted in 48-cell-packs (Green-

house Mega store, Danville, IL, USA) filled with propagation mix (Berger BM2 germination

mix, Berger, Quebec, Canada). Rooted cuttings were transplanted into 6-inch containers (1.33

L, Greenhouse Megastore, Danville, IL, USA) filled with a peat-based substrate (Berger BM8

growing mix, Berger, Quebec, Canada).

Fertigation system

Plants were grown in a custom-built ebb-flow system containing low-rise flood tables (1.22

m × 1.22 m, SKU # AALR44B, Active Aqua, Hydro Farm, CA, USA), reservoirs (151.4 L,

SKU#HGRES40K Active Aqua, Hydro Farm, CA, USA), flexible poly-vinyl tubing (1.9 cm ID,

model # 714565, Everbilt Co., Home Depot, Atlanta, GA, USA), and submersible pumps (18.9

L�min-1, Item # 52216/ MD11300, Total Pond, West Palm Beach, FL, USA). An irrigation

timer (Titan controls Apollo 6, Part #734110, Hawthorne Gardening Company, Vancouver,

WA, USA) was used to turn on the pumps every day for a period of 15 min during which the

level of solution in the flood table raised by approximately 3 cm for substrate in the containers

to absorb the solution by capillarity. The solution drained back into the reservoir after the

pumps were turned off through the outlet of the flood table (S1 Fig).

Environmental conditions

The experiment was conducted in a glass-covered greenhouse maintained at a daily light inte-

gral of 12.1 ± 0.84 mol�m-2 and an average day/night temperature of 25.4 ± 1.22/ 20.8 ± 0.91˚C

during the experiment. Supplemental lighting was provided using high-pressure sodium

lamps to maintain optimal light intensity and long-day photoperiod of 18 hours. The photo-

synthetic photon flux density (PPFD; intensity of light between 400 to 700 nm) was measured

using four quantum sensors (Li-190 R, Li-COR, Lincoln, NE, USA) and air temperature was

measured using thermistors (ST-100, Apogee Instruments, Inc., Logan, UT, USA) connected

to a datalogger (CR 1000, Campbell Scientific, Logan, UT, USA).

Treatments

Plants were grown in N-deficient (solution electrical conductivity or EC level of 0.75 dS�m-1;

equivalent to a N concentration of 50 mg�L-1) and optimal (solution EC level of 2.5 dS�m-1;

equivalent to a N concentration of 150 mg�L-1) conditions using a water-soluble fertilizer con-

taining 15N: 2.2P: 12.5K (15-5-15 Cal Mg, Peter’s Excel, ICL Specialty fertilizer, UK). A dielec-

tric sensor (5TE, Meter group, WA, US) was used to measure EC and prepare fertilizer

solutions. Fresh fertilizer solution was supplied on one day of the week and tap water was pro-

vided to plants during the remaining days. The pH of the fertilizer solution was maintained

between 5.6 to 6.8 during the experiment.

Measurements and calculation

(i). Cellular scale. Total chlorophyll (CHL), carotenoid (CTD), and anthocyanin (ACN) con-

tent of the leaves were measured in the laboratory using Biomate 160 UV-VIS
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spectrophotometer (Thermo Fischer Scientific, Waltham, MA) as described by [20]. The

CHL-a, CHL-b, and CTD concentrations (μg�mL-1) were measured using absorbance val-

ues as follows:

CHL � a ¼ 12:25� A663:2 � 2:79� A646:8

CHL � b ¼ 21:5� A646:8 � 5:1� A663:2

CTD ¼
1000� A470 � 1:8� Chl a � 85:02� Chl b

198

where, A663.2, A646.8, and A470 were absorbance values at 663.2, 646.8, and 470 nm, respec-

tively. The pigment content on a fresh weight basis (mg�100g-1) was calculated by multiplying

concentration with extraction volume and dilution factor, and dividing by the sample weight.

The CHL was calculated by adding the contents of CHL-a and CHL-b.

Relative ACN concentration (ΔOD�g-1) was measured as the difference in absorbance at

530 and 600 nm.

ACN ¼ A530 � A600

where, A530 and A600 represent absorbance at 530 and 600 nm, respectively.

The N content (mg�g-1) of leaves (NLeaf), stem (NStem), lateral roots (NLR), and fine roots

(NFR) was measured using the Dumas method in an analytical laboratory (A & L Great Lakes,

IN, USA). Different tissue samples were dried separately in a forced air oven and powdered

before analyzing in the laboratory.

(ii). Leaf scale. Plant photosynthesis response to varying PPFD was measured using Li-COR

6400XT portable photosynthesis system (Li-COR Biosciences, Lincoln, Nebraska, USA).

Measurements were taken on a fully expanded leaf during the daytime and on a sunny day.

The levels of CO2, leaf temperature, and relative humidity inside the leaf cuvette were main-

tained at 400 μmol�mol-1, 28˚C, and 40–60%, respectively. Photosynthesis was measured at

varying PPFD levels of 1500, 1000, 800, 600, 400, 200, 150, 100, 50, and 0 μmol�m-2�s-1. The

light levels were maintained by a built-in LED (10% B and 90% R) light source inside the

leaf cuvette. Each light level was maintained for approx. 4–5 min until the fluxes of CO2

and water vapor, and rate of photosynthesis were stable before recording measurements.

Maximum gross photosynthetic rate (Pg,max), light-use efficiency (LUE), and rate of dark

respiration (Rd) were estimated by fitting an exponential model to the measured data.

Pn ¼ Pgmax 1 � exp
ð� a�I

Pgmax
Þ

h i
� Rd

where, Pn is net photosynthetic rate (μmol CO2�m
-2�s-1), α is LUE (μmol CO2�mol-1), I is PPFD

(μmol�m-2�s-1), Pg,max is maximum gross photosynthesis (μmol CO2�m
-2�s-1), and Rd is rate of

dark respiration (μmolCO2�m
-2�s-1). Light saturation point (LSP, (μmol�m-2�s-1) was calculated

from the above equation by assuming Pn equal to 0.85 Pg,max and solving the equation for LSP

[21].

For measuring the relation between photosynthesis and intercellular CO2 concentration,

Li-COR 6400XT attached to a fluorometer was used. The temperature, relative humidity, and

PPFD inside the cuvette were maintained at 28˚C, 40–60%, and 1000 μmol�m-2�s-1 respectively.

A steady-state photosynthesis rate and chlorophyll fluorescence parameters were measured at
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an ambient CO2 concentration of 400 μmol�mol-1. Then photosynthesis rate and chlorophyll

fluorescence parameters were measured at varying levels of CO2 concentrations of 400, 600,

800, 1000, 600, 400, 200, 150, 100, and 50 μmol�mol-1 in the leaf cuvette. At each level of CO2

concentration, the measurements took approximately 4–5 minutes to reach stable values. The

parameters such as Vcmax (maximum carboxylation rate, μmol CO2�m
-2�s-1), Jmax (maximum

electron transport rate, μmol electrons�m-2�s-1), and gm (mesophyll conductance to CO2,

mol�m2�s-1) were calculated as described by [22]:

The value of Vcmax was calculated as the slope of the linear relationship between A and f’:

A ¼ f 0Vcmax þ c

The values of f' were calculated as:

f 0 ¼
Ci � G

∗

Ci þ Kc 1þ O
Ko

� �

where, Ci is leaf internal CO2 concentration (selected range: 50 to 200 μmol�mol-1), Γ* is CO2

compensation point in the absence of dark respiration (31 μmol�mol-1 at 25˚C, as described

by [23]), and Kc and Ko are the Michaelis-Menten coefficients of Rubisco activity for CO2 and

O2 calculated from equations:

Kc ¼ exp
38:05� 79:43

RðT1þ273:15Þ

� �

and Ko ¼ exp
20:30� 36:38

RðT1þ273:15Þ

� �

where, T1 is leaf temperature (˚C), and R is the molar gas constant (R = 8.315 J�mol-1�K-1).

The value of Jmax was calculated as the slope of the linear relationship between A and g’:

A ¼ g 0Jmax

The value of g’ was calculated as:

g 0 ¼
Ci � G

∗

4:5Ci þ 10:5G∗

where, Ci is leaf internal CO2 concentration (selected range: 200 to 700 μmol�mol-1) and Γ* is

CO2 compensation point in the absence of dark respiration (31 μmol�mol-1 at 25˚C).

Mesophyll conductance (gm) was calculated by using variable J method as:

gm ¼
A

Ci �
G∗ðJþ8ðAþRdÞÞ
ðJ� 4ðAþRdÞÞ

where, A, Ci, and J are photosynthesis rate, leaf internal CO2 concentration, and electron

transport rate at an ambient CO2 concentration of 400 μmol�mol-1 respectively, Γ* is CO2

compensation point in the absence of dark respiration (31 μmol�mol-1 at 25˚C), and Rd is res-

piration rate in light measured as the y-intercept of the relationship between A and f'.

(iii). Whole-plant scale. Plants were harvested 45 days after transplanting and leaves were sepa-

rated from stem. Leaf area (AreaLeaf, cm2) was measured using a leaf area meter (Li-3100C,

Li-COR, Biosciences). After washing, lateral roots and fine roots (small roots originating

from lateral roots) were separated. Leaves, stem, lateral roots, and fine root samples were

dried separately in a forced dry oven at 70˚C before measuring leaf dry weight (DWLeaf),

stem dry weight (DWStem), lateral root dry weight (DWLR), and fine root dry weight

(DWFR). Shoot dry weight (DWShoot) was calculated by adding DWLeaf and DWStem, and

root dry weight (DWRoot) as the sum of DWLR and DWFR. Specific leaf area (SLA, cm2�g-1)
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was calculated as the ratio of AreaLeaf to DWLeaf. Root weight ratio (RWR, g�g-1) was calcu-

lated as DWRoot to total dry weight (DWShoot + DWRoot).

Experimental design and statistical analyses

The experiment used a split-plot design with N treatments as main-plots and cultivars as sub-

plots. There were five replications of main plot. The effects of fertilizer treatment and cultivar

were analyzed using Proc GLIMMIX procedure of statistical analysis software (SAS 9.4, Cary,

NC, USA). Least square means were separated using Tukey’s honestly significant difference

(HSD). Exponential equations were fitted to photosynthesis-PPFD and photosynthesis-Ci

response curves using Proc NLIN procedure of SAS. As path analysis allows for exploring

direct and indirect associations simultaneously among a set of observed variables, it was used

to test the hypothetical relationships among variables at different scales in the N-deficient

treatment. Further the path analysis can provide slope value of the relationship between two

variables and error associated with predicting one variable from the other within a path. The

path analysis for traits was conducted using Proc CALIS procedure of SAS. A chi-square analy-

sis was used to test whether the hypothetical path model was a good fit to the observed data. A

lack of significance chi square value indicates that model is a good fit to the observed data. For

all statistical procedures and comparisons, P� 0.05 was considered statistically significant.

Results

Tissue N, CHL, CTD, and ACN Levels

A significant interaction between N treatment and cultivar was seen for NLeaf and NFR

(Table 1). No differences in NLeaf and NFR were observed between the cultivars in the optimal

but significantly higher levels were observed in the tolerant than sensitive cultivar in the N-

deficient treatment. The NStem and NLR were not different between the cultivars in both treat-

ments, but the values were higher in the optimal than N-deficient treatment. Further, results

indicated a significant interaction effect between N treatment and cultivar on ACN, CHL, and

CTD levels (Table 1). The ACN levels were higher in the sensitive than tolerant cultivar in the

N-deficient, whereas there were no differences in ACN levels between cultivars in the optimal

treatment. The levels of CHL and CTD were not different between the cultivars in the optimal

treatment but the values were significantly higher in the tolerant than sensitive cultivar in the

N-deficient treatment.

Leaf photosynthesis responses and photosynthetic parameters

The photosynthesis asymptotically increased to a maximum value with increasing PPFD in

both cultivars and treatments (Fig 1). The net photosynthetic rate increased rapidly up to a

Table 1. Differences in traits at cellular scale, including leaf nitrogen content (NLeaf), stem nitrogen content (NStem), lateral root nitrogen content (NLR), fine root

nitrogen content (NFR), anthocyanin content (ACN), carotenoid content (CTD), and total chlorophylls content (CHL), between sensitive and tolerant cultivars

exposed to nitrogen deficient and optimal conditions. Least square means followed by different letters are statistically different (P� 0.05).

Trait Deficient Optimal

Sensitive Tolerant Sensitive Tolerant

NLeaf (mg�g-1) 19.9 c 27.5 b 36.9 a 38.7 a

NStem (mg�g-1) 12.2 b 14.4 b 28.0 a 30.1 a

NLR (mg�g-1) 13.7 b 13.2 b 19.0 a 19.8 a

NFR (mg�g-1) 20.9 c 26.1 b 35.6 a 35.6 a

ACN (ΔOD�g-1) 0.162 a 0.074 b 0.016 c 0.018 c

CTD (mg�100g-1) 1.21 b 4.80 a 3.79 a 5.35 a

CHL (mg�100g-1) 12.95 b 28.11 a 27.78 a 33.48 a

https://doi.org/10.1371/journal.pone.0288729.t001
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PPFD of 400 μmol�m-2�s-1, gradually between 400 and 600 μmol�m-2�s-1 and very little with fur-

ther increase in PPFD. The photosynthesis-PPFD response curves for both cultivars were not

different in the optimal treatment, but they were different for cultivars in the N-deficient treat-

ment. The curves in the N- deficient treatment started to separate between the tolerant and

sensitive cultivars at a PPFD level of approximately 250 μmol�m-2�s-1, with higher levels of A

observed in the tolerant than sensitive cultivar with increasing PPFD levels.

The photosynthesis rate increased asymptotically with increasing intercellular CO2 in both

cultivars and N treatments (Fig 2). However, photosynthesis did not appear saturated at high

levels of Ci in both cultivars and N treatments. In the optimal treatment, cultivars did not

show differences in photosynthesis at any level of Ci. However, in the N-deficient treatment,

photosynthesis differences between the cultivars started to appear at low Ci and became larger

with increasing Ci levels. Photosynthesis rate was higher in the tolerant than sensitive cultivar

at a range of Ci levels in the N-deficient treatment.

The photosynthetic parameters such as Rd, LCP, and LUE were not different between the

cultivars in both treatments (Table 2). However, parameters measured at high PPFD levels

such as LSP and Pg,max were higher in the tolerant than sensitive cultivar when exposed to N

deficient conditions. Interestingly, Pg,max was higher in the tolerant than sensitive cultivar even

in the optimal treatment. Both Vcmax and gm were not different between the two cultivars in

optimal and N-deficient treatments (Table 2). However, Jmax was higher in the tolerant than

Fig 1. Photosynthesis (A) response to varying levels of photosynthetic photon flux density (PPFD) in tolerant and sensitive

poinsettia cultivars grown in optimal and nitrogen deficient conditions. Mean photosynthesis and standard error (n = 5) at each

PPFD level are shown.

https://doi.org/10.1371/journal.pone.0288729.g001
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Fig 2. Photosynthesis (A) response to varying levels of intercellular carbon dioxide concentration (Ci) in tolerant and sensitive

poinsettia cultivars grown in optimal and nitrogen deficient conditions. Mean photosynthesis and standard error (n = 5) at each Ci

level are shown.

https://doi.org/10.1371/journal.pone.0288729.g002

Table 2. Differences in traits at leaf scale, including dark respiration rate (Rd), maximum gross photosynthesis

(Pg,max), light compensation point (LCP), light-use-efficiency (LUE), and light saturation point (LSP) estimated

from photosynthesis-light response (A-PPFD) curves, and maximum carboxylation rate (Vcmax), maximum elec-

tron transport rate (Jmax), and mesophyll conductance (gm) estimated from photosynthesis-leaf internal carbon

dioxide concentration response (A-Ci) curves, between sensitive and tolerant cultivars exposed to nitrogen defi-

cient and optimal conditions. Least square means followed by different letters are statistically different (P� 0.05).

Trait Deficient Optimal

Sensitive Tolerant Sensitive Tolerant

A-PPFD parameters
Rd (μmol�m2�s-1) -0.99 a -1.36 a -0.69 a -1.20 a

Pg,max (μmol�m2�s-1) 10.10 c 14.47 b 15.53 b 17.41 a

LCP (μmol�m2�s-1) 19.3 ab 29.0 a 12.5 b 18.2 ab

LUE (μmol�mol-1) 0.064 a 0.059 a 0.064 a 0.060 a

LSP (μmol�m2�s-1) 375.2 b 569.2 a 536.2 a 585.2 a

A-Ci parameters
Vcmax (μmol�m2�s-1) 68.42 a 100.20 a 108.02 a 117.78 a

Jmax (μmol�m2�s-1) 88.28 c 118.80 b 131.40 ab 147.60 a

gm (mol�m2�s-1) 0.158 a 0.230 a 0.282 a 0.250 a

https://doi.org/10.1371/journal.pone.0288729.t002
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sensitive cultivar when exposed to N-deficient conditions. There were no differences in Jmax

between the two cultivars in the optimal treatment.

Shoot and root growth responses

The interaction between N treatment and cultivar was found to be significant for DWShoot,

DWLeaf, and AreaLeaf (Fig 3, Table 3). There was no difference in DWShoot, DWLeaf, and Area-

Leaf between the cultivars in the optimal treatment, whereas a significantly higher values of

these measurements were seen in the tolerant compared to sensitive cultivar when exposed to

N-deficient conditions. There were no differences in SLA between the cultivars in both treat-

ments. Although DWRoot was not significantly different between the cultivars in both treat-

ments, DWLR was significantly higher in the tolerant than sensitive cultivar, when exposed to

N-deficient conditions (Table 3). However, the differences in DWFR and RWR were not signif-

icantly different between the two cultivars in both N treatments.

Path models

The inter-relations among the traits at the cellular, leaf, and whole-plant scales could be

explained by three different path models (Fig 4). The P-values associated with chi-squares for

Fig 3. Representative poinsettia plants belonging to tolerant and sensitive cultivars grown in optimal and nitrogen deficient

treatments.

https://doi.org/10.1371/journal.pone.0288729.g003

Table 3. Differences in traits at whole-plant scale, including shoot dry weight (DWShoot), stem dry weight (DWStem), leaf dry weight (DWLeaf), root dry weight

(DWRoot), lateral root dry weight (DWLR), fine root dry weight (DWFR), leaf area (AreaLeaf), specific leaf area (SLA), and root weight ratio (RWR), between sensitive

and tolerant cultivars exposed to nitrogen deficient and optimal conditions. Least square means followed by different letters are statistically different (P� 0.05).

Trait Deficient Optimal

Sensitive Tolerant Sensitive Tolerant

DWShoot (g) 14.38 b 19.93 a 20.26 a 20.95 a

DWStem (g) 4.37 a 5.14 a 5.48 a 4.77 a

DWLeaf (g) 9.96 b 14.74 a 15.016 a 16.41 a

DWRoot (g) 4.01 a 5.33 a 4.16 a 4.15 a

DWLR (g) 2.37 b 3.72 a 2.48 ab 2.79 ab

DWFR (g) 1.59 a 1.55 a 1.74 a 1.41 a

AreaLeaf (cm2) 1824.7 c 2775.1 b 3756.9 a 3703.4 a

SLA (cm2�g-1) 178.2 a 186.2 a 234.1 a 209.6 a

RWR (g�g-1) 0.206 a 0.204 a 0.159 a 0.154 a

https://doi.org/10.1371/journal.pone.0288729.t003
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each path was not significant (P>0.05), indicating that the models are a good fit to the data

(i.e., null hypothesis that no difference exists between the observed values and predicted model

is accepted). The first path (or ACN model; Fig 4 brown arrows) predicted that both DWRoot

and NFR positively affected NLeaf in the N-deficient treatment. The model indicated that both

NLeaf and AreaLeaf were negatively related to ACN. These relations indicate that ACN levels

increased with decreasing NLeaf and larger levels of ACN in plants resulted in a decrease in

AreaLeaf. As expected, there were positive relations between AreaLeaf and DWShoot in the N-

deficient conditions. A second path (CHL model; Fig 4, blue arrows) predicted that NLeaf and

CHL were positively related to each other. Further, the path predicted that CHL positively

affected Jmax, which further positively influenced DWLeaf in the N-deficient treatment. The

third path (Pg,max model; Fig 4 green arrows) predicted that NLeaf and Pg,max were positively

related, and that Pg,max was positively associated with DWLR, DWLeaf, and NFR. Further, a posi-

tive relation was observed between DWLeaf and DWShoot. The error or ‘e’ values in all three

models varied between 0.01 and 0.64 among traits. The lower error values indicate higher vari-

ance accounted by the predictor variable and vice versa. The error variance was low for traits

such as NLeaf, ACN, Jmax, DWLeaf, and DWShoot, moderate for traits such as NFR, CHL, and

Fig 4. Path models showing relations among traits at cellular, leaf, and whole-plant scales in the nitrogen deficient treatment. Refer

to Tables 1–3 for trait names. Paths are separated using different colored arrows. Numbers adjacent to connecting arrows with an

asterisk indicate slope of the relationship between two variables and statistical difference from zero (P� 0.05). Error variance associated

with predicting a variable is shown in boxes with letter ‘e’. The box colors were matched with different path models. A black dashed

arrow indicates possible relationship not significant in the model. Dashed boxes [Rubisco and AOP (operating photosynthesis rate)]

include possible connecting traits that were not measured in the study.

https://doi.org/10.1371/journal.pone.0288729.g004
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DWShoot (estimated from AreaLeaf). It is likely that other predictor variables not included in

the model affected those dependent variables with high error values.

Discussion

In our study, there were no statical differences between the tolerant and sensitive cultivars in

the optimal treatment for any trait except for Pg,max. In the optimal treatment, Pg,max was lower

by 11% in the sensitive than tolerant cultivar (Table 2). However, Pg,max decreased by 30% in

the sensitive than tolerant cultivar in the N-deficient treatment. The larger difference in Pg,max

between the sensitive and tolerant cultivars in the N-deficient compared to optimal treatment

indicates a differential response in Pg,max to N-deficient conditions in the sensitive cultivar.

Therefore, traits that were statistically different between the tolerant and sensitive cultivars

were exhibited specifically in the N-deficient treatment.

In total, we measured 24 distinct traits from cellular, leaf, and whole-plant scales in our

study. Of these, 50% of the traits were found to be different between the tolerant and sensitive

cultivars in the N deficient treatment (Table 4). In general, traits at the cellular scale were

mostly different between the tolerant and sensitive cultivars in the N-deficient treatment, indi-

cating that maximum acclimation changes may happen at this scale. Interestingly, NFR but not

NLR was significantly different between tolerant and sensitive cultivars. This may indicate that

sampling of fine roots may be more important to understand differences in root N uptake. At

leaf scale, gas exchange parameters such as Rd, Vcmax, and gm, although showed numerical dif-

ference, were not significantly different between the tolerant and sensitive cultivar. This may

be associated with relatively large variability associated with these measurements. For the same

reason, these measurements may not be most suitable for screening purposes. Among the root

traits, only DWLR was significant between the tolerant and sensitive cultivar in the N-deficient

treatment. Given the difficulty associated with measuring root traits and lack of significance in

DWRoot, DWFR, and RWR between the sensitive and tolerant cultivars, these traits may be bet-

ter suitable for understanding in-depth physiological mechanisms rather than screening pur-

poses. No difference in SLA suggests proportionate changes in AreaLeaf and DWLeaf. These

results clearly indicate that tolerance or sensitivity in the N-deficient treatment was regulated

by selective traits.

Table 4. Traits at cellular, leaf, and whole-plant scales which were significantly different [increased (") or

decreased (#)] or non-significant between tolerant and sensitive cultivars in the N-deficient treatment. Refer to

Tables 1–3 for trait names.

Scale Significant Non-Significant

Cellular NLeaf (")

NFR (")

CHLD (")

CTD (")

ACN (#)

NStem

NLR

Leaf Pgmax (")

LSP (")

Jmax (")

Rd

LCP

LUE

Vcmax

gm

Whole-plant DWShoot (")

DWLeaf (")

AreaLeaf (")

DWLR (")

DWStem

DWRoot

DWFR

SLA

RWR

https://doi.org/10.1371/journal.pone.0288729.t004
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The path analysis predicted three independent sub-paths relating traits at the cellular, leaf,

and whole-plant scales (Fig 4). These models were associated with ACN, CHL, and Pgmax.

Interestingly, a single path model that includes all three sub-paths or any two sub-paths did

not fit the data. This suggested that these three sub-paths were independent to each other.

Based on the ACN model, NLeaf is positively correlated with NFR and higher DWRoot (likely

DWLR, Table 3). Further, the model predicts that NLeaf negatively affected ACN levels, which

further negatively affected AreaLeaf and DWShoot in the N-deficient treatment. Therefore,

increased lateral root growth likely enabled fine root access to a larger substrate volume

thereby leading to increased NFR, higher NLeaf, and lower ACN in the tolerant cultivar. Further

a lower ACN resulted in higher AreaLeaf and DWShoot in the tolerant than sensitive cultivar

(Table 3). The model predicts that lower ACN in tolerant than sensitive cultivar is likely due to

increased NLeaf in the tolerant cultivar (Table 1). Anthocyanin accumulation is an important

plant-adaptive response under N-deficient conditions [24–26]. Anthocyanin absorbs light in

the blue and green wavebands and protects the subjacent chloroplasts from photoinhibition,

especially when photosynthesis rate and light-use in photosynthesis are lower [27–29]. There-

fore, ACN levels can increase in response to decreased levels of NLeaf. Moreover, a relatively

large metabolic cost can be associated with increased biosynthesis of ACN in plants [30, 31],

which involves the production of several enzymes and the transportation of ACN molecules

into the vacuole. This process competes with the expansion growth for glucose produced in

photosynthesis [32, 33]. Therefore, increased biosynthesis of ACN can reduce vegetative

growth. This is the likely reason for a decrease in AreaLeaf in the sensitive than tolerant cultivar,

in the N-deficient treatment. Finally, a larger AreaLeaf is associated with increased light inter-

ception leading to increased biomass production in plants [19].

The CHL sub-path model indicated a direct association between NLeaf and CHL in plants.

Further, the model predicted that CHL positively affected Jmax in plants exposed to N-deficient

conditions. In this model, Jmax was positively correlated with DWLeaf, likely through photosyn-

thesis rate in plants. Therefore, increased NLeaf in the tolerant than sensitive cultivar (Table 1)

resulted in higher CHL in the tolerant cultivar. Increased CHL and CTD with increasing N

supply was reported earlier [34]. Both CHL and CTD are components of the light harvesting

complex of photosynthesis [35, 36], and were previously associated with increased the effi-

ciency of electron transport rate in plants [17]. Further, higher partitioning of N to the light

harvesting complex of photosynthesis increased electron transport rate and photosynthesis

[35, 36], likely by increasing CHL levels. As Jmax and photosynthesis are positively correlated

[22, 37], one of the likely mechanisms associated with higher DWLeaf in the tolerant than sensi-

tive cultivar was likely a higher photosynthesis rate.

The Pgmax sub-path model indicated that NLeaf affected Pgmax, which further affected

DWShoot. The model also predicted a positive relationship of Pgmax with DWLR and NFR.

According to this model, higher NLeaf resulted in higher Pgmax leading to higher DWShoot,

DWLR, and NFR in the tolerant compared to the sensitive cultivar when exposed to N-deficient

conditions. A higher Pgmax has been earlier reported to be linked to N content in the leaf [38].

It is likely that the positive relation between NLeaf and Pg,max is mediated by rubisco, as a signif-

icant amount of NLeaf is partitioned to this enzyme [14] and rubisco capacity directly influ-

ences Pg,max at saturating light levels in plants [39]. Further, it was reported previously that an

increased N content in the tissue increased the level and activity of rubisco [15, 16]. Interest-

ingly, this model predicted a feedback loop between Pgmax and NLeaf in plants mediated by

DWLR and NFR. A higher DWLR in the tolerant cultivar likely enabled increased access to

nutrients in the substrate, compared to the sensitive cultivar. This likely improved N uptake in

the tolerant than sensitive cultivar. However, increased NFR, in addition to increased access to

nutrients, likely requires higher N transporter activity in the fine roots. Increase in root NO3
-
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uptake due to higher activity of transporter system by enhancing plasma membrane H+

-ATPase activity has been reported earlier [40]. The increased transporter activity is an ‘active

and energy-driven’ process [41]. The energy needed for the increased transporter activity in

the fine root membranes likely requires support from increased photosynthesis and transport

of sugars from the shoot to fine roots. Therefore, it is likely that the increased Pgmax in the tol-

erant cultivar not only resulted in increased shoot growth, but also provided sugars for

increased lateral root growth and energy needed in active N transport, compared to the sensi-

tive cultivar. The net result was an increased NFR that further enhanced NLeaf and in turn Pgmax

in the tolerant cultivar.

Both CHL and Pgmax models were associated with DWLeaf. This is likely through an

increased operating photosynthesis rate in the tolerant cultivar. Photosynthesis rate is co-lim-

ited by both rubisco efficiency and electron transport rate [22, 23, 42]. In the tolerant cultivar,

both Pgmax (indicator of rubisco efficiency at saturating light) and Jmax increased, therefore

likely resulted in higher photosynthesis leading to increased growth. Previously, a higher Pgmax

was reported to be associated with an increased photosynthesis and growth [39]. Surprisingly,

we did not see a significant increase in Vcmax, however there was a numerical increase in this

trait (Table 2). Collectively, the developed models in our study indicate an interplay among

traits at cellular, leaf, and whole-pant scales is required for tolerance to N-deficient conditions.

It is likely that all three paths were operative in the tolerant cultivar leading to increased

DWShoot.

Among the traits, AreaLeaf, CHL, Jmax, ACN, and NLeaf, can be screened rapidly and non-

invasively using image-based systems. Generally, AreaLeaf can be measured with highest accu-

racy among other traits using image-based systems [43]. However, the error value associated

with this trait in our path model was high for predicting DWShoot (Fig 4). Both CHL and Jmax

can be estimated rapidly and easily using hand held sensing devices (e.g., chlorophyll meters

and fluorometers), however these devices are generally expensive. The estimation of ACN is

possible using image-based systems [44]. Because both tolerant and sensitive cultivars showed

an increase in ACN levels in the N-deficient treatment, ACN measurement may complicate

the screening process without proper controls. Finally, NLeaf appears to be most suitable trait

for developing genetic markers in molecular breeding programs aimed at developing new vari-

eties with N stress tolerance. The NLeaf was associated with all three sub-path models and

appears to connect root and shoot traits in our study making this a key trait influencing N

stress tolerance in plants. The estimation of NLeaf can be done reliably, easily, and rapidly on

young and old leaves using low-cost handheld image-based sensors [45, 46]. Optimal values of

NLeaf can vary between 25 to 40 mg�g-1 in plants [45]. This information can be used to assess

the trait value in large number of samples using hand held image-based sensors for selection

purposes. Genetic markers for NLeaf can be developed by combining image-based NLeaf estima-

tions with high throughput genotyping assays.

Conclusions

A key finding from our study is that plant tolerance to N stress likely involves multiple paths

connecting traits at different scales. Further, our study identifies that leaf N content is a key

trait connecting root N uptake with shoot metabolism, and enables tolerance to N stress in

plants. Rapid screening for leaf N status is possible using image-based platforms. The implica-

tion of our findings is that genetic markers for leaf N content can be valuable in selecting elite

breeding lines for developing new cultivars that can tolerate low N application rates in crop

production.
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