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Abstract

Small odontocetes produce echolocation clicks to feed and navigate, making it an essential

function for their survival. Recently, the effect of vessel noise on small odontocetes behavior

has attracted attention owing to increase in vessel activities; however, the effects of the sur-

rounding environmental factor, vessel noise, and day/night on echolocation click character-

istics have not been well studied. Here, we examined the effects of vessel noise and day/

night on variations in echolocation clicks and click trains parameters. Passive acoustic moni-

toring of on-axis echolocation clicks produced by free-ranging finless porpoises (Neopho-

caena asiaeorientalis sunameri) was performed at two sites in Japan, Seto Inland Sea and

Mikawa Bay, in June–September 2021 and March–August 2022, using A-tag and Sound-

Trap 300HF. Generalized Linear Model was used to elucidate the effect of vessel noise,

day/night, and surrounding environmental factors (water temperature, synthetic flow veloc-

ity, and noise level) on echolocation click and click train parameters. Echolocation click and

click train parameters were strongly affected by day/night, whereas the absence/presence

vessel noise did not exhibit statistically significant influence. Particularly, -3 dB bandwidth

was wider, click duration was shorter, and inter-click intervals in a train were shorter at night,

which may facilitate information processing at night, thereby compensating for the lack of

visual information. The interaction between day/night and the absence/presence of vessel

noise affected the source level of finless porpoises, with higher levels observed in the

absence of vessel noise during the daytime compared to other conditions at the site with low

vessel traffic. Overall, these results suggest that echolocation clicks by finless porpoise

were likely to fluctuate to adapt with surrounding complex environmental conditions, espe-

cially day/night.

Introduction

Small odontocetes produce three types of vocalization sounds: whistles, burst pulses, and echo-

location clicks [1]. Whistles and burst pulses are used for communication [2, 3], while
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echolocation clicks are used for navigation and feeding [4], making it crucial for their survival.

Global vessel noise has increased rapidly over the past several decades [5]. Therefore, the

impact of vessel noise on behavior and vocalization in aquatic species [6–12], including small

odontocetes [6–9], has attracted increasing attention. Over the years, several studies have been

performed to elucidate the impact of vessel noise on echolocation clicks. For instance, Atlantic

bottlenose dolphins (Tursiops truncatus) and harbor porpoises (Phocoena phocoena) decreased

emitting buzz rate, feeding trial sound and one of the echolocation clicks [13, 14], in response

to the presence of vessels, indicating a decrease in their feeding activity [15, 16]. Additionally,

Lahille’s bottlenose dolphins (T. truncatus gephyreus) emitted significantly fewer echolocation

clicks in the presence of vessels in ~ 250-m radius [17]. Moreover, melon-headed whales

(Peponocephala electra) increased echolocation click source level in correlation with the level

of ambient sound pressure [18]. However, previous studies were mainly focused on the effects

of vessel noise on the echolocation click train emitting rate, with limited studies on variations

in echolocation click and click train parameters like the study of Baumann-Pickering et al.

[18]. In contrast, the effects of vessel noise on whistle parameters have been extensively stud-

ied. For example, common bottlenose dolphins were observed to shift whistle frequency [19]

and increase sound pressure in the presence of vessels [20]. Similarly, studies are necessary to

identify echolocation parameters that are affected by vessel noise, especially in small cetaceans

to improve conservation efforts.

Previous findings suggest that echolocation click and click train parameters are affected by

the surrounding environment [21], and diel changes in echolocation click characteristics have

been observed in some species. For instance, melon-headed whales exhibit higher center fre-

quencies at night [18], and harbor porpoises emitted high proportion of click trains with lon-

ger inter-click intervals (ICIs) to explore the environment at great distance [22]. Additionally,

the diel behavior of harbor porpoises likely depends on changes in the diel behavior of their

prey [23–26]. However, studies on the variations in echolocation click characteristics during

the day/night have not been conducted in several species, and it is unclear if diel variations in

echolocation click are associated with vessel noise. Therefore, it is necessary to examine varia-

tions in echolocation click during the day/night and in the absence/presence of vessel noise.

Narrow-ridged finless porpoises (Neophocaena asiaeorientalis) are small odontocetes found

in the shallow waters of East Asia, consisting of two subspecies, sunameri (found in ocean

water; hereafter referred to as finless porpoise) and asiaeorientalis (found mainly in the Yang-

tze River; hereafter referred to as Yangtze finless porpoise) [27]. Finless porpoises are often

found in shallow sandy areas (< 50 m depth), exposing them to the impacts of anthropogenic

activities, such as vessel noise [28]. Both finless porpoise and Yangtze finless porpoise do not

emit whistle, but emit narrow-band high frequency echolocation clicks [21, 29–31]. Addition-

ally, Yangtze finless porpoise emits an average of one click train every 5–6 seconds [32–35].

Recently, some studies have examined the impact of vessel noise on Yangtze finless por-

poise. For example, increase in vessel noise have been shown to affect Yangtze finless porpoise

distribution [36, 37], cortisol levels [38], and activity [39]. Additionally, Yangtze finless por-

poise emit more buzz at night for foraging [35, 40], finless porpoises avoid passing boats by

diving [41]. However, relatively few studies have investigated changes in echolocation click

and click train characteristics for small odontocetes, and no study has been conducted on fin-

less porpoises.

Echolocation click of wild finless porpoise have been reported in the coastal waters of main-

land China, Liao-dong-wan Bay in the Bohai Sea, and the western coast of the Taiwan Strait

[29, 42]; however, such study has not been performed on wild finless porpoise in Japanese

coastal areas. Wild finless porpoises are genetically and morphologically divided into five pop-

ulations [43–45], each of which is highly vulnerable to anthropogenic impacts due of low level
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of genetic diversity [46]. Therefore, understanding the impacts of vessel noise is necessary for

the conservation of the finless porpoise in the Japanese coastal areas.

Here, we measured on-axis echolocation clicks and click train parameters of finless por-

poises in Seto Inland Sea (St. S) and Mikawa Bay (St. M) in Japan, to elucidate the effects of

vessel noise (absence/presence) and day/night on echolocation click and click train parame-

ters. The two recording sites contained genetically and morphologically different local popula-

tions of finless porpoises [43–45], with different levels of vessel noise to enable the comparison

of changes in echolocation characteristics in response to absence/presence of vessel noise and

day/night. It is anticipated that the results of this study would provide valuable information for

the conservation of this species.

Materials and methods

Study area and recording system

Acoustic recording was conducted at two sites: the Seto Inland Sea (St. S) and Mikawa Bay

(St. M), Japan (Fig 1, Table 1), from June–September 2021 and April–August 2022. The St. S

finless porpoise belonged to the Inland Sea-Hibiki Nada population, whereas the St. M finless

porpoise belonged to the Ise-Mikawa Bay population [43]. Both recording sites had sandy bot-

tom sediments, and fishing boats were the predominant vessels in these areas. A total of 114

and 453 fishing boats were identified in the nearby fishing ports at St. S in 2018 [47] and St. M

in 2017 [48], respectively. The data for 2021 and 2022 were unavailable; however, the trend of

more vessels at St. M than at St. S was expected to persist. Additionally, there were several ferry

routes with more than 30 trips per day within a few hundred meters of the recording site in

St. M.

Acoustic and environmental data were recorded at the recording sites, using two A-tags

(ML 200-AS8, MMT, Japan), one SoundTrap 300HF (Ocean Instruments, New Zealand), and

Fig 1. Recording sites and acoustic array system. (a) Distribution of finless porpoise in Japanese coastal areas (blue)

[45]. This map was modified using data set (https://cyberjapandata.gsi.go.jp/xyz/pale/{z}/{x}/{y}.png) under CC BY 4.0

and QGIS 3.30 (https://qgis.org/it/site/). Shoreline data was derived from: United States. National Imagery and

Mapping Agency. "Vector Map Level 0 (VMAP0)." Bethesda, MD: Denver, CO: The Agency; USGS Information

Services, 1997. (b, c) Maps of the recording points in Seto Inland Sea (St. S) and Mikawa Bay (St. M), Japan. These

maps were modified using data set (https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-C23.html) under CC BY 4.0 and

QGIS software. The locations of the arrays are depicted by circles, and the dotted lines denote the ferry routes. (d)

Configuration of the arrays. From the top, the instruments (black in the figure) were placed with their sensors at 2 m

(INFINITY-EM), 3 m (A-tag), 3.5 m (SoundTrap), and 4 m (A-tag) from the water surface (blue line).

https://doi.org/10.1371/journal.pone.0288513.g001
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one INFINITY-EM current meter (JFE Advantech, Japan). The instruments were assembled

on a vertical array, with the INFINITY-EM at a depth of 2 m, A-tag at 3 m, SoundTrap at 3.5

m, and A-tag at 4 m from the surface (Fig 1D). The monitoring arrays were attached to surface

buoys, which were anchored and deployed under the supervision of the local fisheries associa-

tion. Data were obtained by multiple continuous recordings for ~ 8 d. The experimental proto-

col of this study was non-invasive and was approved by the Animal Experiment Committee of

Kyoto University (Inf-K21008).

The A-tag is a stereo event recorder of pulse information capable of recording the time,

sound pressure levels of each of the two hydrophones, and the relative azimuth of a pulsed

sound that exceeds a set sound pressure threshold. The A-tag was not able to record the fre-

quency information, but the echolocation click train was detected by using smooth changes in

sound pressure and the ICI of the consecutive clicks [34, 35, 49]. The two hydrophones of the

A-tag had different frequency responses (maximum sensitivities at 130 and 70 kHz) and were

placed 190 mm apart. The time difference between the arrival of the sound from the two

hydrophones was measured to determine the relative azimuth, and the sound pressure ratio

was used to differentiate between Delphinidae and Phocoenidae [50, 51]. The distance to the

sound source from the array was calculated using the relative azimuth values and a trigono-

metric function [52, 53]. The bandpass filter in the A-tags was adjusted to 55–235 kHz, and

amplification was modified to + 60 dB. The sampling rate was set to 0.5 ms and the amplitude

threshold to 360 counts (approximately 6.3 Pa).

The SoundTrap 300HF was used to obtain sound information, such as the frequency and

sound pressure. The SoundTrap 300HF parameters were set as follows: sampling frequency,

576 kHz; high-pass filter, 600 Hz; clip levels, 172 dB re 1 μPa; and self-noise, 37 dB re 1 μPa

(> 2 kHz), with 16-bit resolution. The frequency response was flat in the range of 20 Hz –150

kHz, with 174.9, 175, and 176.3 dB re 1 μPa (±3 dB) at St. S and 174.9, 175.9, and 176.3 dB re

1 μPa (±3 dB) at St. M (Table 1).

The INFINITY-EM current meter was used to record the water temperature and tidal cur-

rent directional velocities. Water temperature and synthetic flow velocity were considered as

one of the environmental factors in the study, and water temperature was also used to calculate

Table 1. Location and device information for acoustic recording of finless porpoise at Seto Inland Sea (St. S) and Mikawa Bay (St. M), Japan, in 2021 and 2022.

Recording

site

GPS position Bottom depth Recording periods Total recording

duration

SoundTrap 300HF

sensitivity

St. S 33˚51.151N, 132˚

06.893E

16 m July 20, 2021, 00:00 –July 26, 2021, 19:00

August 12, 2021, 00:00 –August 18, 2021, 12:30

August 31, 2021, 00:00 –September 6, 2021, 15:30

April 24, 2022 00:00 –April 30, 2022, 7:00

June 6, 2022, 00:00 –June 12, 2022, 12:30

July 4, 2022, 00:00 –July 10, 2022, 11:30

August 3, 2022, 17:00 –August 10, 2022, 10:00

1103 h July, 2021 –April 2022

175.9 dB (± 3 dB)

June, 2022

174.9 dB (± 3 dB)

July, 2022 –August, 2022

175.9 (± 3 dB)

St. M 34˚41.833N, 136˚

59.555E

15 m June 16, 2021, 00:00 –June 20, 2021, 20:30

July 1, 2021, 00:00 –July 6, 2021, 7:00

July 13, 2021, 00:00 –July 18, 2021, 8:00

August 7, 2021, 00:00 –August 12, 2021, 8:30

August 26, 2021, 00:00 –August 31, 2021, 10:00

September 14, 2021, 00:00 –September 19, 2021,

13:00

March 21, 2022, 00:00 –March 26, 2022, 17:00

April 18, 2022, 00:00 –April 23, 2022, 8:30

May 16, 2022, 00:00 –May 21, 2022, 00:00

May 23, 2022, 00:00 –May 28, 2022, 5:30

June 13, 2022, 00:00 –June 18, 2022, 4:30

July 9, 2022, 00:00 –July 14, 2022, 10:00

1528.5 h June, 2021 –May 21, 2022

174.9 dB (± 3 dB)

May 23, 2022 –May 28, 2022

175.9 dB (± 3 dB)

June, 2022 –July, 2022

176.3 dB (± 3 dB)

https://doi.org/10.1371/journal.pone.0288513.t001
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sound velocity. The data were recorded in burst mode (10 times at 0.1-s intervals, once every 5

min).

Echolocation click and click train analysis

Echolocation click trains of finless porpoise were screened using the A-tag data. Specifically,

on-axis sounds were examined using the A-tag and SoundTrap data, and the source parame-

ters of echolocation click and click train were measured using the SoundTrap data. A-tag data

were analyzed using Igor Pro 8.03 (WaveMetrics, USA), and the SoundTrap data were ana-

lyzed using both Adobe Audition 14.4 (Adobe, USA) and MATLAB R2021a (MathWorks,

USA).

At first, the A-tag data were filtered based on the following parameters to detect echoloca-

tion click trains of the finless porpoise: a series of clicks with a duration of 1–200 ms and con-

sisting of a minimum of six pulses were categorized as a click train, while reflected waves (i.e.

waves within < 1 ms interval of the previous wave) were excluded [34]. Following Kameyama

et al. [50] and Kimura et al. [51], the sound pressure ratio of the two hydrophones in the A-tag

was set to� 0.6 to enable the detection of the click trains of most of Phocoenidae, including

the finless porpoise. Each click train detected was visually inspected to confirm whether it met

the criteria for a click train, using Igor software, according to the procedures described by Aka-

matsu et al. [33, 34] and Kimura et al. [49]. The number of click trains (on-axis and off-axis)

produced by the finless porpoise was calculated based on the data obtained from the A-tag

placed at a 4-m depth. Five consecutive clicks with ICI < 10 ms was defined as buzz (feeding

sound) [13, 26], and the number of buzz and the ratio of buzzes were calculated. Additionally,

click trains and buzzes were categorized as day/night [54, 55], and their hourly average was

calculated.

Subsequently, the click arrival time recorded by the A-tag were used as reference to filter

the click trains from the SoundTrap data using Adobe Audition. Based on the previous studies

[56–58], six criteria were defined to extract on-axis click or click train from the A-tag and

SoundTrap 300HF data: (1) click trains must be measured by all five hydrophones in two A-

tags and one SoundTrap 300HF; (2) the relative azimuth must be within –35.5˚ to 35.5˚; (3)

the amplitude of the series of click trains should first increase and then decrease (sensu [59]);

(4) the maximum amplitude of the click must be higher than the reflected wave from the sea

surface or the seabed when present; (5) the on-axis sound should not be distorted; and (6) the

distance between the estimated source and the acoustic array should be within 60 m. Clicks

with the highest amplitude in the series of click trains were analyzed. Analysis was conducted

only when the signal-to-noise ratio (peak-to-peak amplitude) of the series of click trains

was> 20 dB. Criterion (1) was analyzed using the A-tag and SoundTrap data, (2) and (6) were

analyzed using the A-tag data, and (3), (4), and (5) were analyzed using the SoundTrap data.

The distance between the finless porpoise and acoustic array was estimated using the equation

provided by Kimura et al. [52, 53].

Click and click train parameters for on-axis echolocation click of finless porpoises were cal-

culated using MATLAB. Click parameters included the apparent source level (ASL) in dB re

1 μPa, peak frequency and center frequency in kHz, -3 dB bandwidth (BW) in kHz, click dura-

tion in μs, as well as click train parameters such as ICI in milliseconds (ms) and the number of

clicks per train. ASL was calculated using Eq (1) by Møhl et al. [60]:

ASL ¼ RLþ TL ð1Þ

where RL is the received level and TL is the transmission loss. TL was calculated using Eq (2):

TL ¼ 20logr þ ra ð2Þ
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where r is the estimated distance from the finless porpoise to the acoustic array and α is calcu-

lated using the Francois and Garrison equation [61]. Water temperature data used for α calcu-

lation was obtained using INFINITY-EM. Salinity data at St. S were obtained from the Hirae

Iwakuni fixed-line survey conducted by the Inland Sea Research Department of the Yamagu-

chi Prefectural Fisheries Research Center at 33˚50’12@N, 132˚02’04@E (~ 7.7 km from St. S)

once a month during the same period, using the Yamaguchi Prefecture submarine and fisher-

ies research vessel “Seto” [62]. Salinity data were measured at St. M at a 3.5 m depth, using the

No. 2 Automatic Oceanographic Observation Buoy in Mikawa Bay (34˚44’42@N, 137˚04’19@E;

~ 9 km from St. M), which is owned by the Aichi Fisheries Research Institute [63]. When data

could not be obtained due to equipment maintenance on the buoy, the salinity data obtained

at the closest observation time were used. The α (0.048 ± 0.005 dB/m; average ± SD) was calcu-

lated using variable water temperature and salinity values. The frequency of the maximum

amplitude was defined as the peak frequency, the average of frequencies at -3 dB from the

amplitude of the peak frequency was defined as the center frequency, and the frequency band-

width was defined as -3 dB BW. The click duration referred to the time from when the ampli-

tude of the click became larger than the background noise to when it became smaller than the

background noise. ICI was calculated as the average interval between two ICIs before and after

the click with the maximum amplitude. Finally, the number of clicks per train was measured.

Environmental data analysis

The absence/presence of vessel noise was determined by manually listening to the sounds 1

min before and after on-axis click train detection. Additionally, the detected click trains were

categorized into day or night based on the time of detection and sunset information at each

site. Data from timeanddata.com [54, 55] were used as a reference for sunset and sunrise infor-

mation; “Yamaguchi” and “Aichi” were used as the reference points for St. S and St. M, respec-

tively. Although some diel behavioral studies on odontocetes used civil twilight times in their

analyses [64], we used day and night categories (based on sunset and sunrise), due to the small

sample size. The time from sunrise to sunset was defined as day, and the time from sunset to

sunrise was defined as night. Water temperature data and synthetic flow velocity were

obtained from INFINITY-EM data averaged over 10 recordings at 0.1-s intervals, once every 5

min. The root mean square (rms) amplitudes at 1 min before and after each click train were

calculated using the rms function in MATLAB and defined as the noise level (dB re 1 μPa).

Statistical analysis

All statistical analyses were performed using the R software (version 3.6.3) [65]. The environ-

mental parameters (temperature, synthetic flow velocity, and noise level) at each site were

compared using Mann–Whitney U-test. Similarly, click and click train parameters at each site

were compared using Student’s t-test or Mann–Whitney U-test. Generalized Linear Models

(GLMs) with logit link function were generated to analyze the relationship between each

parameter and absence/presence of vessel noise, day/night, environmental parameters, and

recording sites using lme4 package [66] and lmerTest [67] in R. Click and click train parame-

ters were the response variables; absence/presence of vessel noise (factor type), day/night (fac-

tor type), interaction between absence/presence of vessel noise and day/night, temperature,

synthetic flow velocity, noise level, recording sites (factor type) were the explanatory variables.

ASL was analyzed using GLM with gaussian family and other parameters were analyzed using

GLMs with gamma family. The full model was generated, and the best model was estimated

with respect to the Akaike’s Information Criterion (AIC) using the dredge function included

in the MuMIn package [68].
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Results

Echolocation click and click train parameters

A total of 136 and 180 on-axis echolocation click trains of Japanese coastal finless porpoise were

detected at St. S and St. M, respectively (Fig 2, Tables 2 and 3). Specifically, 75 and 46 click trains

were detected at St. S and St. M during the daytime, while 61 and 134 click trains were detected

during nighttime (Table 2). Additionally, at St. S and St. M, vessel noise was detected before or

after 80 and 66 click trains, while vessel noise was not detected 56 and 114 click trains (Table 2).

A total of 1,257 on- and off-axis click trains (excluding buzz) were recorded at St. S (810

and 447 at day and night, respectively), whereas 4,104 click trains were recorded at St. M (925

and 3,179 at day and night, respectively). Additionally, 110 (81 and 29 at day and night, respec-

tively) and 120 buzzes (38 and 82 buzzes at day and night, respectively) were recorded at St. S

and St. M, respectively. Moreover, the buzz ratios (percentage of total buzz to the total click

train) at St. S and St. M were 8.8% (10.0% and 6.5% at day and night, respectively) and 2.9%

(4.1% and 2.6% at day and night, respectively), respectively.

Furthermore, the average ASL and peak frequency at both sites were 174 ± 10 dB re 1 μPa

(average ± SD) (n = 316; 172 ± 11 at St. S, n = 136 and 175 ± 9 dB re 1 μPa St. M, n = 180;

Table 3), and 134 ± 6 kHz (n = 316; 134 ± 6 at St. S, n = 136 and 134 ± 6 kHz St. M, n = 180;

Table 3). There were significant differences in temperature, synthetic flow velocity, noise level,

ASL, -3 dB BW, click duration, and number of clicks per train between St. S and St. M; how-

ever, there was no significant difference in range from array, peak frequency, center frequency,

and ICI and between both sites (Table 3).

GLM model selection

For ASL, the best model was the one with the absence/presence of vessel noise (p = 0.94, S1

Table), day/night (p< 0.01, S1 Table), interaction between the absence/presence of vessel

Fig 2. Typical echolocation click of finless porpoise. (a) Waveforms and (b) signal frequency. Both (a) and (b) are

sounds obtained from the Seto Inland Sea (St. S) data.

https://doi.org/10.1371/journal.pone.0288513.g002

Table 2. Number of echolocation click trains at Seto Inland Sea (St. S) and Mikawa Bay (St. M) during day/night in the absence/presence of vessel noise.

St. S (n = 136) St. M (n = 180)

Vessel condition Absence Presence Absence Presence

Day 31 44 8 38

Night 49 12 58 76

https://doi.org/10.1371/journal.pone.0288513.t002
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noise and day/night (p< 0.01, S1 Table), temperature (p< 0.01, S1 Table), and sites (p< 0.01,

S1 Table) as the explanatory variables (AIC = 2327.8, null deviance = 31291, residual devi-

ance = 27969, Table 4). ASL was higher during the day in the absence of vessel noise at St. S

(Fig 3A).

For peak frequency, the null model using a GLM (AIC = 2050.4, null deviance = 0.67,

Table 4) was selected as the best model. None of the explanatory variables had a significant

effect on peak frequency.

For center frequency, the best model was the one with the absence/presence of vessel noise

(p = 0.12, S1 Table), day/night (p = 0.10, S1 Table), temperature (p< 0.01, S1 Table), and noise

level (p = 0.03, S1 Table) as the explanatory variables (AIC = 1830.0, null deviance = 0.35,

residual deviance = 0.32, Table 4), performed using GLM. The absence/presence of vessel

noise and day/night did not affect the center frequency.

For -3 dB BW, the best model was the one with the day/night (p< 0.01, S1 Table), tempera-

ture (p< 0.01, S1 Table), noise level (p = 0.02, S1 Table), and site (p< 0.01, S1 Table) as the

explanatory variables (AIC = 2139.6, null deviance = 38.54, residual deviance = 27.10, Table 4).

A wider -3 dB BW was observed during nighttime at both sites (Fig 3B).

For click duration, the best model was the one with the day/night (p< 0.01, S1 Table), tem-

perature (p = 0.13, S1 Table), noise level (p = 0.15, S1 Table), and site (p< 0.01, S1 Table) as

the explanatory variables (AIC = 2458.8, null deviance = 15.31, residual deviance = 10.50,

Table 4). Click duration was significantly shorter at night in both sites (Fig 3C).

For ICI, the best model was the one with the day/night (p< 0.01, S1 Table) and noise level

(p< 0.01, S1 Table) as the explanatory variables (AIC = 2725.3, null deviance = 89.57, residual

deviance = 77.79, Table 4). ICI was significantly shorter at night at both sites (Fig 3D).

For the number of clicks per train, the best model was the one with the day/night (p = 0.17,

S1 Table), temperature (p< 0.01, S1 Table), and noise level (p = 0.01, S1 Table) as the explana-

tory variables (AIC = 2454.4, null deviance = 145.72, residual deviance = 136.08, Table 4). The

absence/presence of vessel noise and day/night did not significantly affect the number of clicks

per train.

Table 3. Summary of environmental parameters, finless porpoise echolocation click and click train parameters at Seto Inland Sea (St. S) and Mikawa Bay (St. M).

The summary shows environmental parameters (temperature, synthetic flow velocity, and noise level), echolocation click parameters (ASL, peak frequency, center fre-

quency, -3 dB BW, and click duration), and click train parameters (ICI, number of clicks per train, and range from array). ASL was compared using Student’s t-test, while

the other parameters were compared using Mann–Whitney U-test to determine significant differences between the sites. 0.01� p< 0.05 is denoted as> or< and

p< 0.01 is denoted as>> or<<;> and>> indicate that the parameter in St. S were larger than that at St. M, while< and<< indicate that the parameters in St. M were

larger than those in St. S.

Total (n = 316) St. S (n = 136) St. M (n = 180)

Source parameter Average ± SD Range Average ± SD Range p Average ± SD Range

range from array (m) 17±13 2–59 18±13 3–56 0.94 17±12 2–59

temperature (˚C) 21±5 12–29 25±2 22–28 < 30±3 13–32

synthetic flow velocity (cm/sec) 21±18 1–60 5±3 1–14 << 34±15 1–60

noise level (dBrms re 1 μPa) 117±2 112–124 116±1 112–121 << 118±2 114–124

ASL (dB re 1 μPa) 174±10 137–198 172±11 137–198 << 175±9 152–197

peak frequency (kHz) 134±6 117–149 134±6 117–148 0.97 134±6 120–149

center frequency (kHz) 134±4 119–152 134±4 119–144 0.77 134±5 120–152

-3 dB BW (kHz) 25±9 7–68 22±7 7–37 << 28±10 11–68

click duration (μs) 65±15 38–116 73±15 45–116 >> 59±12 38–104

ICI (ms) 41±22 5–162 45±25 5–162 0.05 37±19 5–144

number of clicks per train 21±17 5–137 24±16 6–80 >> 19±18 5–137

Abbreviations: ASL, apparent source level; ICI, inter-click interval; BW, bandwidth.

https://doi.org/10.1371/journal.pone.0288513.t003
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Table 4. Selection of the best model generalized linear models (GLM) for echolocation click and click train parameters. The first column shows the ranks, numbered

from the smallest Akaike’s Information Criterion (AIC). This table shows models with AICs< 2. The second column shows the explanatory variables for GLMs

(vessel = absence/presence of vessel noise, DN = day/night, vessel: DN = interaction between day/night and absence/presence of vessel noise, temp = temperature,

flow = synthetic flow velocity, noise level = noise level, site = recording site). Bold text indicates the respective response variable. df: degrees of freedom.

Rank Model AIC ΔAIC LogLik df weight

ASL

1 vessel + DN + vessel :DN + temp + site 2327.8 0.00 -1156.718 7 0.341

2 vessel + DN + vessel :DN + temp + flow + site 2327.9 0.07 -1155.700 8 0.330

3 vessel + DN + vessel :DN + temp + noise level + site 2329.7 1.86 -1156.594 8 0.135

vessel + DN + vessel :DN + temp + flow + noise level + site 2329.7 1.94 -1155.577 9 0.129

peak frequency

1 null 2050.4 0.00 -1023.171 2 0.072

2 DN 2050.8 0.44 -1022.372 3 0.058

3 temp 2051.5 1.13 -1022.717 3 0.041

4 flow 2051.8 1.43 -1022.868 3 0.035

5 DN + flow 2051.8 1.45 -1021.852 4 0.035

6 vessel 2052.1 1.75 -1023.028 3 0.030

7 DN + temp 2052.2 1.78 -1022.016 4 0.030

8 vessel + DN 2052.2 1.79 -1022.021 4 0.029

9 noise level 2052.2 1.83 -1023.068 3 0.029

10 site 2052.3 1.96 -1023.134 3 0.027

center frequency

1 vessel + DN + temp + noise level 1830.0 0.00 -908.874 6 0.104

2 DN +temp + noise level 1830.4 0.37 -910.096 5 0.086

3 vessel + temp + noise level 1830.7 0.64 -910.233 5 0.075

4 DN + temp 1831.3 1.24 -911.567 4 0.056

5 DN + vessel + temp + noise level + flow 1831.3 1.30 -908.477 7 0.054

6 DN + temp + noise level + flow 1831.4 1.37 -909.560 6 0.052

7 DN + vessel + temp + noise level + site 1831.9 1.89 -908.772 7 0.040

-3 dB BW

1 DN + temp + noise level + site 2139.6 0.00 -1063.659 6 0.239

2 DN + temp + noise level + flow + site 2140.9 1.31 -1063.270 7 0.124

3 DN + temp + flow + noise level 2140.9 1.34 -1064.329 6 0.122

4 vessel + DN + temp + noise level + site 2141.6 1.97 -1063.599 7 0.089

click duration

1 DN + temp + noise level + site 2458.8 0.00 -1223.286 6 0.145

2 DN + temp + site 2459.0 0.18 -1224.416 5 0.133

3 DN + noise level + site 2459.2 0.37 -1224.509 5 0.121

4 DN + sIte 2459.9 1.06 -1225.888 4 0.085

5 DN + vessel + temp + site 2460.7 1.90 -1224.236 6 0.056

ICI

1 DN + noise level 2725.3 0.00 -1358.583 4 0.196

2 DN + flow + noise level 2726.3 1.01 -1358.057 5 0.118

3 DN + temp + noise level 2726.9 1.59 -1358.348 5 0.088

4 vessel + DN + noise level 2727.0 1.74 -1358.422 5 0.082

5 DN + noise level + site 2727.1 1.82 -1358.459 5 0.079

number of clicks per train

1 DN + temp + noise level 2454.5 0.00 -1222.167 5 0.139

2 temp + noise level 2455.1 0.60 -1223.502 4 0.103

3 temp + noise level + site 2455.4 0.89 -1222.615 5 0.089

(Continued)
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Discussion

Effects of presence of vessel noise on echolocation click and click train

parameters

ASL was higher during the day in the absence of vessel noise at St. S than under other condi-

tions, whereas ASL decreased in the presence of vessel noise, which was contrary to previous

findings. Most previous studies showed an increase in echolocation click source level in beluga

(Delphinapterus leucas) in the presence of ferry [69], and melon-headed whales increased

echolocation click source level with increasing ambient noise regardless of day and night [18].

The phenomenon of increased vocalizations in the presence of noise is known as the Lombard

effect [70], which has been observed in cetaceans [20, 71] as well as in birds and bats [72],

Table 4. (Continued)

Rank Model AIC ΔAIC LogLik df weight

4 DN + temp + noise level + site 2456.2 1.65 -1221.952 6 0.061

5 vessel + DN + vessel :DN + temp + noise level 2456.5 1.97 -1221.065 7 0.052

6 DN + temp + flow + noise level 2456.5 1.98 -1222.119 6 0.052

https://doi.org/10.1371/journal.pone.0288513.t004

Fig 3. Box plots for the relationship between the explanatory variables and respective response variables. The

box plots represent (a) ASL, (b) -3 dB BW, (c) click duration, (d) ICI. The lower box limit represents the 1st quartile

and the top box limit represents the 3rd quartile. The middle line in the box represents the median. Refer to Table 3 for

sample size. In the (a), “a” means absence of vessel noise, and “p” means presence of vessel noise.

https://doi.org/10.1371/journal.pone.0288513.g003
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indicating a common response to noise. However, contrary to this pattern, the finless por-

poises in this study exhibit a decrease in sound pressure under vessel noise. Some studies

showed that the vocalization rate of echolocation clicks decreases in the presence of vessels due

to acoustic interference and enhanced vigilance [15, 73]. Moreover, cetaceans have been

shown to exhibit similar responses to predators and anthropogenic noise [74]. Therefore, it is

possible that the observed decrease in ASL in response to vessel noise in the present study may

be attributed to vigilance behavior in the presence of vessels. The solo impact of vessel noise

on ASL was not significant; instead, distinct influences were observed with the interaction

between vessel noise and day/night. Finless porpoise may be more cautious at night than dur-

ing the day owing to shorter visual range at night. On the other hand, the decrease in ASL may

lead to a reduction in search range, potentially leading to a decline of feeding opportunities.

ASL showed different changes between the two recording sites in response to factors of

day/night variations and the presence of vessels. At St. S, ASL was affected by the absence/pres-

ence of vessel noise and day/night, with a notably higher ASL during the daytime in the

absence of vessel noise. In contrast, only slight changes were observed in ASL between the day/

night or the absence/presence of vessel noise at St. M. The differences in response between the

recording sites might be due to various factors, such as habituation to vessel noise, prey spe-

cies, and other complex environmental factors. For instance, Indo-pacific bottlenose dolphins

in areas with low vessel noise have been shown to respond more strongly to vessels than dol-

phins in areas with high vessel noise [75]. In the present study, variation in ASL was low at the

site with high vessel noise (St. M), whereas variations in ASL was high at the site with low

noise (St. S). Therefore, the variation in ASL in finless porpoises could be attributed to differ-

ent responses to changes in vessel noise, and it is possible that habituation occurred. However,

some findings indicate that harbor porpoise do not exhibit habituation to vessel noise, even

after living in an environment with high levels of vessel noise [7, 16]. Therefore, further studies

are necessary to comprehensively elucidate the influence of habituation to vessel noise on click

parameters.

In the present study, buzz ratio was higher during the day at the two sites; additionally,

there was no significant difference in the number of prey species captured in St. S and St. M.

The prey species of finless porpoise [76] were similar at St. S and St. M, with the main prey spe-

cies consisting of whitespotted conger (Conger myriaster), Japanese sea bass (Lateolabrax japo-
nicus), octopus, shrimp, and squid [77–79]. Additionally, the following non-prey species of the

finless porpoise were captured at both sites: Japanese jack mackerel (Trachurus japonicus), red

tilefish (Brachiostegus japonicus), chubmackerel (Scomber japonicu), Japanese spanish mack-

erel (Scomberomorus niphonicus), largehead hairtall (Trichiurus lepturus), righteye flounder

(Pleuronectidae sp.), and bastard halibut (Paralichthys olivaceus), pufferfish (Tetraodonidae

sp.), and crab (Brachyura) [77–79]. Furthermore, there were no differences in depth or bottom

sediments at both sites. Variations in ASL at both sites may likely not be due to differences in

feeding time or prey species. However, we can not rule out the possibility that other parame-

ters not examined in this study may have affected the behavior of finless porpoises. Therefore,

further studies are necessary to comprehensively elucidate the effect of environmental factors

on finless porpoises.

Effects of day/night on echolocation click and click train parameters

In the present study, day/night had a greater impact on echolocation click and click train char-

acteristics than vessel noise. Specifically, -3 dB BW was wider, click duration was shorter, and

ICI was shorter in both sites at night. A wider bandwidth provides more information, includ-

ing noise information [80]. The shorter the click duration, the higher the accuracy of binaural
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time measurements, resulting in improved localization ability. Atlantic bottlenose dolphins

localize using interaural differences in the arrival time of sound, binaural phase differences

due to each ear being at a different point in the phase angle, or binaural intensity differences

[81]. The shorter ICI observed in the present study indicated that finless porpoises scan their

surrounding environment more frequently per time. During darkness, one captive harbor por-

poise increased the number of echolocation click trains emitted per unit time [82]. The varia-

tions in ICI observed in the present study were consistent with a previous finding [82], and it

is possible that finless porpoise exhibit a higher searching intensity of their surrounding envi-

ronment during the night than during the day. Based on these findings, it is probable that fin-

less porpoises rely more on acoustic information at night owing to relatively lower visual

information at night. Therefore, the increase in bandwidth, the decrease in click duration, and

shorter ICI are necessary to improve localization accuracy and information acquisition to

compensate for low visual information at night.

In the present study, there was no significant difference in peak frequency and center fre-

quency between day and night. Although the center frequency of melon-headed whale has

been shown to increase at night [18], the frequency bands emitted by melon-headed whale and

finless porpoise are different. Specifically, finless porpoises emit echolocation clicks at frequen-

cies of 125–135 kHz [21, 29–31], whereas melon-headed whales produce echolocation clicks at

frequencies of 25–30 kHz [83], which is a difference of approximately 100 kHz. Therefore, the

fluctuation of frequency changes caused by surrounding environment of finless porpoises and

melon-headed whales could be attributed to differences in frequency band. Additionally, a pre-

vious study indicated that narrow-band high-frequency species are less likely to exhibit fluctu-

ations in frequency [84]. The range of fluctuation in frequencies in the present study was

small, necessitating further studies with more data for narrow-band high-frequency species.

Comparison of echolocation click and click train parameters with previous

findings

Compared with the click and click train parameters of the finless porpoise in the Liao-dong

wan Bay, Bohai Sea [29], and the Taiwan strait [42], finless porpoise examined in the present

study had a higher peak frequency, wider bandwidth, and shorter click duration [29, 42].

These differences were more significant than those between St. S and St. M and may be caused

by factors such as skull morphology [43, 45], environmental characteristics, and behavior. In

some bat species, skull morphology has been suggested to be associated with echolocation

parameters [85, 86]. Moreover, the skull morphology of harbor porpoise exhibits evolutional

adaptation to prey species [87]. However, it is unclear whether there are differences in skull

morphology between finless porpoises in Liao-dong wan bay, Taiwan strait, and the Japanese

coastal area. Therefore, further studies are necessary to elucidate the relationship between skull

morphology, click and click train parameters, and environmental factors. Harbor porpoise

exhibited variations in click train parameters for communication [88]. Thus, it is necessary to

examine whether variations in click and click train parameters are dependent on the behav-

ioral state of finless porpoise.

Conclusions

In the present study, echolocation click and click train parameters were influenced by the day/

night. ASL was higher in the absence of vessel noise during the daytime at the site with low ves-

sel traffic. Additionally, finless porpoise increased their resolution and amount of sound infor-

mation by shortening the click duration, increasing -3 dB BW, and reducing ICI at night.

Overall, these findings contribute to our understanding of species adaptation in response to
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day/night change. To accurately assess the impact of vessel noise on echolocation characteris-

tics, it is important to consider day/night factors. However, only acoustic monitoring was per-

formed in this study, and factors, such as the behavioral state of vocalizing individuals and the

speed and size of vessels were not considered, indicating the need for further studies on the

effects of these factors on echolocation.
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