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Abstract

Hypergraphs have gained increasing attention in the machine learning community lately

due to their superiority over graphs in capturing super-dyadic interactions among entities. In

this work, we propose a novel approach for the partitioning of k-uniform hypergraphs. Most

of the existing methods work by reducing the hypergraph to a graph followed by applying

standard graph partitioning algorithms. The reduction step restricts the algorithms to captur-

ing only some weighted pairwise interactions and hence loses essential information about

the original hypergraph. We overcome this issue by utilizing tensor-based representation of

hypergraphs, which enables us to capture actual super-dyadic interactions. We extend the

notion of minimum ratio-cut and normalized-cut from graphs to hypergraphs and show that

the relaxed optimization problem can be solved using eigenvalue decomposition of the

Laplacian tensor. This novel formulation also enables us to remove a hyperedge completely

by using the “hyperedge score” metric proposed by us, unlike the existing reduction

approaches. We propose a hypergraph partitioning algorithm inspired from spectral graph

theory and also derive a tighter upper bound on the minimum positive eigenvalue of even-

order hypergraph Laplacian tensor in terms of its conductance, which is utilized in the parti-

tioning algorithm to approximate the normalized cut. The efficacy of the proposed method is

demonstrated numerically on synthetic hypergraphs generated by stochastic block model.

We also show improvement for the min-cut solution on 2-uniform hypergraphs (graphs) over

the standard spectral partitioning algorithm.

1 Introduction

In machine learning, interacting systems are often modeled as graphs. In graph modeling, an

interacting object is represented as a node, and an edge captures the interaction between a pair

of objects. A conventional approach is to quantify the extent of interaction by associating a

positive weight to the corresponding edge. This graph formulation is further utilized for vari-

ous standard machine-learning applications in different domains, such as biology [1], VLSI

[2], computer vision [3], transport [4], clustering [5], and semi-supervised learning [6]. Learn-

ing on graphs has been an active area of research, ranging from spectral graph theory [7] to

recently proposed graph neural networks [8]. A graph representation is limited to capturing

only pairwise interaction, whereas many real-world systems may involve interactions that may

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0288457 July 21, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Maurya D, Ravindran B (2023)

Hypergraph partitioning using tensor eigenvalue

decomposition. PLoS ONE 18(7): e0288457.

https://doi.org/10.1371/journal.pone.0288457

Editor: Ilya Safro, University of Delaware, UNITED

STATES

Received: June 29, 2021

Accepted: June 27, 2023

Published: July 21, 2023

Copyright: © 2023 Maurya, Ravindran. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We have worked with

synthetic data and NOT real-world data as the work

is more theory oriented. We have included the code

to generate the synthetic data as a Supporting

information files.

Funding: This work was partially supported by Intel

research grant RB/18-19/CSE/002/INTI/BRAV to

Balaraman Ravindran The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5757-1267
https://orcid.org/0000-0002-5364-7639
https://doi.org/10.1371/journal.pone.0288457
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288457&domain=pdf&date_stamp=2023-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288457&domain=pdf&date_stamp=2023-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288457&domain=pdf&date_stamp=2023-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288457&domain=pdf&date_stamp=2023-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288457&domain=pdf&date_stamp=2023-07-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288457&domain=pdf&date_stamp=2023-07-21
https://doi.org/10.1371/journal.pone.0288457
http://creativecommons.org/licenses/by/4.0/


be more complex than the simple pairwise formulation [9]. For instance, a collaboration net-

work may involve agents interacting at a group level (also called super-dyadic interactions),

which can not be captured by modeling the system as a graph.

Recently, hypergraphs have been used to represent and analyze such complex super-dyadic
relationships. Hypergraphs are generalizations of graphs where an edge could potentially con-

nect multiple nodes. These edges are commonly referred to as hyperedges. A k-uniform hyper-

graph refers to the case when all hyperedges are constrained to contain exactly k nodes.

Graph partitioning is an interesting problem that involves partitioning the set of nodes in a

graph into multiple subsets such that nodes in one subset are more “similar” to each other as

compared to nodes in any other subset. Graph partitioning is utilized in various fields such as

biology [1], VLSI [2], and computer vision [3]. One of the widely accepted approaches for

graph partitioning is minimizing the ratio-cut or normalized-cut [5] objective function using

spectra of the graph [7]. Similarly, hypergraph partitioning has been used in a variety of appli-

cations in several domains, such as circuit designing [10], image segmentation [11], object seg-

mentation in videos [12], citation networks [13], and semi-supervised learning [14]. In this

work, we define the ratio-cut and normalized-cut on hypergraphs and propose a spectral parti-

tioning algorithm.

Existing hypergraph modeling frameworks can be classified into two paradigms, based on

whether they reduce the hypergraph to a graph explicitly [15] or implicitly [13, 16]. These

reduction based approaches are quite popular in the machine learning community due to the

scalability to large datasets [17–19], and provable performance guarantees of graph-based algo-

rithms [20]. Thus most of the existing approaches make use of hypergraph reduction to utilize

standard graph-based algorithms, which defeats the motivation behind using hypergraphs. As

graphs are limited to capture only dyadic interactions, the reduction-based approaches fail to

model the desired super-dyadic relationships.

Ihler et al. [21] show that the reduction-based approaches can not model a hypergraph cut,

i.e., the complete removal of a hyperedge from a given hypergraph. After reducing a hyper-

graph to a graph, partitioning is performed on the graph. During that process, any partitioning

algorithm removes some edges from the graph, which is not guaranteed to have any corre-

spondence to the hyperedges in the original hypergraph. Also, note that two or more non-iso-

morphic hypergraphs may reduce to the same graph. An example for such a case is presented

in S1 File. In order to bridge this existing gap, we propose a hypergraph partitioning algorithm

in this work, which removes the hyperedges directly without using reduction to the graph. We

use the tensor representation of hypergraphs and further the tensor eigenvalue decomposition

for hypergraph partitioning. Note that tensor eigenvalue decomposition is NP-hard for general

tensors and cannot be approximated unless P = NP [22].

Tensors have gained increasing attention for modeling hypergraphs, primarily in the math-

ematics community. For instance, Hu et al. [23] extended the fundamental and well-known

theorem in spectral graph theory relating cardinality of zero eigenvalue of the Laplacian of a

graph to the number of connected components to the uniform hypergraphs. Specifically, they

proved that the algebraic multiplicity of zero eigenvalue of a symmetric Laplacian tensor is

equal to the sum of the number of even-bipartite connected components and the number of

connected components excluding the number of singletons in the given hypergraph. Such

insights can not be revealed from the clique reduction methods and its variants [15]. In the

machine learning community, tensor representation of hypergraphs has not gained much

attention, except for a few works [24, 25]. In this work, we utilize the tensor representation of

hypergraphs for detecting densely connected components by extending the notion of ratio-cut

and normalized from graphs to hypergraphs [26]. We propose the novel “hyperedge score”
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that captures the structural variation of multiple nodes in a hyperedge [27, 28]. The key contri-

butions and outline of this work are presented in the following subsection.

1.1 Our contributions

We make the following contributions in this work:

• We propose the ratio-cut and normalized cut for k-uniform hypergraphs. Further, we prove

that the solution to the minimization of relaxed ratio-cut or normalized cut problem can be

obtained from the eigenvector corresponding to the minimum positive eigenvalue of the

unnormalized and normalized Laplacian tensor respectively.

• We propose a novel metric termed as “hyperedge score”, which is defined over each existing

hyperedge and is a function of the eigenvector corresponding to minimum positive eigen-

value. This hyperedge score metric is used by our partitioning algorithm to remove the

hyperedge directly without performing any reduction on hypergraphs [15].

• We also derive a tighter upper bound on the minimum positive eigenvalue of the normalized

Laplacian tensor in terms of hypergraph conductance for even order hypergraphs.

• We demonstrate the efficacy of the proposed algorithm on synthetic hypergraphs (k = 2 and

k = 4) generated by stochastic block model (SBM).

• We compare the performance on synthetic graphs (2-uniform hypergraphs) generated by

SBM. We also report n/8 times improvement of ratio-cut over the conventional spectral par-

titioning for cockroach graph, where n is the number of nodes.

1.2 Outline

The preliminaries of hypergraph notation and tensor representation are covered in Section

2. The proposed hypergraph partitioning algorithm is presented in Section 3. The function-

ing and efficacy of the proposed algorithm is demonstrated in Section 4 by experiments on

synthetic and real hypergraphs. The main manuscript ends with concluding remarks in Sec-

tion 5. The numerical details of the illustrative examples are presented in the S1 File after

references.

2 Preliminaries

In this section, we briefly discuss the prevalent approach of representing hypergraphs and

their partitioning. A hypergraph G is defined as a pair of G = (V, E), where V = {v1, v2, . . ., vn}

is the set of entities called vertices or nodes and E = {e1, e2, . . ., em} is a set of non-empty subsets

of V referred to as hyperedges.

The strength of interaction among nodes in the same hyperedge is quantified by the positive

weight represented by we ¼ fwe1
;we2

; . . . ;wem
g.

The vertex-edge incidence matrix is denoted by H and has the dimension |V| × |E|. The

entry h(i, j) is defined to be 1 if vi 2 ej and 0 otherwise.

The degree of node vi is defined by dvi
¼
P

ej2E
wej

hði; jÞ. We can also define two diagonal

matrices, W, D, with the dimension of m ×m, n × n, containing the hyperedge weights and

node degrees respectively. Note that there is no loss of information in this form of representa-

tion of hypergraphs until this point. This implies that a unique hypergraph can be constructed

for a given incidence matrix.
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2.1 Reducing a hypergraph to a graph

Now, we discuss the widely-accepted approach for hypergraph reduction in the machine learn-

ing community. The fundamental idea is to reduce a hypergraph to graph and subsequently

apply standard graph-based algorithms. In this subsection, we briefly discuss the merits and

demerits of these approaches and articulate the reasons for choosing the tensor based repre-

sentation of hypergraphs.

Definition 1. The clique expansion for hypergraph G(V, E) builds a graph Gx(V, Ex� V2) by
replacing each hyperedge with the corresponding clique, Ex = {(vi, vj): vi, vj 2 el, el 2 E} [15]. The
edge weight wx(u, v) is given by wxðu; vÞ ¼

P
u;v2el ;el2E

wðelÞ.
The same could be stated in matrix form as

A ¼ HWHT � D ð1Þ

where A represents the adjacency matrix for reduced hypergraph. Another traditional hyper-

graph reduction approach is star expansion [29]. Most of the other reduction approaches are

build on these. Please see [15] and the references therein, for more details.

This reduction step is very convenient as we can now employ any graph algorithms that

scale well and come with theoretical guarantees. A natural question arises on the need for

these different reduction based approaches. We believe that each of these reduction

approaches preserves a few but not all hypergraph properties in the reduction step. The pre-

served hypergraph property may be useful for the end task of learning on hypergraphs. For

example, clustering results can be improved on hypergraphs by preserving node degrees dur-

ing reduction [30].

More often, the reduction step loses vital information about hypergraphs as two different

hypergraphs can reduce to the same graph. This can be seen directly from Eq (1) as two dis-

tinct hypergraphs having different H and W can reduce to the same adjacency matrix A. An

illustrative example of the same is presented in S1 File.

2.2 Tensor representation of hypergraphs

In this subsection, we briefly review the tensor-based representation of hypergraphs [31, 32]. A

natural representation of hypergraphs is a k-order n-dimensional tensor A, which consists of

nk entries and is defined by:

ai1 i2...ik
¼

wej

ðk � 1Þ!
if fi1; i2; . . . ; ikg 2 E; 1 � i1; . . . ; ik � n

0 otherwise

8
<

:
ð2Þ

It should be noted that A is a “super-symmetric” tensor, i.e, ai1 i2...ik
¼ asði1 i2...ikÞ

, where σ(i1, i2,

. . .ik) denotes any permutation of the elements in the set {i1, i2, . . ., ik}. The order or mode of

the tensor refers to the hyperedge cardinality, which is k for A. The degree of all the vertices

can be represented by k-order n-dimensional diagonal tensor D. The Laplacian tensor L is

defined as follows:

L ¼ D � A ð3Þ

An example demonstrating the tensor representation of a 4-uniform hypergraph is presented

in S1 File. The normalized Laplacian tensor, denoted byL can also be defined in a similar
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manner:

‘i1 i2...ik
¼

�
wej

ðk � 1Þ!

Yk

ij¼1

1
ffiffiffiffiffi
dij

k
q if fi1; i2; . . . ; ikg 2 E

1 if i1 ¼ i2 . . . ¼ ik ¼ i; i ¼ f1; 2; . . . ; ng

0 otherwise

8
>>>>><

>>>>>:

ð4Þ

For the sake of completeness, we define the tensor eigenvalue decomposition as:

Lxk� 1 ¼ lx; such that xTx ¼ 1 ð5Þ

where ðl; xÞ 2 ðR;Rn n f0g
n
Þ is called the Z-eigenpair and Lxk� 1 2 Rn, whose ith component

is:

½Lxk� 1�i ¼
Xn

ik¼1

. . .
Xn

i3¼1

Xn

i2¼1

lii2 i3...ik
xi2

xi3
. . . xik ð6Þ

The expression for the tensor Laplacian of a hypergraph (Lxk) can be computed using the

above and Lxk ¼ ðLxk� 1Þ
Tx. This is a kth order polynomial in n variables which can be simpli-

fied as stated in the following theorem.

Theorem 2. The expression for tensor Laplacian of a hypergraph can be simplified using

Lxk ¼
Xn

i1 ;i2 ;...;ik¼1

li1 i2...ik
xi1xi2 . . . xik

¼
X

ej2E

wej

X

it2ej

xk
it
� k
Y

it2ej

xit

0

@

1

A ¼
X

ej2E

wej
k AM

�
xk
it

�

it2ej

� GM
�
jxit j

k�

it2ej

ð� 1Þ
ns;j

0

@

1

A

ð7Þ

where ns;j ¼ jfit : xit < 0; it 2 ejgj, AM and GM stand for arithmetic and geometric means
respectively.

Proof.

Lxk ¼
Xn

ik¼1

. . .
Xn

i2¼1

Xn

i1¼1

ðdi1 i2...ik
� ai1 i2...ik

Þxi1
xi2

. . . xik

¼
Xn

i¼1

dðviÞx
k
i �
Xn

ik¼1

. . .
Xn

i2¼1

Xn

i1¼1

ai1 i2...ik
xi1

xi2
. . . xik

¼
Xn

i¼1

Xn

ik¼1

. . .
Xn

i3¼1

Xn

i2¼1

aii2 i3...ik
xk
i �
Xn

ik¼1

. . .
Xn

i2¼1

Xn

i1¼1

ai1 i2...ik
xi1xi2 . . . xik

¼
Xn

i¼1

X

ði2 ;i3 ;...;ikÞ2ej

wej

ðk � 1Þ!
xk
i

0

@

1

A �
X

ði1 ;i2 ;...;ikÞ2ej

wej

ðk � 1Þ!
xi1

xi2
. . . xik

0

@

1

A

ð8Þ
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As there are (k − 1)! and k! permutations of the first and second term respectively:

Lxk ¼
X

ej2E

wej

X

it2ej

ðk � 1Þ!

ðk � 1Þ!
xk
it
�

k!

ðk � 1Þ!
xi1xi2 . . . xik

0

@

1

A

¼
X

ej2E

wej

 
X

it2ej

xk
it
� k
Y

it2ej

xit

!

¼
X

ej2E

wej
k

P
it2ej

xk
it

k
� k

 
Y

it2ej

jxit j
k

!
1

k
ð� 1Þ

ns;j

0

B
B
@

1

C
C
A

¼
X

ej2E

wej
k

 

AMðxk
it
Þ

it2ej

� GMðjxit j
k
Þ

it2ej

ð� 1Þ
ns;j

�

ð9Þ

The above polynomial expression can be viewed as generalization of the graph, as for any

edge {a, b}, the objective function ðxa � xbÞ
2
¼ x2

a þ x2
b � 2xaxb.

Theorem 3. The expression for the normalized tensor Laplacian of a hypergraph

L xk ¼
X

ej2E

wej

X

it2ej

xk
it

dit

� k
Y

it2ej

xitffiffiffiffiffi
dit

k
q

0

B
@

1

C
A ¼

X

ej2E

wej
k AM

xk
it

dit

 !

it2ej

� GM
jxit j
dit

k
 !

it2ej

ð� 1Þ
ns;j

0

B
B
@

1

C
C
A

where ns;j ¼ jfit : xit < 0; it 2 ejgj.
Proof. Similar to Theorem 2

This theorem for hypergraphs will be used in the later sections for proving other theorems.

With basics covered in this section, we focus on the main problem of hypergraph partitioning

in the next section.

3 Partitioning of hypergraphs

We start this section with brief review of spectral graph theory for partitioning of graphs [26]

and further propose these ideas for hypergraphs.

3.1 Partitioning of graphs

Let the p parts of a partition of vertex set V be denoted by sets C1, C2, . . ., Cp such that

Ci 6¼ ;; Ci � V; [
p
i¼1 Ci ¼ V; Ci \ Cj ¼ ;; 8i; j 2 ½p�; and i 6¼ j ð10Þ

The two most commonly used objective function of graph partitioning are Ratio cut [33] and

Normalized cut [34]:

Ratio CutðC1;C2; . . . ;CpÞ ¼
Xp

i¼1

cutðCi;
�CiÞ

2jCij
; where cutðCi;

�CiÞ ¼
X

r2Ci ;s2 �Ci

wrs ð11Þ

Normalized CutðC1;C2; . . . ;CpÞ ¼
Xp

i¼1

cutðCi;
�CiÞ

2volðCiÞ
; where volðCiÞ ¼

X

r2Ci

dr ð12Þ

where wrs denotes the weight of the edge between nodes r and s, and dr denotes the degree of
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rth node. It is well known that the solution to the relaxed version of minimizing the ratio cut

and normalized cut can be obtained from the Fiedler vector of unnormalized and normalized

Laplacians, respectively.

The approximation made in the relaxation step is theoretically analyzed [35–37].

3.2 Ratio-cut and normalized-cut for hypergraphs

We start the discussion with a formal description of the problem. Let C1, C2, . . ., Cp be the p
parts of a partition as defined in Eq (10). For a given hypergraph G(V, E, We), we intend to

remove a subset of hyperedges @E� E, such that G \ @E produces a partition with at least p dis-

joint parts [38, 39]. The hyperedge boundary @E can be defined as:

@E ¼ fej 2 E : ej \ Ci 6¼ ⌀; ej \ �Ci 6¼ ⌀g ð13Þ

for some i 2 [p]. It basically denotes the set of hyperedges which “cross” the parts of the parti-

tion. The next step is to define the objective function to be minimized for obtaining optimal

partitions. The measures described in Eqs (11) and (12) is proposed for graphs and hence not

well-suited for hypergraphs as discussed in Example 1 shortly. We propose the following gen-

eralization of ratio-cut and normalized-cut for hypergraphs.

Definition 4. The cut cost for the ith part Ci is denoted by wh(Ci) and the total cut cost denoted
by wh,t(V) for all the p parts of a partition is defined as:

whðCiÞ ¼
X

ej2@E

jCi \ ejjwej
; wh;tðVÞ ¼

1

k

Xp

i¼1

whðCiÞ ð14Þ

The cut cost for a partition and total cut cost defined in Eq (14) reduces to numerator term

in Eqs (11) and (12) for k = 2 because the term |Ci \ ej| reduces to unity 8ej 2 @E in graphs.

We further demonstrate the merits of this cut cost by the following example.

Example 1. Consider the 3-uniform hypergraph shown in Fig 1. Consider the partitions
obtained after removing hyperedges e2 and e3. Let C1 = {v1, v2, v3}, C2 = {v4}, C3 = {v5}. The

Fig 1. Hypergraph: H1.

https://doi.org/10.1371/journal.pone.0288457.g001
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partition cost is given by

whðC1Þ ¼ 2we2
þ we3

; whðC2Þ ¼ we2
þ we3

; whðC3Þ ¼ we3

wh;tðVÞ ¼ we2
þ we3

It should be noted that we1
is not reflected in the above cut costs because hyperedge e1 is not cut.

It could be easily verified that this cut cost is not equivalent to clique reduction approach. The cut
costs derived for the reduced hypergraph are as follows:

wgðC1Þ ¼ 2ðwe2
þ we3

Þ; wgðC2Þ ¼ 2ðwe2
þ we3

Þ; wgðC3Þ ¼ 2we3

wh;tðVÞ ¼ 2we2
þ 3we3

Note that the cut costs derived from both approaches are different. On further inspection, we
infer wg(Ci) = 2wh(Ci) for i = {2, 3}, which means the cut cost for partitions C2 and C3 in the
reduced hypergraph are just a scaled version of costs involved in original hypergraph. The same
relation does not hold for partition C1 due to the presence of the term |Ci \ ej| in Eq (14). Please
refer to S1 File for the computation of these cut costs.

From this illustrative example, it can be inferred that the proposed cut cost for hypergraphs

defined in Eq (14) carries more information about the cut as compared to reduced hyper-

graphs. The term |Ci \ ej| in Eq (14) will lead to a greater penalty for removing hyperedges

with more elements from Ci. A hyperedge with higher |Ci \ ej| is likely to have more associa-

tion with partition Ci, so the corresponding cut should be penalized more.

Minimizing the total cut cost defined in Eq 14 directly may lead to “unbalanced” partitions

with minimum cost. To bypass such trivial and undesirable partitions, we propose the

normalization.

Definition 5. The Ratio-cut and Normalized-cut for p partitions are defined as:

Ratio � CutðC1;C2; . . . ;CpÞ ¼
Xp

i¼1

whðCiÞ

kjCij
k=2

ð15Þ

N � CutðC1;C2; . . . ;CpÞ ¼
Xp

i¼1

whðCiÞ

kðvolðCiÞÞ
k=2

ð16Þ

where wh(Ci) is defined in Eq (14). The above term for ratio-cut and normalized-cut simplifies

to Eqs (11) and (12) respectively for k = 2. Compared to the similar objective function pro-

posed in literature [13, 19], our objective function normalizes the exponential factor in the

denominator. This helps us bypass the partitions with singletons or fewer nodes compared to

normalization less than the exponential factor (like linear). Another perspective can be seen

from the motivation behind the introduction of |Ci| or |vol(Ci)| term in the denominator of

ratio-cut and normalized cut for graphs (k = 2). An exponential factor of this normalization

factor probably helps us to produce more balanced partitions, which is very much required for

hypergraphs. For example, consider a hypergraph with one hyperedge e1 = {v1, v2, v3} with 3

nodes v1, v2, and v3. Cutting one hyperedge will produce three singletons which we consider as

three partitions. A similar definition of normalized associativity can be seen in literature [20,

40].

3.3 Hypergraph partitioning algorithm

We wish to find the partition C1, . . ., Cp which minimizes the ratio-cut or normalized-cut. It

should also be noted that p is fixed. For further discussion, we focus on the minimization of
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ratio-cut, and the same approach can be extended for normalized-cut, as shown later. The

optimal partitions can be obtained by solving:

ðC1;C2; . . . ;CpÞ ¼ argmin
ðC1;C2 ;...;CpÞ

1

k

Xp

i¼1

whðCiÞ

jCij
k=2

ð17Þ

Unfortunately, the above problem is NP-hard [26, 41–43]. Inspired from spectral graph theory,

we propose to solve a relaxed version of the optimization problem mentioned above.

Theorem 6. The minimization of ratio-cut in Eq (15) can be equivalently expressed as

min
Xp

i¼1

Lfki

 !

¼ min
Xp

i¼1

X

ej2@E

jCi \ ejj
wej

jCij
k=2

0

@

1

A; fi;j ¼

1
ffiffiffiffiffiffiffi
jCjj

q vi 2 Cj

0 otherwise

8
>><

>>:

ð18Þ

where we define p indicator vectors fj and its ith element, denoted by fi,j indicates if the vertex vi
belongs to jth part of partition, denoted by Cj. The solution to the above problem after relaxing
f i 2 R

n rather than an indicator vector can be derived from the eigenvector corresponding to the
minimum positive eigenvalue stated in Eq (5).

Proof. Given a partition of p disjoint sets {C1, C2, . . ., Cp}, define the p indicator variables

fj = (f1,j, f2,j, . . ., fn,j)⊺ defined as

fi;j ¼

1
ffiffiffiffiffiffiffi
jCjj

q vi 2 Cj

0 otherwise

8
>><

>>:

ð19Þ

where i 2 [n] and j 2 [p].

For any part Ci, we compute Lfki

Lfki ¼
Xn

ik¼1

. . .
Xn

i2¼1

Xn

i1¼1

li1 i2...ik
fi1 ;ifi2 ;i . . . fik;i ð20Þ

We use Theorem 2 to compute the above term

Lfki ¼
X

ej2E

wej

 
X

it2ej

f kit ;i � k
Y

it2ej

fit ;i

!

ð21Þ

There can be three cases for each hyperedge:

1. ej� Ci: All the nodes in a hyperedge ej are assigned as 1

jCi j
1=2. Both the terms (

P
it2ej

f kit ;i and

k
Q

it2ej
fit ;i) will be k 1

jCij
k=2 and the overall term (Lfki ) reduces to 0.

2. ej � �Ci: All the nodes in hyperedge ej are assigned 0. Both the terms will be zero and overall

term will be zero.

3. ej 2 @E: Some of the nodes are assigned 1ffiffiffiffiffi
jCi j
p . The second term (k

Q
it2ej

fit ;i) will be zero and

the first term (
P

it2ej
f kit ;i) will reduce to jCi \ ejj

wej

jCij
k=2.
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So the overall term reduce to

Lfki ¼
X

ej2@E

wej
jCi \ ejj

wej

jCij
k=2 ð22Þ

Summing over the parts, we arrive at

Xp

i¼1

Lfki ¼
Xp

i¼1

X

ej2@E

wej
jCi \ ejj

wej

jCij
k=2 ð23Þ

The RHS term in Eq (23) is same as the defined ratio cut for hypergraphs (Eq (15)). It should

be noted that fTi f i ¼ 1. As the objective function and constraint are the same under relaxation,

the solution to the relaxed optimization problem can be derived from tensor eigenvalue

decomposition.

We continue the discussion on partitioning with the following example. Note that a certain

ratio-cut approximation is involved while utilizing Theorem 6 for proposing the hypergraph

partitioning algorithm using tensor EVD. This approximation is theoretically analyzed in The-

orem 8 and Theorem 9.

Example 2. Consider the 3-uniform hypergraph shown in Fig 2. The colored number indicates
the hyperedge weight. It is clear that the optimal partitions are A1 = {2, 3, 4, 5, 6, 7} and �A1. The
Fiedler eigenvector for this hypergraph is

f? ¼ ½0:33 0:16 0:17 0:13 � 0:05 0:05 0:12 0:39 0:38 0:43 0:39 0:38�

A standard approach in spectral graph theory is to use the sign of the elements in the Fiedler vec-
tor for partitioning [26]. For example, C1 = {i|f?(i)< 0, i 2 [n]}.Hence, the partitions are C1 =

{5} and C2 = V\C1, which is clearly not optimal.
From the above example, it is clear that the traditional approach of partitioning does not

yield desired partitions for hypergraphs. This is primarily because the eigenvectors of the

Laplacian tensor of a hypergraph can not be interpreted in the same way as the eigenvectors of

the Laplacian matrix of a graph.

To understand the implication of minimum ratio-cut associated with minimum positive λ?,
we analyze the computation of Laplacian objective function using the Fiedler vector:

lejðf
?
Þ ¼ wej

 
X

it2ej

f kit � k
Y

it2ej

fit

!

; l
?
¼
X

ej2E

lejðf
?
Þ ð24Þ

where lejðf
?
Þ denotes the “score” for hyperedge ej computed for the eigenvector f?. With a slight

Fig 2. Hypergraph: H2.

https://doi.org/10.1371/journal.pone.0288457.g002
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abuse of terminology, we argue that a higher value of this score indicates the corresponding

hyperedges are “close” to separator boundary @E. The measure of closeness between two

nodes is quantified by the minimum number of hyperedges to be traversed for reaching one

node to another.

This can be validated easily by careful inspection of hyperedge score lejðfÞ, when the vector

f is treated as the cluster indicator variable shown in Eq (18). The hyperedge score will be non-

zero only for the hyperedges on the separating boundary for such ideal choice of f. The same

can be also interpreted as the score being zero 8ej 2 {E \ @E}. We carry forward the same intui-

tion and prefer to cut the hyperedges with a “higher” score.

The score may not be exactly zero for any hyperedge if the Fiedler vector is used for the

score computation as it is obtained for the relaxed minimization of the ratio-cut (Theorem 6).

Applying this approach on Example 2, we report a maximum score of 0.017 for the hyperedge

{1, 2, 3} and hence cut it to obtain the optimal partitions. It should be noted that we obtain the

optimal partitions directly without computing the ratio-cut value n − 1 times and taking mini-

mum value like the existing sweep cut-based approaches [33]. The proposed algorithm is sum-

marized in Algorithm 1.

Algorithm 1: Hypergraph Partitioning Algorithm
Result: Partitions
Construct the tensor Laplacian and derive the Fiedler eigenpair (λ?,
f?).
Calculate the hyperedge score, lejðf

?
Þ by using Eq (24).

while number of parts < p do
Remove hyperedges with maximum cost (hyepredge score).

end
The intuition behind using the hyperedge score for deriving @E is motivated from spectral

graph theory. It is interesting to note that this novel use of hyperedge scores helps to compute

a better ratio-cut for the cockroach graph presented in Section 4.

A similar analysis can be performed for the minimization of the normalized cut of

hypergraphs.

Corollary 7. The solution to the relaxed optimization problem of minimizing normalized cut
mentioned in Proposition 5 can be derived using the eigenvector corresponding to the minimum
positive eigenvalue of the normalized Laplacian tensor defined in Eq (4).

The proof of this corollary is very similar to the proof of Theorem 6. In this case, we choose

the indicator variable as

fi;j ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðCjÞ

q vi 2 Cj

0 otherwise

8
>><

>>:

ð25Þ

The next step is to compute the Lxk, where the normalized Laplacian tensor L is defined in Eq

4. The rest of the proof is very similar to the proof of Theorem 6.

We perform the theoretical analysis of the proposed algorithm and derive an interesting

bound on the approximation made in normalized cuts.

Theorem 8. The upper bound on the minimum positive eigenvalue of an even order k-uni-
form hypergraph is

l1 � k�ðGÞ; �ðGÞ ¼ min
C�V

P
ej2@E

wej

min fvolðCÞ; volð�CÞg
; volðCÞ ¼

X

ij2C

dij ð26Þ
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where λ1 is the smallest eigenvalue satisfying Eq (5) for normalized tensor Laplacian L and ϕ(G)

refers to the conductance of hypergraph.

Proof. Let x be a n × 1 vector with xit 2
ffiffiffiffi
dit

k
p

o
;
�
ffiffiffiffi
dit

k
p

o

��

, where ω is defined as

o ¼
Xn

it¼1

d

2

k
it

0

B
@

1

C
A

1

2

It can be easily verified that xT x = 1. Substitute x in the expression for normalized hypergraph

Laplacian defined in Eq (4). Please note that the signs of xit correspond to an arbitrary cut

ðC; �CÞ.

l1 � Lxk ¼
X

ej2E

wej

X

it2ej

xk
it

dit

� k
Y

it2ej

xit
ffiffiffiffi
dit

k
p

0

@

1

A

¼
X

ej2E

wej

k � ns;j

ok
þ

ns;jð� 1Þ
k

ok
� kð� 1Þ

ns;j 1

ok

 !

ð27Þ

where ns;j ¼ jfit : xit < 0; it 2 ejgj. For even order hypergraphs, the above can be reduced to

l1 �
X

ej2E

wej

k
ok
� kð� 1Þ

ns;j 1

ok

� �

�
X

ej2@E

wej

2k
ok

� �

¼
X

ej2@S

wej

2k

Pn
i¼1

d

2

k
i

0

B
@

1

C
A

k
2

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

�
X

ej2@E

wej

2k

ð
Pn

i¼1
diÞ

2

k
�

k
2

0

B
B
B
@

1

C
C
C
A

�
X

ej2@E

wej

2k
2 min ðvolðCÞ; volð�CÞÞ

� k�ðGÞ for any C � V

ð28Þ

This theorem helps to analyze the order of approximation involved in relaxing the N-min

cut problem by deriving the solution through tensor EVD. The tightness of the bound indi-

cates the goodness of the approximation. Several other attempts have been made to derive

such approximation bounds for hypergraphs. For example, Chen et al. [27] utilize a different

Laplacian tensor and the following hyperedge score to derive similar bound on λ1 of a different
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tensor:

lejðxÞ ¼
X

ik2ej

ðxik
� �xÞk; �x ¼

1

k

X

ik2ej

xik ; l1 � 2k=2�ðGÞ ð29Þ

This is a weaker bound of exponential nature whereas we have proposed tighter bound of lin-

ear nature in Theorem 8.

Theorem 9. The upper bound on the minimum positive eigenvalue of the unnormalized
Laplacian tensor of an even order k-uniform hypergraph is:

l1 � k�rðGÞ; �rðGÞ ¼ min
C�V

P
ej2@E

wej

min fjCj; j�Cjg
; 30Þ

Proof. Let x be n × 1 vector with xij 2 f
1

o
; � 1

o
g, where ω is defined as

o ¼ ðjVjÞ
1

2

Please note that xT x = 1. Proceeding in a similar manner to the proof of Theorem 8:

l1 � Lxm ¼
X

ej2E

wej

 
X

it2ej

xk
it
� k
Y

it2ej

xit

!

¼
X

ej2E

wej

k � ns;j

ok
þ

ns;jð� 1Þ
k

ok
� kð� 1Þ

ns;j 1

ok

 !

�
X

ej2@E

wej

2k
ok

� �

¼
X

ej2@S

wej

2k
jVjk=2

 !

�
X

ej2@E

wej

2k
jVj

� �

�
X

ej2@E

wej

2k
2 min jCj; j�Cj

� �

� k�ðGÞ for any C � V

where ns;j ¼ jfit : xit < 0; it 2 ejgj and ϕr(G) is defined in Eq 30.

It should be noted ϕr(G) defined in Eq 30 is a slightly modified version of the conductance,

ϕ(G) defined in Eq 26. Also, note that ϕr(G) = d × ϕ(G) for d-regular hypergraph because vol
(C) = d × |C| for this particular case. A d-regular hypergraph is a hypergraph where each node

is constrained to have degree of exactly d.

3.4 Computation of tensor eigenvectors

The computation of eigenvectors of real super-symmetric tensors is quite challenging and not

straightforward as in the case of real symmetric matrices. It is actually NP-hard for general ten-

sors and cannot be approximated unless P = NP [22]. This is primarily due to the non-orthog-

onality of tensor eigenvectors. There are several other challenging aspects, for example, real

symmetric tensors can have complex eigenpairs, unlike the case of matrices. Also, a real sym-

metric matrix of size n×n can have a maximum of n eigenvalues, whereas a tensor can have

much larger number of eigenpairs [31, 44]. Most of the existing works on computation of

eigenpairs have been for tensors with special structure [45] or the extreme eigenvalues such as
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maximum or minimum eigenvalue [46, 47]. As discussed in Section 3.3, only the Fiedler vector

is required for partitioning a given hypergraph. As the Fiedler vector is not one of the extreme

eigenvectors, the above methods are not helpful for our case.

Recently proposed algorithm to compute all the eigenvalues of a tensor utilizes homotopy

methods [48]. They pose the problem as finding the roots of a vector of high order polynomials

generated from PðyÞ ¼ Lxk� 1 � lx ¼ 0, where y ¼ ½x l� 2 Rnþ1
. As it is tough to compute

the zeros of P(y) directly, the core idea of linear homotopy methods is to construct a vector

function H(y, t) = (1 − t)Q(y) + tP(y), where t 2 [0, 1] and Q(y) is a suitable vector polynomial

whose roots can be computed easily. The next step is to slowly iterate from the solution of H(y,

t = 0) = Q(y) = 0 to H(y, t = 1) = P(y) = 0. Despite the novel formulation, this approach is

forced to compute all the complex eigenpairs even if we are interested in real eigenpairs only.

Before proceeding to the main discussion on the computation of the Fiedler vector, it

should be noted that one of the eigenvectors for minimum eigenvalue can be found analytically

by exploiting the particular structure of Laplacian tensor [32]. In fact, the minimum eigenvalue

of Laplacian tensor is known to be 0, and the corresponding eigenvector is x ¼ 1ffiffi
n
p ½1 1 � � � 1�.

There can be other eigenvectors for the zero eigenvalue whose graphical implication is dis-

cussed in the literature [23]. For our problem, we may use the approach by Cui et al. [49],

which computes all the real eigenvalues sequentially from maximum to minimum by using

Jacobian semidefinite relaxations in polynomial optimization to avoid computing all

eigenvalues.

They formulate the following problem to compute λi+1 assuming λi is known:

max f ðxÞ ¼ Lxk

such that f ðxÞ � lk � d & hrðxÞ ¼ 0; ðr ¼ 1; . . . ; 2n � 2Þ
ð31Þ

where 0< δ< λi − λi+1 and hr(x) is defined as:

hrðxÞ ¼
X

iþj¼rþ2

@f ðxÞ
@xi

@gðxÞ
@xj

�
@f ðxÞ
@xj

@gðxÞ
@xi

ð32Þ

where gðxÞ ¼ x2
1
þ x2

2
þ . . .þ x2

n � 1 is a normalization constraint. They further utilize Las-

serre’s hierarchy of semidefinite relaxations [50] to solve the above problem.

The computation of the objective function f(x) and the constraints hr(x) is expensive and

takes O(nk) for general tensors. Using Theorem 2, the objective function can be computed in

linear time O(m) for Laplacian tensors. The constraint can also be simplified using:

@f ðxÞ
@xi

¼
X

ep2Ei

kwep
xk� 1

i � k
Y

t2fepnig

xt

0

@

1

A ð33Þ

where Ei = {eq|i \ eq 6¼ ;, eq 2 E}. This approach is very helpful as all the eigenvalues need not

be computed for the Fiedler eigenvalue. Hence, these closed form expression for the case of

Laplacian tensor can be utilized to reduce the number of function evaluations in optimization

methods as compared to general tensors.

3.5 Related works

As stated earlier, most of the existing methods utilize hypergraph reductions either implicitly

[13, 15] or explicitly or coarsening [10] or scalable heuristic methods [19]. For example,

Ghoshdastidar et al. [51] utilize the tensor-based representation of hypergraphs but construct

a matrix by concatenating the slices of the tensor. Further, they apply the standard spectral
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partitioning algorithm on the covariance of that matrix. These variants of hypergraph reduc-

tion differ in the method of expanding a hyperedge and produce graphs with different edge

weights. The Laplacian objective function (Eq (7)) of any graph is second-order polynomial,

which captures weighted interaction among two nodes. A second-order polynomial is insuffi-

cient for capturing super-dyadic interaction among multiple nodes (�3) of a hyperedge. Also,

note that multiple hypergraphs may reduce to the same graph.

Hein et al. [52] discuss the incapability of reduction methods in preserving the hyperedge

cuts for general hypergraphs. We utilize the Laplacian tensor (Eq (7)) to penalize these multi-

ple cuts differently. Few other recent works try to capture these multiple ways of splitting

nodes. For example, Li et al. [53] proposes non-uniform clique expansion and provides qua-

dratic approximation under submodularity constraints of the inhomogeneous cost function.

Li et al. [28] extends the notion of p-Laplacian from graphs to hypergraphs by introducing the

following hyperedge score:

lejðxÞ ¼ max
ik;i
0

k2ej
jxik � xi0k j

p

ð34Þ

Ideally, any definition of hyperedge score should capture the non-uniformity among the nodes

in a hyperedge, but the above equation fails to capture the variation perfectly. For example,

consider two hyperedges with cardinality 4 and node labels assigned as {0, 1, 1, 2} and {0, 1, 2,

2}. Eq (34) computes the maximum difference and hence will not differentiate among these

two hyperedges but the AM-GM difference (Eq (24)) will capture the variation among all the

nodes of the hyperedge. Various other similar formulation of the hyperedge score function are

considered in literature [54–56].

4 Experiments

We compare the proposed algorithm and sign-based Fiedler vector partitioning on cockroach

graphs. Further, the proposed algorithm is examined on synthetic graphs and hypergraphs

generated by Erdős Rényi Model [57] and Stochastic Block Model (SBM) [58]. The numerical

details of Fiedler vector and hyperedge scores are presented in S1 File.

4.1 Proposed algorithm vs sign-based partitioning on cockroach graph

Consider the cockroach graph with 4t nodes, as shown in Fig 3. Von Luxburg [26] shows that

the conventional sign-based Fiedler vector partitioning does not produce the optimal ratio-cut

for cockroach graph. In this example, we show that the proposed algorithm performs better.

For comparing the proposed method and sign-based Fiedler vector partitioning, we compute

the ratio-cut value by these algorithms.

Fig 3. Cockroach graph.

https://doi.org/10.1371/journal.pone.0288457.g003
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The analysis shown in this example is valid for general t but we have presented the numeri-

cal details for t = 3. The Fiedler vector for this graph (t = 3) is given by:

f ¼ � 0:49 � 0:41 � 0:26 � 0:07 � 0:02 � 0:01 0:49 0:41 0:26 0:07 0:02 0:01 �
T
ð35Þ

�

So the partitions defined based on the sign of elements in v are A1 = {v1, v2, v3, v4, v5, v6}

and A2 ¼
�A1 . So, the ratioCut ðA1;

�A1Þ ¼
3

6
þ 3

6
¼ 1.

The next step is to apply the proposed algorithm. The edge score computed from the pro-

posed algorithm are presented in Table 1. The edges {v3, v4} and {v9, v10} are removed as they

are of maximum edge score of 0.0371. So the partitions are

B1 ¼ fv1; v2; v3; v7; v8; v9g;B2 ¼
�B1 . Therefore, ratioCut ðB1;

�B1Þ ¼
2

6
þ 2

6
¼ 0:66. It can be

clearly observed that the partitions obtained from the proposed algorithm have a lower ratio-

Cut value compared to the existing method.

In general, the traditional spectral partitioning makes the red cut shown in the graph and

the partition is A1 = {v1, . . ., v2t} and the ratio-cut ðA1;
�A1Þ ¼

t
2t þ

t
2t ¼ 1. We utilize the edge

scores as suggested in the proposed algorithm and report that the edges {vt, vt+1} and {v3t, v3t

+1} have maximum scores. On cutting these edges, the obtained partition is B1 = {v1, v2, . . ., vt,
v2t+1, . . ., v3t} and hence the ratio-cut ðB1;

�B1Þ ¼
2

2t þ
2

2t ¼
2

t. Therefore, the solution obtained

by proposed algorithm is t/2 times better than the traditional approach. We have verified it

numerically for t = {3, 4, . . ., 50}.

4.2 Proposed algorithm vs sign-based partitioning on synthetic graphs &

hypergraphs

In this example, we consider different types of synthetic graphs and compare the ratio-cut val-

ues computed by the existing and proposed methods. We define the following metric, termed

as percentage improvement (PI) to showcase the proposed algorithm’s performance:

PI ¼
ðRf � RpÞ

Rf
� 100 ð36Þ

where Rf, Rp denotes the ratio-cut value by sign based Fiedler partitioning and proposed

Table 1. Edge-score for graph in Example 4.1.

Edge Score

{v3, v4} 0.0371

{v9, v10} 0.0371

{v4, v10} 0.0228

{v2, v3} 0.0228

{v8, v9} 0.0222

{v1, v2} 0.0222

{v7, v8} 0.0066

{v4, v5} 0.0066

{v10, v11} 0.0029

{v5, v11} 0.0029

{v6, v12} 0.0002

{v11, v12} 0.0002

{v5, v6} 0.0002

https://doi.org/10.1371/journal.pone.0288457.t001
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algorithm, respectively. A positive value of PI indicates the proposed algorithm has produced a

better ratio-cut value and the magnitude of the value represents the extent of the improvement.

4.2.1 Proposed algorithm vs sign-based partitioning on graphs generated by ER

model. We begin with the study on random graphs generated from the Erdős Rényi Model

[57] denoted by G(n, p), where n is the number of nodes and p is the probability of an edge

between any two nodes. We compare the ratio-cut values 2 partitions values on 100 different

graphs for n = 100 and for each value of p = {0.2, 0.4, 0.6}. Fig 4 shows the result as a histogram

for different values of p = {0.2, 0.4, 0.6}. It can be seen that the proposed algorithm performs

better than the sign based Fiedler partitioning in all cases.

4.2.2 Proposed algorithm vs sign-based partitioning on graphs generated by SBM. We

perform a similar analysis for another graph generation model, referred to as the stochastic

Fig 4. Histogram plot for percentage improvement on ratio-cut value by the proposed method for graphs generated by the ER model for different

values of p. It shows that the proposed algorithm performs better for all the generated graphs.

https://doi.org/10.1371/journal.pone.0288457.g004
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block model (SBM). This model provides us the freedom to control the number of parts, the

number of nodes in each part (denoted by n1, n2), the probability of an edge within a part

(denoted by p), and across the partition (q). Note that p = q yields ER model with n = n1 + n2

as discussed previously.

We consider the graphs for multiple combinations of probabilities p, q and 2 partitions

with n1 = n2 = 50. It should be noted that we consider the SBM with assortative community

structure, which implies p> q. We generate 100 random graphs for each of these settings and

compare the ratio-cut values. A histogram plot summarizing the results is presented in Fig 5.

It is evident from Fig 5 that the proposed algorithm produces a lower ratio-cut value for

most of the graphs generated by SBM.

Fig 5. Histogram plot for percentage improvement on ratio-cut value by the proposed method for graphs generated by the SBM for different

values of intra-cluster probability (p) and inter-cluster probability (q). It confirms that the proposed algorithm performs better for most of the

generated graphs as there are very few cases of negative PI.

https://doi.org/10.1371/journal.pone.0288457.g005
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4.2.3 Proposed algorithm vs sign-based partitioning on hypergraphs generated by

SBM. We perform a similar analysis on synthetic hypergraphs generated by SBM [51]. We

generate 100 random 4-uniform hypergraphs with 2 partitions, 60 nodes, and relatively small

values of intra-cluster probability (p) and inter-cluster probability (q) as compared to the case

of graphs. This is primarily because the number of possible hyperedges for a 4–uniform hyper-

graph is n
4

� �
, which is much larger than n

2

� �
as compared to the case of graphs.

The proposed algorithm is compared to the conventional sign-based partitioning using the

Fiedler vector computed from the Laplacian tensor of the hypergraph. It should be noted that

computation of tensor eigenvalues in NP-hard and cannot be approximated unless P = NP

[22]. A histogram plot summarizing the results is shown in Fig 6.

Fig 6. Histogram plot for percentage improvement on ratio cut value by the proposed method for hypergraphs generated by the SBM for

different values of q. It shows that the proposed algorithm performs significantly better as compared to sign-based partitioning for all generated

hypergraphs.

https://doi.org/10.1371/journal.pone.0288457.g006
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We perform a similar analysis on the comparison of proposed algorithm and sign-based

partitioning using Fiedler vector of normalized Laplacian tensor of the hypergraph. This is

done to study the behaviour of algorithm for normalized cut defined in Eq (16). The histogram

plot is presented in Fig 7.

It can be observed that the proposed algorithm has improved the ratio-cut value (defined in

Eq (15)) and normalized cut value (defined in Eq (16)) significantly as compared to the tradi-

tional sign-based partitioning. This is primarily because cutting a few hyperedges does not

necessarily produce only two components, unlike the case of graphs. For example, if we cut a

hyperedge having 3 nodes in a hypergraph with one hyperedge only, we get 3 disconnected

Fig 7. Histogram plot for percentage improvement by the proposed method for normalized cut value on hypergraphs generated by the SBM for

different values of q. It shows that the proposed algorithm performs significantly better as compared to sign-based partitioning for all generated

hypergraphs.

https://doi.org/10.1371/journal.pone.0288457.g007
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components, and there is no possibility of obtaining two connected components. Hence, we

may get 3 connected components, even if we desired only 2 connected components.

Any partitioning algorithm producing many small connected components (like singletons)

is likely to have a higher ratio-cut value. We observe that the sign-based partitioning approach

using the Fiedler vector of the Laplacian tensor is more prone to producing many small con-

nected components as compared to the results by proposed algorithms. Hence, the ratio-cut

value or normalized cut value by sign-based partitioning is significantly higher.

5 Conclusions & future work

In this work, we propose a hypergraph partitioning algorithm using tensor eigenvalue frame-

work which removes the hyperedges directly without performing reduction to a graph like

existing methods. This was done by using the novel “hyperedge score” metric. To do this, we

extended the definition of ratio-cut and normalized cut from graphs to hypergraph and

showed the equivalence of relaxed optimization problem to a tensor eigenvalue problem. Fur-

ther, we derived a tighter upper bound for the approximation of normalized-cut problem. The

future directions of this work is along the lines of similar analysis for non-uniform and

directed hypergraphs.
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