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Abstract

The Dengue virus (DENV) constitutes a major vector borne virus disease worldwide. Predic-

tion of the DENV spread dynamics, prevalence and infection rates are crucial elements to

guide the public health services effort towards meaningful actions. The existence of four

DENV serotypes further complicates the virus proliferation forecast. The different serotypes

have varying clinical impacts, and the symptomatology of the infection is dependent on the

infection history of the patient. Therefore, changes in the prevalent DENV serotype found in

one location have a profound impact on the regional public health. The prediction of the

spread and intensity of infection of the individual DENV serotypes in specific locations would

allow the authorities to plan local pesticide spray to control the vector as well as the pur-

chase of specific antibody therapy. Here we used a mathematical model to predict serotype-

specific DENV prevalence and overall case burden in Mexico.

Introduction

Recent increase in Dengue virus (DENV) spread in several region of America and Asia have

sparked renewed concerns about this disease. This virus is transmitted by the Aedes genus

mosquitoes, which are currently distributed in the tropical and subtropical regions [1]. In

recent years, the effects of the global warming have allowed the vector to spread northern and

southern of its customary location, now being present in the south of Europe [2] and the

United States [3]. Since these human populations are Dengue naive, outbreaks outcomes

could result pandemic [4]. The Dengue distribution is ruled by multifactorial conditions, such

as mosquito vector conditions, specific biological characteristics of the virus strain, previous

immunity of the human population and the vector mosquitoes/human densities. The vector

(Aedes mosquito) population density is influenced by the geographical height, temperature,

and humidity of the studied area [5]. The virus geographic dispersion results essentially from

the human displacements, either from tourism, migration (legal and illegal) or labor related

travels [2].

The south-southeast regions of Mexico are endemic for dengue, showing incidence varia-

tions depending on the specific weather condition. The magnitude of the epidemic outbreaks

also depends on the circulating serotypes. As a consequence, a dengue epidemiological surveil-

lance of the 32 states of the Mexican Republic is performed by the General Directorate of
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Epidemiology (DGE) [6]. Even though prevention and vector control efforts have been

ramped up, the Dengue cases have been multiplied by ten during the last 20 years, reaching

264,898 cases in 2019 [6]. It is worth mentioning that it has been stated that underreporting

and misdiagnosis of the DENV cases limit the ability to determine the true burden of disease

[7].

In Mexico, the recent occurrences of DENV 3 and 4 epidemics reported by the INDRE trig-

gered fears of hemorrhagic Dengue outbreaks. Furthermore, the hyper-endemicity observed

in distinct Mexico states has been related to an increase in disease severity [8]. The Dengue

vaccine available so far in Mexico display protection between 35% and 72%, depending on the

serotype [9] and present an increased risk of severe dengue in seronegative subjects [10].

Therefore, the most commonly available mitigation strategies are the vector control and the

prevention of extensive exposure of the population to potential Dengue vectors (through the

use of bed nets, fumigation and repellents) [11]. Since the different DENV serotypes show

varying proportion of hemorrhagic outcome [12, 13] and the transition of one serotype preva-

lence to another usually correlates with DENV infection outburst [13], a mathematical model

that would allow the prediction of individual DENV serotypes epidemic would be a useful tool

for healthcare policy makers. Also, since several publication pointed that this syndrome is

linked to re-infection of human showing previous immunity to the same DENV serotype [14,

15], such model could allow the prediction of the rate and proportions of hemorrhagic DENV

infection.

In the mid-1970s, Dietz [16] proposed a compartmental model of Dengue diffusion that

unifies the assumptions of previous models and proposes vector control and vaccination strat-

egies applicable to arboviruses in general. It became the first model used to characterize the

ecological peculiarities of DENV transmission. Such was its importance that practically all sub-

sequent models were based on this methodology [17]. Nevertheless, this line of research was

neglected until Focks et al. demonstrated the qualitative value of the models in a series of

works aimed at evaluating and implementing vector control strategies. They used entomologi-

cal data and simulation of outbreaks in human and mosquito populations to generate a useful

tool that helps understand the epidemiology of Dengue [18, 19]. Since then, a growing number

of models have analyzed particular aspects of the diseases. As a result, in 2011, the WHO Vac-

cine Research Initiative considered that the impact of future vaccines against DENV should be

estimated using mathematical models [20].

Andraud et al. presented a detailed literature review of 42 different Dengue spread models

published until the year 2011 [21]. They associate these models in function of their underlying

assumptions based on epidemiological and entomological studies and explore the potential

impacts of these parameters on the vector control or vaccination strategies. These models were

classified in function of the number of serotypes they represented and if they considered the

vector population. Eighteen of these models show the host-vector dynamic using a single sero-

type. The other 24 models describe a scenario of multiple serotypes with both direct (host-

host) and indirect (host-vector) transmissions. Of these 23 models, three introduce seasonality,

though solely as a mathematical-periodical function of time [22–24]. Recent studies consider

real-time meteorological data in their estimations but these models need more development to

incorporate serotype dependency [25, 26].

We previously developed a pan-serotypic mathematical model for Dengue dispersal in func-

tion of the meteorological characteristics of the chosen location [27]. Here, we further expand

the model in order to take into account the particularity of the 4 serotypes, as well as the cross-

immunity resulting from previous infection with one serotype or the other. This new model pre-

dicts the serotype specific DENV dynamics using the real-time meteorological data, like temper-

ature and precipitation of a determined geographical region. To achieve prediction capacity, the
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infection parameters of the model are temperature dependent. Since the temperature is a param-

eter of major importance, we distinguish the outdoor temperature, which drives the speed of

development of the mosquito during its aquatic phase of life, from the indoor temperature,

which drives the life expectancy of adult mosquitos as well as the intrinsic DENV incubation

period. Additionally, this model would allow for prediction of hemorrhagic DENV infection.

Methods

Smoothing of the meteorological data

Monthly meteorological data of temperature and precipitation were downloaded using the

Mathematica’s package “WeatherData“, which gives current and historical weather data for all

available weather stations. As a first approach, we fed the model with the original discrete val-

ues of rainfall and temperature, but we noted the appearance of singularities due to the lack of

continuity in those parameters, thus we established the following methodology for the data

smoothing:

Temperature

The data were ordered as time series (t). For each year, the minimal and the maximal values of

temperature are obtained. A polynomial function P1 is fitted to the minimal values of the data,

and a polynomial function P2 is fitted to the maximal values of the data. The function P1 is

then used as a lower boundary for the annual oscillation of a periodic squared sine function,

which will take its minimal value provided by the P1 function. The maximal value of the oscil-

lation is given by the P2 function. The functions P1 and P2 determine bounds in which a sine

function will be constrained to oscillate to represent the daily average temperature, i. e.

Tout ¼ P1 þ P2 � P1ð ÞSin
t

365
p

� �2

Where Tout will represent the outdoor temperature. In order to manage the complexity of the

meteorological time series, we observed that considering the first 12 terms of the polynomial

P ¼S
12

n¼0
antn, was sufficient for our purposes.

Precipitation

Similarly, the data are ordered as a time series. For each year, the maximal values are obtained

(the minimum being zero). A polynomial function M1 is fitted to the maximal values of the

series. As the oscillation of the rainfall R, is not distributed upon time but constrained solely to

some months of the year, the oscillation will be modulated by an exponential factor which will

produce a thin and stretched oscillation pattern, i. e.

R ¼ M1Exp 10� 3Sin
t � 30

365
pþ 80

� �2
 !2

Finally, the order of the polynomial functions used will be proportional to the number of

years simulated, i. e. the order of the polynomial is equal to the IntegerPart(years simulated /2)

+ 2.

Differential equations system

The model considers the aquatic cycle of the mosquito development and its adult cycle, as well

as the existence of four different serotypes of Dengue. The model also takes in to account the
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stage of latency of eggs during drought season, the Dengue transovarial transmission, time

delay for the possibility of transmission of Dengue in both mosquitoes (λ days of delay) and

humans (τ days of delay). The variables G1, G2, G3 and G4, represents Dengue-free mosquito’s

eggs, larva, pupa and adult mosquito, respectively. G5 represents Dengue-free mosquito’s eggs

latent state during the drought season.

For notation simplification purposes, we use letter S to represent the variables X, Y, Z and

W, which represents infection with Dengue serotypes 1, 2, 3 and 4, respectively. The variables

S1 represents mosquito eggs infected with Dengue serotype 1, 2, 3 or 4 (depending on if S takes

the representation X, Y, Z or W). The variables S2 represents infected larva with the corre-

sponding serotype (again, serotypes 1, 2, 3 and 4 if S takes the representation X, Y, Z and W, in

that order), S3 are infected pupa, S4 infected mosquitoes, S5 represents humans infected with

serotypes 1, 2, 3 or 4, S6 represents humans immune to infection by DENV serotypes 1, 2, 3 or

4, and finally, S7 represents Dengue’s infected eggs in latent state during the drought season. _X
represents the derivative function of time of X, i. e. _X ¼ dX

dt .

_G1 ¼ k1 G4 tð Þ þ 1 � mð Þ
X

S
S4 tð Þ

� �
þ k18G5 tð Þ � k2 þ k17 þ k3ð ÞG1 tð Þ ð1Þ

_G2 ¼ k2G1 tð Þ � k4 þ k5 þ k6G2 tð Þð ÞG2 tð Þ ð2Þ

_G3 ¼ k5G2 tð Þ � k7 þ k8ð ÞG3 tð Þ ð3Þ

_G4 ¼ k7G3 tð Þ � k9

X

S
S5 tð Þ þ k10

� �
G4 tð Þ ð4Þ

_G5 ¼ k17G1 tð Þ � k18 þ k19ð ÞG5 tð Þ ð5Þ

_S1 ¼ mS5 tð Þ þ k18S7 tð Þ � k2 þ k17 þ k3ð ÞS1 tð Þ ð6Þ

_S2 ¼ k2S1 tð Þ � k4 þ k5 þ k6S2 tð Þð ÞS2 tð Þ ð7Þ

_S3 ¼ k5S2 tð Þ � k7 þ k8ð ÞS3 tð Þ ð8Þ

_S4 ¼ k7S3 tð Þ þ k9 S5 tð ÞG4 tð Þ � k11S4 tð Þ ð9Þ

_S5 ¼
k12

t
H � R tð Þð ÞS4 tð Þy tð Þ � k13 þ k14ð ÞS5 tð Þ ð10Þ

_S6 ¼ k13S5 tð Þ � k15 þ k16;S

� �
S6 tð Þ ð11Þ

_S7 ¼ k17S1 tð Þ � k18 þ k19ð ÞS7 tð Þ ð12Þ

With R(t) = S5(t) + S6(t) + ∑N6¼S(1 − αk16,N)N5(t) and y tð Þ ¼ 1 � b
S5 tð ÞþS6 tð Þ

SSS5 tð ÞþS6 tð Þ
,ϴ is the cut-off

factor for minimal population proportion that is available to be infected, τ represents the

Extrinsic Incubation Period, which is the time necessary for the mosquito to become infective,

α is the relative cross-protection decline rate, and β is a calibration parameter, which serves for

finding a suitable value (weight) for the fraction of the infected persons of the former serotype,
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with respect to all serotypes, in the cut-off function ϴ. The value of β was not determined by

any optimization algorithm but through a try and failure way.

The included variables (G and S values) and the values and interpretation of the parameters

(k values) are presented in Table 1. Numerical solutions to the set of equation were obtained

using the Mathematica 8 software, with the initial conditions mentioned at Table 1. The pro-

gram used to solve the equations is provided in the supplemental material (see S1 File).

In the model, indoor and outdoor temperatures are different. This difference is relevant

since adult mosquito life is mainly spent indoor, while aquatic stages take place outdoor. The

indoor temperatures will be correlated with the outdoors’s but with a pull-down factor that

will reduce temperature peaks, as observed in the real world [48]. The indoor temperature Tin

will thus be defined as

Tin ¼

Tmin; Tout < Tmin

Tout þ 1 � 1:3 e
�

Tout � Tmin

2

0

@

1

A; Tout � Tmin
ð13Þ

8
>><

>>:

Where Tmin is the minimum value allowed for the indoor temperature.

Scenarios

The validation of the model is achieved through the comparison of the model´s outcomes for

the relative prevalence of the Dengue serotypes upon time, with data the data presented by Fal-

cón-Lezama et al., for the consecutives years of 1995–2007 [8]. These data show the relative

serotype composition of the epidemic observed in Mexico during the aforementioned period

of time. The absolute DENV prevalence values are obtained from the article of Dantés et al.

[49], where the epidemiological trends of Dengue in Mexico are estimated. Aside from the

DENV cases absolute values of the epidemic, this article also provides the number of hemor-

rhagic cases presented. In all these works, the original data were collected through the “Centro

de Vigilancia Epidemiológica y Control de Enfermedades”, the national agency in charge of

tracking the diseases spread in Mexico. From the total probable Dengue cases, 30% were sam-

pled for confirmation purposes, as per normative guidelines. The serotype of the circulating

virus was determined through PCR genotypification of 10% of the previously confirmed cases

[6]. The specific weight of the data obtained by this method was then extrapolated to the

observed cases. This method is the one generally used by the Mexican national disease surveil-

lance system to monitor the burden of Dengue in the population.

As a proxy and for simplicity, we will simulate the DENV epidemics in Mexico using the

south of Mexico as a national wide reference, due to the fact that the south of Mexico (typi-

cally) produces nearly 80% of all the Dengue cases and that all the serotypes are present [50,

51]. For these purposes, we will use the weather pattern of the state of Yucatan as representa-

tive of the meteorology of the south of Mexico. Since the peninsular zone of Mexico is a flat-

land with relatively homogeneous meteorological conditions (including the Pacific coast and

the on the shores of the Gulf of Mexico), that that geographical zone is the most likely to pres-

ent an endemic pattern.

Results

In the Fig 1, we displayed the temperature (blue: real data, black: outdoor smoothness fit, red:

indoor smoothness fit) and the rainfall (blue real data, black outdoor smoothness fit) registered

for the Mexican state of Yucatan during the period of 1995–2013. As we previously mentioned,

we will use the Yucatan’s climatology as reference for our predictions. Considering that the
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Table 1.

Variable Interpretation

Non-infected population

G1 Non-infected eggs

G2 Non-infected larvae

G3 Non-infected pupae

G4 Non-infected mosquitoes

G5 Resting non-infected eggs

Infected populations

S = X = Serotype I; S = Y = Serotype II; S = Z = Serotype III; S = W = Serotype IV
S1 Infected eggs

S2 Infected larvae

S3 Infected pupae

S4 Infected mosquitoes

S5 Infected humans

S6 Immune humans

S7 Resting infected eggs

Initial conditions

G1(0) = 0; G2(0) = 0; G3(0) = 0; G4(0) = 1-μm; G5(0) = 0;

X1(0) = 0; X2(0) = 0; X3(0) = 0; X4(0) = f1 μm; X5(0) = f1 β; X6(0) = f1 μh; X7(0) = 0
Y1(0) = 0; Y2(0) = 0; Y3(0) = 0; Y4(0) = f2 μm; Y5(0) = f2 β; Y6(0) = f2 μh; Y7(0) = 0
Z1(0) = 0; Z2(0) = 0; Z3(0) = 0; Z4(0) = f3 μm; Z5(0) = f3 β; Z6(0) = f3 μh; Z7(0) = 0
W1(0) = 0; W2(0) = 0; W3(0) = 0; W4(0) = f4 μm; W5(0) = f4 β; W6(0) = f4 μh; W7(0) = 0

Parameter Interpretation Value Reference

H Human density 3.7 [28]

k1(T(t)) Mosquito oviposition rate k12 (-71.06 + 7.59 Tout− 0.14 Tout
2) /2 [29–32]

k2(T(t)) Rate of progression to the larval stage (37.06–2.08 Tout− 0.03 Tout
2) -1 [32]

k3(T(t)) Mortality rate of eggs (during the rainy season) 0.38 k2 [32]

k4(T(t)) Rate of progression to the pupal stage (55.49–2.86 Tout− 0.04 Tout
2) -1 [32]

k5(T(t),R

(t))

Mortality rate of larvae 0.25 δ k4 [32]

k6 Density-dependent mortality rate of larvae 0.05 [33]

k7(T(t),R

(t))

Rate of progression to mosquito stage (18.78–1.00 Tout− 0.01 Tout
2) -1 [32]

k8(T(t)) Mortality rate of pupae 0.09 k7 [32]

k9 Infectious meal rate from humans to mosquitoes 2.14 [34, 35]

k10(T(t)) Mortality rate of healthy mosquitoes (-90.76–9.54 Tout− 0.18 Tout
2) -1 [32]

k11(T(t)) Mortality rate of infected mosquitoes 1.56 k10 [1]

k12(T(t)) Infectious bite rate from mosquitoes to humans 0.124 k11 [30, 32, 36]

k13 Infected human death rate 0.99 k15 [37, 38]

k14 Immunity acquisition rate 0.14 [35]

k15 Human death rate 6.5 10−7 [30]

k16 Immunity loss rate 4.5 10−4 [39]

k16,Y Immunity loss rate (serotype 2) 4.5 10−4 [40]

k16,X Immunity loss rate (serotype 1) 0.9 k16,Y [8]

k16,Z Immunity loss rate (serotype 3) 0.45 k16,Y [8]

k16,W Immunity loss rate (serotype 4) 0.07 k16,Y [8]

k17(R(t)) Drought induced egg eclosion inhibition Mosquito emergence deactivation by

drought

1—k18 Supposed

k18(R(t)) Rain induced egg eclosion rate HeavisideTheta (R– 1) Supposed

(Continued)
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rainfall data are noisier, its smoothing was successful. Only the highest rainfall values failed to

be adjusted accurately. Nevertheless, this imprecision will not produce a major deviation in

the predictions, since there is a cut-off for the transmission for rainfall >20 mm, as mentioned

in reference [43]. The smoothness adjustment of the temperature data does behave correctly in

most of the time frame explored, only failing to follow the real temperature data in the years

staging the minimum values (years 2004, 2005 and 2012).

The incidence of each Dengue serotype is presented in Fig 2A. As can be observed, the

dynamics of DENV serotype 4 (green line) prevalence shows a rapid decrease in the first years

of the model prediction. Between the years 1995 and 1999, DENV serotype 3 is the most preva-

lent (blue line). DENV serotype 2 (red line) presents a notable emergence in 1999 and

increases its prevalence (and actually dominates) from the year 2000 to 2005. Also, DENV

serotype 2 shows a notoriously minor infection rate than serotype 3. The intrinsic transmission

capabilities of serotype 2, the relative epidemiological situation of the other serotypes and

importantly the diminution of rainfall observed during the period explain these results.

Table 1. (Continued)

k19 Mortality rate of eggs during drought 0.018 [41]

τ(T(t)) Extrinsic Incubation Period in the mosquito 600 (0.3/2π)1/2 Exp(-0.3 (Tin− 5.9)2

/Tin)

[42]

λ Dengue incubation period in humans 3 [35]

δ(R(t)) Rainfall-dependent ponderations 1 –(0.1389–0.0136 R) [43]

m Transovarial transmission 0.01 [44]

μm Initial prevalence of DENV in mosquitoes 0.03 Publication in press

μh Initial seroprevalence of DENV in humans (immunity) 0.335 [45]

α Relative cross-protection decline rate (related to the serotype-specific immunity) 2 [40, 46]

β Initial incidence of DENV in humans 0.12 Calibration

parameter

f1, f2, f3, f4, Proportion of initial serotypes for DENV 1, 2 3 and 4, respectively 0.6; 0.2; 0.003; 0.197 [8]

Probability of symptomatic Dengue for serotypes I, II, III and IV, respectably 0.419; 0.126; 0.169; 0.196 [47]

Probability of Dengue hemorrhagic fever for serotypes I, II, III and IV, respectably 0.18; 0.19; 0.13; 0.18 [12]

https://doi.org/10.1371/journal.pone.0288392.t001

Fig 1. Reported and adjusted temperature and precipitation data used in the mathematical modeling of the DENV serotypes

transmission. 1A blue line: daily temperature registered, red line: smoothed fit adjusted outdoor temperature, black line smoothed fit

adjusted indoor temperature. 1B blue line: daily precipitation registered (mm of rain). Black line smoothed fit adjusted precipitation.

https://doi.org/10.1371/journal.pone.0288392.g001
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Between 2006 to 2011, the DENV serotype 1 (black line) leads the infection dynamic and

becomes the dominant serotype. It produces a greater infection peak than the one produced in

1998 by serotype 3. During the 2006–2011 period, serotype 3 prevalence is constant and

relevant.

In Fig 2B, we show the seroprevalence of DENV serotype immunity in the population. In

this figure, we observe that the cumulated incidence and the immunological protection loss

rate parameters, derive in dominant serotype 3 specific immunological protection. The sero-

type 3 immunity prevalence remains relatively constant from the year 2000. Serotype 1 immu-

nity turn dominant during the year 2009 but show no steady behavior. We can also observe

that serotypes 2 and 4 are relatively constant during time in the period 1995–2013. There were

no experimental data available for comparison.

The serotype composition of the prevalence was obtained from the normalization of the

outcomes of the sum of the variables S5(t) + S6(t), which are the variables that contains the

information of the total (incident + prevalent) cases, is presented in the Fig 2C. At the first

years of the simulation, the serotype 3 DENV is the most prevalent serotype, followed by the

DENV serotype 2 which is the following dominant circulating serotype for 6 years, approxi-

mately. From the year 2006 on, the most represented serotype is serotype 1, replacing serotype

2. The other serotypes present a complex mixture of increases and decreases of relative preva-

lence. Comparing the data given by the mathematical model (solid line) with the observed

Fig 2. 2A predicted incidence of each Dengue serotype: black (DENV1), red (DENV2), blue (DENV3) and green (DENV4). 2B predicted

prevalence, calculated as the cumulative incidence of each Dengue serotype: black (DENV1), red (DENV2), blue (DENV3) and green (DENV4).

2C Serotype distribution over time: dotted line (observed data), continuous line (predicted distribution), black (DENV1), red (DENV2), blue

(DENV3) and green (DENV4). 2D Yearly cumulative symptomatic cases: orange (total cases), red (total hemorrhagic cases), doted lines

(observed cases), continuous line (predicted cases).

https://doi.org/10.1371/journal.pone.0288392.g002
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DENV prevalence data from the period 1995 to 2007 (dotted lines), we observe a good corre-

spondence between them.

Fig 2D represents the cumulative symptomatic observed cases for all serotypes. The orange

lines represent the total symptomatic cases, whereas the red lines represent the total hemor-

rhagic cases. Since the peninsular region produces the major proportion of cases, we are

modeling its epidemiological situation (rainfall, temperatures and initial settings) as a proxy of

the nationwide epidemiology. The number of cases calculated based on the pluviometry and

temperature data of the peninsula region are compared with the data observed nationwide.

Since this region amount for most of the cases, we assume that the epidemiological dynamic

that we simulate with these data is similar to the one observed nationwide. The model correctly

predicts the epidemiological peaks and the epidemiological minimum; though not exactly. The

prediction is sufficiently accurate as to be taken into account for local short-term simulations

(years) of dengue spread and prevalence.

The accuracy of mathematical modeling to predict the prevalence and serotype of dengue

infection over 18 years is tied to the availability of precise weather data and initial conditions

of the region to be studied. That being considered, the data obtained from the calculation of

the presented model were validated by epidemiological data of the Mexico in a retrospective

way, presenting a root-mean-square deviation of 33.9% per year (and 19.8%, dropping the out-

lier years 1998 and 2008), in the prediction accuracy of the total infection cases.

Discussion

We found that the model adjusts satisfactorily to the observed data of dispersion and intensity

of DENV infection in function of the climate data of specific regions constitutes a definitive

instrument to design and perform public health intervention in Mexico. Our former model

achieved forecast of a DENV dissemination using a generic DENV virus set of infective char-

acteristics. Since the four serotypes of DENV present differences in infection dynamics, we

modeled the spread of each virus and their interaction over 18-year span time.

The model shows that, even though some specific set of initial immunological and climato-

logical conditions would favor one serotype over another, the varying weather and immuno-

logical state of the human population ultimately create a succession of different serotypes

emergence over time. Furthermore, the differences in immunity generated by the infection

from one or another genotype could be related with potentially life-threatening clinical out-

come [52]. The prediction capacity of our model gives a root-mean-square deviation of 33.9%

per year (19.8%, dropping the outlier years), in the prediction accuracy of the total infection

cases. There are some example of statistical models which depends of meteorological variables

that produces more accurate predictions, like the work published by Ling Hii et al. [53], which

reports an accuracy of 0.3% in a 16-weeks forecasting, or the model published by Naher et al.

[54], which reports an accuracy fit of 10.8% in a 2-year time-series model. Nevertheless, our

model predicts proportion of DENV serotype as well as the total amount of DENV infection

over a 18-year time-lapse, with an accuracy allowing for long-term public health decision.

The model hereby presented cannot predict the interventions that would modify the biolog-

ical condition in which the mosquito and the human lives. Insecticide and larvicide spraying/

application cannot therefor be considered. The impact of these events on the mosquito life/

biology tend to be very local and their effect on the natural DENV transmission short lasted

[55, 56]. On the other side, drastic climate change would affect transmission through higher

mosquito mortality and changes in the time required for the mosquito to be infective.

Finally, we would like to emphasize that the accuracy of mathematical modeling to predict

the prevalence and serotype of dengue infection over 18 years is tied to the availability of
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precise weather data and initial conditions of the region to be studied, thus the production of a

realistic and well delimited scenario is problematic due to the lack of time, geographical and

meteorological dependent parameters, but the presented model can be optimized for specific

applications.

Conclusions

The accuracy of the DENV serotype succession and infection intensity predictions of the

hereby presented model was tested against the epidemiological data of Lezama et al. reported

between years of 1995–2007. In our model, we determined that the succession of the different

serotype is driven by the duration of the human serotype specific immunity. The differences of

cross specificity between the DENV serotypes induced immunities as well as the specific viru-

lence factors generates the virus alternance observed in the model. In particular, the DENV1

resurgence can be linked to more symptomatic patients. Such prediction would compel to

increased containment measures on the field in order to tame the aftermath of the infection

wave.
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Methodology: Gilberto Sánchez-González, Renaud Condé.
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