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Abstract

Colorectal cancer (CRC) is one of the significant threats to public health and the sustainable

healthcare system during urbanization. As the primary method of screening, colonoscopy

can effectively detect polyps before they evolve into cancerous growths. However, the cur-

rent visual inspection by endoscopists is insufficient in providing consistently reliable polyp

detection for colonoscopy videos and images in CRC screening. Artificial Intelligent (AI)

based object detection is considered as a potent solution to overcome visual inspection limi-

tations and mitigate human errors in colonoscopy. This study implemented a YOLOv5

object detection model to investigate the performance of mainstream one-stage approaches

in colorectal polyp detection. Meanwhile, a variety of training datasets and model structure

configurations are employed to identify the determinative factors in practical applications.

The designed experiments show that the model yields acceptable results assisted by trans-

fer learning, and highlight that the primary constraint in implementing deep learning polyp

detection comes from the scarcity of training data. The model performance was improved

by 15.6% in terms of average precision (AP) when the original training dataset was

expanded. Furthermore, the experimental results were analysed from a clinical perspective

to identify potential causes of false positives. Besides, the quality management framework

is proposed for future dataset preparation and model development in AI-driven polyp detec-

tion tasks for smart healthcare solutions.

1. Introduction

Colorectal cancer (CRC) is believed to be strongly associated with urban lifestyle and socioeco-

nomic development [1]. Established risk factors for CRC initiation and progression include

low physical activity, overweight and obesity, and dietary habits, all of which are linked to life-

style changes during urbanization [2]. Moreover, studies have also suggested an association

between variations in specific gene polymorphisms and the incidence of colorectal cancer [3,

4]. Notably, CRC is now the third most prevalent cancer worldwide and has risen to become

the second leading cause of cancer-related death [5, 6]. The steady increase in CRC incidence

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0288376 July 12, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bian H, Jiang M, Qian J (2023) The

investigation of constraints in implementing robust

AI colorectal polyp detection for sustainable

healthcare system. PLoS ONE 18(7): e0288376.

https://doi.org/10.1371/journal.pone.0288376

Editor: Charfi Said, Ibn Zohr University: Universite

Ibn Zohr, MOROCCO

Received: February 7, 2023

Accepted: June 24, 2023

Published: July 12, 2023

Copyright: © 2023 Bian et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Replication Data for:

Colonoscopy Polyp Detection and Classification:

Dataset Creation and Comparative Evaluations:

https://doi.org/10.7910/DVN/FCBUOR. Kvasir SEG

Database: https://datasets.simula.no/kvasir-seg.

CP-CHILD: https://doi.org/10.6084/m9.figshare.

12554042.

Funding: This research was funded by the National

Natural Science Foundation of China, grant number

52004134.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-0652-3414
https://orcid.org/0000-0002-0432-7778
https://doi.org/10.1371/journal.pone.0288376
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288376&domain=pdf&date_stamp=2023-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288376&domain=pdf&date_stamp=2023-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288376&domain=pdf&date_stamp=2023-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288376&domain=pdf&date_stamp=2023-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288376&domain=pdf&date_stamp=2023-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288376&domain=pdf&date_stamp=2023-07-12
https://doi.org/10.1371/journal.pone.0288376
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/FCBUOR
https://datasets.simula.no/kvasir-seg
https://doi.org/10.6084/m9.figshare.12554042
https://doi.org/10.6084/m9.figshare.12554042


could place a substantial public health burden on society and challenge the development of a

sustainable healthcare system, as considerable medical resources would be required for cancer

treatment [7, 8].

Colorectal polyps are swellings originating from the mucosal epithelium of the intestine

and can be classified as inflammatory polyps, hyperplastic polyps (HPP), or colorectal adeno-

mas (CRA) from a clinical perspective. Approximately 85% of CRCs develop from CRA

through the adenoma-carcinoma sequence over 5–15 years [9]. The primary screening meth-

ods for colorectal cancer (CRC) currently encompass colonoscopy, wireless capsule endos-

copy, and fecal occult blood tests (FOBT). Colonoscopy, which allows for the visual

observation of lesions, is considered the gold standard for CRC screening and surveillance

among these techniques. Consequently, enhancing the adenoma detection rate (ADR) and

polyp detection rate (PDR) in colonoscopy is crucial for CRC prevention [10]. If polyps are

detected during colonoscopy, endoscopic polypectomy or endoscopic mucosal resection

(EMR) can serve as effective interventions to reduce the risk of cancerous lesions. Further-

more, a suitable therapeutic or follow-up plan would be formulated based on the pathology

[11]. However, studies have reported that up to 30% of adenomas are missed during conven-

tional colonoscopy [12]. Factors such as poor bowel preparation, image quality, and polyp

appearance, location, or size all limit the effectiveness of visual inspection during colonoscopy.

Additionally, endoscopists’ training, experience, fatigue, and subjectivity may influence the

interpretation of colonoscopy images. Unfortunately, if polyps are ignored during the initial

colonoscopy, there is a high risk that the polyp may become cancerous while awaiting the next

scheduled examination.

For decades, computer-aided diagnosis (CAD) has been considered a supplementary

technique in medical image processing [13]. In the initial stages of these investigations, tra-

ditional feature extraction and machine learning algorithms from computer vision were

applied to develop automated recognition programs for nodules, polyps, tumors, and other

lesions [14]. For example, Wang et al. proposed a support vector machine (SVM) based

lung nodules detection method for computed tomographic scans [15]. An extreme learning

machine (ELM) classifier was introduced for detecting breast tumors in digital mammogra-

phy using extracted textural and morphological features [16]. Although the performance of

these detection models was acceptable on test datasets, their reliability in practical applica-

tions remained uncertain. Manual feature extraction necessitated collaboration between

computer graphics scientists and medical experts, often resulting in the learning of only

shallow image features. To accurately characterize lesion images, it is essential to observe a

substantial number of samples since lesion characteristics vary significantly among

patients. Besides, polyps are complex in size, appearance, and texture, and certain objects in

the colorectal environment may be mistaken for polyps. Therefore, designing a reliable and

accurate machine learning-based clinical diagnosis program for polyp detection is challeng-

ing without sufficient high-quality colonoscopy images and expertise in feature

engineering.

Convolution neural networks (CNN) and other deep learning architectures are promising

in computer vision tasks, such as classification, object detection, and image segmentation. The

region-based CNNs, including R-CNN, Fast R-CNN, Faster-RCNN, and Mask R-CNN,

exhibit exceptional performance in object localization and recognition [17–20]. As the repre-

sentative one-stage object detection approaches, the YOLO and SSD can achieve real-time

detection with a compromise of prediction accuracy [21, 22]. EfficientDet incorporates com-

pound scaling, bidirectional feature pyramid network (BiFPN), and weighted feature fusion to

balance the accuracy and computational efficiency in object detection [23]. The Swin Trans-

former also demonstrated the architecture’s exceptional performance in various computer
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vision tasks [24]. One-stage object detection models eliminate the need for a region proposal

network, directly outputting category labels and location information as bounding boxes (xi,
yi, wi, hi) for the input image. Although early YOLO models offer rapid target detection, they

struggle to learn fine features compared to region-based R-CNN series networks. Through rig-

orous experimentation and refinement, YOLOv4 has evolved to possess a comprehensive

structure consisting of a backbone, neck, and head. Consequently, the state-of-the-art YOLO

models closely rival their two-stage competitors in accurately classifying and locating targets

while preserving its speed advantage. Moreover, the performance of YOLOv5 can be enhanced

by incorporating (BiFPN) to augment feature fusion and refine the model’s capabilities in a

recent study [25].

The ground-breaking advancements in object detection through deep learning have raised

significant interest in incorporating CNN into colorectal polyp detection. Rahim et al. devel-

oped a deep CNN model for colorectal polyps detection [26]. Chen et al. created a self-atten-

tion-based Faster R-CNN framework for detecting polyps in colonoscopy images [27]. Pacal

and Karaboga proposed a deep learning polyp detection model adapted from the YOLO archi-

tecture [28]. Meanwhile, a YOLOv3 based polyp detection algorithm is presented, utilizing a

transfer learning strategy with negative samples to enhance the model performance [29].

Moreover, Thomaz et al. introduced data augmentation techniques to expand the limited

polyp image dataset and improve polyp detection performance using deep CNNs [30]. Ribeiro

et al. employed transfer learning for polyp detection to evaluate the prevailing CNN models

across multiple public datasets [31]. Furthermore, object detection algorithms have been

applied in automated prostate cancer grading and diagnosis systems [32]. Previous studies

have shown the outstanding polyp detection capabilities of CNN models on both public and

private datasets from a model optimization standpoint. However, it does not necessarily align

with the clinical application requirements.

It is widely acknowledged that deep learning requires a substantial volume of training

data to build a robust and reliable model. Acquiring adequate and high-quality datasets in

medical image processing tasks must take into account the protection of patient privacy

and the need to obtain approval from the ethics review board [33]. Furthermore, the anno-

tation process demands expertise from medical professionals as well as a well-structured

management framework to ensure quality. Although research on deep neural networks for

medical image analysis continues to grow, uncertainties remain regarding the clinical appli-

cability of these algorithms. Specifically, the health care community is uncertain about the

diversity, comprehensiveness, and transparency of the polyp samples in the training data-

set, the criteria for dataset annotation, and the dependability of the developed deep learning

models.

This study implements the YOLOv5 object detection model to develop a polyp detection

application using publicly accessible colonoscopy datasets. The model performance is assessed

using standard computer vision metrics. The effects of varying depth and width configurations

of the network layers are evaluated in subsequent experiments. The original training dataset is

extended to evaluate the significance of training data diversity for contemporary polyp detec-

tion models development. The experimental results are analyzed from a clinical perspective to

bridge the gap between computer vision and the medical community in AI assisted polyp

detection.

The rest of this paper is organized as follows. Section 2 introduced the methodology of

developing a CNN-based polyp detection model and the primary components of the proposed

YOLOv5. Section 3 describes the experiments to assess performance from both model optimi-

zation and clinical perspectives, including the presentation of experimental results and analy-

sis. Conclusions from this research are drawn in Section 4.
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2. Materials and methods

2.1 CNN based polyp detection

Colonoscopy image acquisition and selection constitute the foundation for developing deep

learning models for polyp detection. There are several common consensuses for preparing

datasets, for instance, only patients without a history of colorectal surgery, gastrointestinal

tumors, inflammatory bowel disease, and contraindications for gastrointestinal endoscopy are

eligible to participate in the program. Polyp images should be captured at various locations

within the bowel, such as the left colon, right colon, and rectum. A sufficient number of posi-

tive and negative samples, with appropriate distribution, is necessary for constructing a high-

quality training dataset. Moreover, endoscopists need clear guidelines or standards for dataset

preparation and polyp labelling in the images. The annotation process must include the

ground truth for all polyps present in each image. In this manner, the input data quality for the

target detection model could be ensured. Fig 1 presents an overview of the proposed deep

learning polyp detection model development.

The polyp detection model aims to facilitate clinical diagnosis in colonoscopy videos, neces-

sitating a balance between accuracy and speed in the proposed model. Upon establishing a

Fig 1. Overall schematic of deep learning based polyp detection.

https://doi.org/10.1371/journal.pone.0288376.g001
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suitable detection framework, the acquired dataset is partitioned into training, validation, and

test sets, enabling the optimization of model structure and parameters. Due to the limited sam-

ple size in the polyp dataset, pre-trained weights from the Microsoft COCO dataset are

employed to initialize the parameters for training the polyp detection model.

Evaluating the model’s detection performance requires more than merely examining preci-

sion, recall, F-score, and other general object detection metrics. Instead, endoscopists must

assess the results to determine whether the proposed polyp detection method satisfies the prac-

tical requirements of clinical applications. The aforementioned research plan is designed to

examine the implemented model, with a discussion of opportunities and challenges associated

with deep CNN polyp detection from a clinical perspective.

2.2 Dataset preparation

The quality and variety of datasets play a crucial role in training deep CNN-based polyp detec-

tion models. Fortunately, ongoing efforts from academic, medical, and other communities

have led to the creation of numerous public polyp datasets, such as CVC-ColonDB [34], ETI-

S-Larib [35], CVC-ClinicDB [36], SUN Database [37], ASU-Mayo Database [38], Kvasir-SEG

[39], PICCOLO [40]. The growth of these datasets has considerably accelerated the progress of

deep learning algorithms for polyp detection, with numerous studies relying on them for their

investigations. Concurrently, researchers are also exploring polyp detection algorithms using

private datasets acquired from colonoscopies at their own or affiliated hospitals. This paper

employs a selection of the accessible public datasets to execute the proposed research plan, and

the details of the datasets are shown in Table 1.

In most instances, colonoscopy and chromoendoscopy do not provide conclusive evidence

for characterizing polyps in preparation for subsequent procedures. Pathological examination

remains necessary for determining the nature of the lesions. This study primarily investigates

the presence or absence of polyps in the dataset, while further classification and segmentation

tasks are not addressed at this stage. The GIANA2017 Datasets, KUMC, CVC-ColonDB,

GLRC are preprocessed and delineated by Wang and colleagues, containing 37899 images and

35754 labeled files [45]. The Kvasir-SEG dataset contains1000 images with annotations. The

CP-CHILD-A dataset specifically gathers colonoscopy polyp images from pediatric patients

without annotation provided. In this study, the polyps present in the selected CP-CHILD-A

images are labeled in the data preparation process.

2.3 Object detection model

2.3.1 Brief model structure. The YOLOv5 represents the state-of-the-art in proposal-

free object detection models. In comparison to its early versions, YOLOv5 enhanced the

detection accuracy and speed through the incorporation of the latest computer vision and

Table 1. The details of the selected datasets in polyp detection.

Dataset Content Original Mark Resolution Release

CVC-ColonDB [34] 300 images Binary Mask 574×500 2012

GIANA2017 [41] 23 videos Binary Mask Variable 2017

GLRC [42] 41 videos Binary Mask 768×576 2016

KUMC [43] 76 videos Bounding Box 592×464 2021

Kvasir-SEG [39] 1000 images Binary Mask Variable 2020

CP-CHILD-A [44] 8000 images None 256×256 2020

https://doi.org/10.1371/journal.pone.0288376.t001
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deep learning technologies [46]. The YOLOv5 consists of three primary components:

backbone, neck, and head. The backbone extracts feature representations from images,

and is designed to minimize computational cost without compromising detection accu-

racy. The neck generates feature pyramids, enabling the model to capture objects of vary-

ing sizes and scales. The head is responsible for making predictions by applying anchor

boxes to feature maps, yielding the final output. The YOLOv5 brief structure is illustrated

in Fig 2.

The YOLOv5 backbone employs four C3 modules, functioning as a feature extraction net-

work that generates feature maps from input images. The C3 module is derived from the

Cross-Stage Partial Network (CSPNet) architecture, incorporating three standard convolu-

tional layers and multiple bottleneck blocks [47]. Generally, CNNs are expected to perform

better in computer vision tasks with increased width and depth of network layers. The CSPNet

partitions the shallow feature map of the base layer into two sections in the channel dimension,

one is propagated backward through the feature extraction module, and the other is directly

merged with the module’s output. CSPNet’s aim is to create a lightweight CNN that enables

richer gradient combinations, thereby enhancing learning capabilities. Image classification

accuracy is improved, and computation is reduced when applying the CSPNet architecture to

ResNet [48], DenseNet [49], and other CNNs. The CBS blocks comprise three modules,

including convolution (Conv2d), batch normalization, and Sigmoid Linear Unit (SiLU)

Fig 2. The brief structure of implemented YOLOv5 object detection model.

https://doi.org/10.1371/journal.pone.0288376.g002
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activation function:

silu xð Þ ¼ x ∗ σ xð Þ ð1Þ

where σ(x) is the logistic sigmoid.

The neck consists of a Spatial Pyramid Pooling Fast (SPPF) module and a modified Path

Aggregation Network (C3-PANet). It concatenates feature maps from various layers of the

backbone network before forwarding them to the head. The SPP layer utilizes multiple sliding

windows to max pooling the feature maps of the upper convolutional layer from different

sizes, and get several separate results to aggregate a fixed-length output [50]. Spatial Pyramid

Pooling (SPP) is designed to handle images with varying scales, sizes, and aspect ratios, while

features extracted at multiple scales enhance the deep neural network’s robustness and accu-

racy in image classification and object detection. In previous YOLO models, the SPP expands

the receptive field of the backbone features, ensuring accurate target detection at various input

scales. For YOLOv5, the SPPF block uses three consecutive 2D convolutions for max-pooling,

resulting in faster computation. The C3-PANet architecture combines concatenated feature

maps from the SPPF and additional shallow feature maps derived from three distinct levels,

ultimately generating a set of aggregated feature maps for prediction purposes. Within CNNs,

deeper feature maps possess greater semantic content but less localization information, con-

trasting with the shallow feature maps. The PANet design employs both up-sampling and

down-sampling techniques to establish bottom-up and top-down pathways for the integration

of deep and shallow features [51]. In YOLOv5, the C3-PANet translates the extracted feature

data into coordinates, categories, and other relevant information.

YOLOv5 head structure generates the final predictions from the feature maps obtained

from the backbone and neck through a series of convolutional layers to extract relevant spatial

and semantic information. Specifically, the model employs three anchor-based detection

heads to conduct dense prediction using aggregated features, with each detection head predict-

ing vectors comprising the coordinates of the estimated bounding box (center, height, width),

the confidence score of the prediction, and the classification scores. The head structure con-

tributes significantly to the overall performance of the model.

2.3.2 The loss function. The implemented YOLOv5 model’s total loss comprises confi-

dence loss, classification loss, and bounding box regression loss. The Binary Cross-Entropy

(BCE) with Logits loss is utilized for calculating both confidence loss and classification loss,

while the Complete Intersection over Union (CIoU) loss is applied for bounding

box regression. According to its definition and the obtained training results in the experi-

ments, the classification loss does not contribute to the overall loss in this single-class detection

task.

Specifically, the CIoU loss is constructed by incorporating the distance between the cen-

troids of ground truth bounding box BGT and predicted bounding box B, as well as the aspect

ratios of BGT and B, as opposed to using the Intersection over Union (IoU) loss:

LCIoU ¼ 1 � IoUþ
d2 b; bgt
ð Þ

c2
þ av ð2Þ

where b and bgt denote the central points of B and Bgt, d is the Euclidean distance, c is the diag-

onal length of the smallest enclosing box covering the two boxes, α is a positive trade-off

parameter, and v measures the consistency of aspect ratio.

2.3.3 Other pertinent features. The non-maximum suppression (NMS) is integrated to

remove the bounding boxes that represent the same object while keeping the most precise one

compared to the ground truth in model training. Moreover, the YOLOv5 is equipped with a
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flexible configuration for adjusting the width and depth of layers, enabling the construction of

models with varying complexity to achieve a balance between detection speed and accuracy

for diverse applications. Data augmentation techniques are also utilized to increase the vari-

ability of the images and improve the generalization capabilities of the trained model.

3. Results and discussion

3.1 Metrics

Precision, recall, and F1-score are fundamental metrics frequently employed to assess the per-

formance of object detection models. A precision-recall (P-R) curve depicts the relationship

between precision (positive predictive value) and recall (sensitivity) across varying confidence

scores. Average precision (AP) embodies the balance between precision and recall, and is cal-

culated by estimating the area under the P-R curve to assess the overall performance of object

detection models.

AP ¼
Z 1

0

p rð Þdr ð3Þ

where p(r) is the precision at recall value r. The Microsoft COCO dataset introduced the

101-point interpolated AP calculation, which is a widely adopted approximation of the area

under the P-R curve. This study also utilizes the COCO AP calculation method to evaluate the

performance of the implemented models.

From a clinical perspective, precision denotes the ratio of true polyps to all predicted pol-

yps, whereas recall signifies the detection rate of true polyps among all ground truth polyps.

Improving model precision reduces unnecessary procedures for healthy individuals, while

maintaining high recall allows for the timely identification of patients before lesions progress

to cancer.

3.2 Model training

The training, validation, and test sets for the experiments are derived from six existing data-

bases: GIANA2017, CVC-ColonDB, GLRC, KUMC, Kvasir-SEG, and CP-CHILD-A. Specifi-

cally, 7,276 images from the GIANA2017 database and 200 images from CP-CHILD-A are

selected as separate test sets, designated as GIANA2017-T and CP-CHILD-AT, respectively.

The remaining images from GIANA2017, CVC-ColonDB, GLRC, and KUMC are divided

into the training set GCGK-I (26,657 images) and the validation set GCGK-II (3,966 images).

The entire Kvasir-SEG dataset (1,000 images) is incorporated into GCGK-I to create the sec-

ond-round training set. No images from Kvasir-SEG are included in the validation or test sets.

All experiments are carried out in Ubuntu LTS 20.04 with PyTorch 1.12.1, CUDA Toolkit

11.6, and cuDNN 8.3.

The image resolution in the training dataset varies and will be resized to 640x640 pixels

using the letterbox method. Mosaic augmentation is employed to enhance the model’s general-

ization capability. The number of epochs is set as 50, batch size as 16, Adam as the optimizer,

and learning rate as 0.001. Two distinct YOLOv5 configurations (v5s and v5m) are applied in

this study. Fig 3 illustrates the training process incorporating transfer learning. The Average

Precision (AP) at Intersection over Union (IoU) of 0.5 is a conventional method for evaluating

model performance. The primary challenge metric is the AP at IoU ranging from 0.5 to 0.95

(with increments of 0.05), and the average of these ten APs serving as a single benchmark

value for the detection models.
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To examine the influence of the optimizer on training the polyp detection model, Stochastic

Gradient Descent (SGD) was employed to substitute Adam, while maintaining other configu-

rations unchanged. Fig 4 presents the training outcomes, demonstrating that the SGD opti-

mizer outperforms Adam in this particular experiment.

3.3 Performance validation

The trained models are tested using GIANA2017-T, with results presented in Tables 2 and 3. It

was observed that the trained polyp detection model performed well during testing. The train-

ing set, composed of GCGK-I and Kvasir-SEG, utilized the YOLOv5m model with an SGD

optimizer, yielding the best results in the experiment. The expansion of the training dataset

indeed impacted the result significantly, while the model complexity seems not to be a substan-

tial factor in the test. Alterations in depth and width configurations demonstrated noticeable

differences in object detection performance for the Microsoft COCO dataset and other object

Fig 3. (a) The AP at IoU 0.5 in training process; and (b) the AP at IoU 0.5:0.95 in training process with Adam

optimizer.

https://doi.org/10.1371/journal.pone.0288376.g003
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detection datasets, though not in this particular test. A possible explanation for this is the rela-

tively small and simple nature of the polyp database, which constrains the development of

more accurate and robust polyp detection models. Fig 5 displays the ground truth and pre-

dicted results of several selected images from GIANA2017-T.

Fig 4. (a) The AP at IoU 0.5 in training process; and (b) the AP at IoU 0.5:0.95 in training process with SGD

optimizer.

https://doi.org/10.1371/journal.pone.0288376.g004

Table 2. Results of model trained with Adam optimizer on test set GIANA2017-T.

Training Set Model Precision Recall AP@0.5 AP@0.5:0.95

GCGK-I YOLOv5m 0.81 0.656 0.742 0.4

GCGK-I YOLOv5s 0.819 0.667 0.744 0.399

GCGK-I & Kvasir YOLOv5m 0.793 0.653 0.73 0.416

GCGK-I & Kvasir YOLOv5s 0.812 0.665 0.747 0.414

https://doi.org/10.1371/journal.pone.0288376.t002
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Besides, the state-of-the-art object detection model Faster R-CNN and RetinaNet are also

implemented to compare with YOLOv5 on the test set. Faster R-CNN, a two-stage object

detection approach, employs a Region Proposal Network (RPN) to generate potential bound-

ing boxes and a classifier to refine and classify these proposals. RetinaNet introduces the Focal

Loss function to address foreground-background class imbalance issue in single-stage detec-

tors. The analysis reveals that YOLOv5 achieves superior performance compared to Faster

R-CNN and RetinaNet, as shown in Table 4.

Particular emphasis is placed on false negative predictions, as failure to detect polyps can

lead to serious consequences for patients. Upon examining the test results, several representa-

tive cases of lesions undetected by the implemented YOLOv5 model are presented in Table 5.

False negatives were observed in the following scenarios: small and flat polyps without superfi-

cial congestion, polyps obscured by feces or foam, polyps with a color similar to the adjacent

mucosa, polyps situated near the intestinal wall folds, and poorly illuminated captured images.

In addition to the instances of misdiagnosis and missed diagnosis demonstrated in the

experiments, it is likely that the trained model would predict false positives in these situations

based on clinical experience:

1. Submucosal bulging lesions protruding from the intestine such as lipomas, mesenchymal

tumors, fibromas, etc. The surface mucosa of this lesion is normal, and the actual lesion is

located in the submucosa, which can be easily mistaken as polyps.

2. Inadequate intestinal preparation in some patients may result in undigested food residues

adhering to the intestinal lumen’s surface, leading the model to misdiagnose these residues

as colonic polyps.

3. When the self-purification capability of the colonoscopy decreases or the endoscopist fails

to rinse the lens properly, the lens would be blurry and has water droplets. The images cap-

tured will be blurred and distorted, and unable to accurately represent the presence of

colonic polyps.

4. Nipple hypertrophy in the anus may also appear as a protrusion from the intestinal lumen

in the object detection model’s perspective.

5. Colonoscopy often needs to go into the end of the ileum to observe, and the lymphoid folli-

cles present at the end of the ileum are similar to certain small colonic polyps.

6. Varicose veins in the rectum, such as earthworm-like or beaded bulges.

7. The colonic diverticulum manifests as an irregular indentation within the intestinal cavity,

forming a distinct contrast in color with the surrounding intestinal lumen, which can be

misidentified as polyps.

Juvenile polyps are the most prevalent pathological subtype found in children who suffering

from this condition, although adenomatous, proliferative, and inflammatory polyps are also

Table 3. Results of model trained with SGD optimizer on test set GIANA2017-T.

Training Set Model Precision Recall AP@0.5 AP@0.5:0.95

GCGK-I YOLOv5m 0.867 0.674 0.768 0.401

GCGK-I YOLOv5s 0.806 0.691 0.751 0.404

GCGK-I & Kvasir YOLOv5m 0.9 0.717 0.811 0.467

GCGK-I & Kvasir YOLOv5s 0.886 0.718 0.807 0.462

https://doi.org/10.1371/journal.pone.0288376.t003
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Fig 5. (a) The ground truth of the selected images; and (b) the predicted results of the selected images in

GIANA2017-T.

https://doi.org/10.1371/journal.pone.0288376.g005
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observed. Clinical symptoms of colon polyps in children include hematochezia, abdominal

pain, constipation, anemia, and occasionally, intestinal obstruction. Typically, pediatric polyps

are spherical or hemispherical, pedunculated, and exhibit villous or lobulated surfaces; some

may be piebald. Wang et al. developed a classification network using colonoscopy images gath-

ered from the Gastrointestinal Endoscopy Unit of Hunan Children’s Hospital. The original

dataset did not include bounding box annotations. Consequently, an experienced endoscopist

selected and labeled 200 images from the dataset were to create the test set CP-CHILD-AT uti-

lized in this study. The objective of this experiment is to investigate the necessity for age-spe-

cific colonoscopy polyp datasets. Table 6 presents the performance of the proposed models in

detecting polyps within the CP-CHILD-AT test set.

The results indicate that the model trained on the GCGK-I and Kvasir datasets demon-

strates robust performance on the test set. Considering factors such as polyp morphology and

generalization, constructing dedicated datasets for adult or pediatric colonoscopy images for

polyp detection is not advised. Instead, training with high-quality mixed datasets can be con-

sidered. Fig 6 presents the ground truth and predicted results for selected images from the

CP-CHILD-AT dataset with the implemented model.

The experimental findings in this study underscore the substantial influence that different

datasets have on the outcomes of polyp detection when employing contemporary object detec-

tion models. Consequently, the current limited datasets might not adequately demonstrate the

Table 4. Comparison of models on test set GIANA2017-T.

Training Set Model AP@0.5 AP@0.75 AP@0.5:0.95

GCGK-I & Kvasir Faster R-CNN 0.769 0.454 0.443

GCGK-I & Kvasir RetinaNet 0.651 0.311 0.345

GCGK-I & Kvasir YOLOv5m 0.811 0.446 0.467

https://doi.org/10.1371/journal.pone.0288376.t004

Table 5. The list of some representative predictions in the test set.

Image ID Ground

Truth

Prediction Possible Reasons

3996, 4003,

4233, 4238

Polyp FN a Polyps are flat in shape, small in diameter, colors are similar to the

surrounding mucosa.

3952, 4389 Polyp FN Polyps located nearby or even covered by intestinal folds, colors are

similar to the surrounding mucosa.

4380, 3967 Polyp FN The images only capture partial polyps, and cannot fully show the

full shape of polyps.

4412 None FP b Misjudged feces as polyps.

4377, 4016 Polyp FN Polyps are far away from the lens due to the shooting angle, or the

light is insufficient.

4000 Polyp FN Part of the polyp is covered by fecal water, polyps are smaller, color

similar to the surrounding mucosa.

1789, 766 Polyp TN c Accurate predictions.

4437, 640 None TP d Accurate predictions.

a FN–False Negative,
b FP–False Positive,
c TN–True Negative,
d TP–Ture Positive.

https://doi.org/10.1371/journal.pone.0288376.t005
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full capability or limitations of previous proposed detection models. This insight indicates a

prospective shift in research priorities, suggesting that the creation of a more comprehensive

and diverse dataset for polyp detection might substantially augment progress in this field,

rather than focusing solely on the development of novel models. This strategic transition could

potentially overcome the current limitations of these object detection models in both research

and clinical practice.

3.4 Qualify management framework in polyp detection

The currently available polyp datasets are inadequate, and accessing existing databases necessi-

tates strict oversight by the database owner. As a result, investing significant effort in recon-

structing CNN networks and evaluating polyp detection model performance has limited value

due to the constraints of these datasets. The colonoscopy image datasets primarily consist of

images containing polyps, with each pixel in a dataset image considered a training signal. In

fact, numerous pixels with negative signals (background) exist in each image, and implement-

ing a loss function that emphasizes positive signals (polyp pixels), such as focal loss, could

enhance detection performance [52]. The MICCAI2017 dataset contains 38 videos, and the

SUN Colonoscopy Video Database comprises 49,136 polyp frames extracted from 100 distinct

polyps of 99 registered patients. Segmenting these videos by frame could yield tens of thou-

sands of images for use as training data, while the extracted images actually hold minimal

information, as most endoscopic video sequences primarily feature a few specific polyps

viewed from various angles. To a certain extent, the transfer learning strategy can mitigate this

problem. However, if the database remains limited and unimproved, the effect of such

enhancement will be marginal.

The systematic quality management framework to ensure deep learning polyp detection

performance is recommended in future applications, as presented in Fig 7. The experiment

indicates that dataset construction significantly influences detection accuracy. The first com-

ponent of the framework is to adopt guidelines to ensure the dataset preparation quality

through the emphasis on sample diversity, image quality, and adversarial samples. Labeling

quality is another critical factor in dataset preparation, as labeled results may deviate from

actual values due to the labeler’s training, experience, and subjectivity, similar to colonoscopy

procedures. Therefore, the second component of the framework proposes specifying labeler

qualification requirements and conducting a comprehensive study of the annotation software

for a predetermined duration. The annotated images must be peer-reviewed before incorpo-

rated into the dataset. Presently, implemented polyp detection models are predominantly

assessed using conventional deep learning performance metrics, which are intimately con-

nected to disease diagnosis. The framework further recommends employing both deep learn-

ing and clinical metrics to evaluate the detection model and establish specific performance

criteria as the third component.

The dataset preparation and model implementation quality management constitute a qual-

ity control framework for deep learning-based colorectal polyp detection. The proposed

framework addresses existing challenges in deep learning polyp detection and enhances

Table 6. Comparison of models on test set CP-CHILD-AT.

Training Set Model AP@0.5 AP@0.75 AP@0.5:0.95

GCGK-I & Kvasir Faster R-CNN 0.922 0.785 0.678

GCGK-I & Kvasir RetinaNet 0.918 0.782 0.685

GCGK-I & Kvasir YOLOv5m 0.935 0.871 0.755

https://doi.org/10.1371/journal.pone.0288376.t006
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Fig 6. (a) The ground truth of the images; and (b) the predicted results of the images in CP-CHILD-AT.

https://doi.org/10.1371/journal.pone.0288376.g006
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dataset quality, paving the way for the creation of a renowned public polyp image dataset.

More importantly, after clarifying the specific indicators and performance requirements of the

polyp detection model, the specific neural network models that meet the clinical needs can be

designed intentionally, rather than merely adapting object detection models from the field

computer vision.

4. Conclusion

This paper investigates the current constraints in the construction of clinical polyp detection

models using deep learning techniques. A one-stage object detection model based on YOLOv5

was implemented for colorectal polyp detection, achieving satisfactory accuracy in the test

dataset through the strategic application of transfer learning. The diversity of the training set

was identified as a crucial factor constraining deep learning performance in current polyp

detection after evaluating the model across various training and test datasets. Consequently,

the creation of diverse and high-quality polyp image datasets is of utmost importance. The

proposed models need to be assessed from both computer vision and clinical perspectives to

enhance their performance. In addition, a polyp detection quality management framework is

recommended to reduce errors in data preparation and establish appropriate performance

metrics for model development. Future research intends to collect and annotate more diverse

data, including polyps of differing sizes, shapes, stages, and imaging conditions, in order to

construct a more comprehensive dataset. Subsequent initiatives will concentrate on developing

specifical models for polyp detection to effectively learn the unique characteristics of polyps

and gastrointestinal images. This advancement could assist endoscopists in detecting polyps

more accurately and efficiently, and contributing to the evolution of a sustainable healthcare

system.

Fig 7. The quality management and control framework in model development.

https://doi.org/10.1371/journal.pone.0288376.g007
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