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Abstract

Researchers have begun studying the impact of human opioid and cannabinoid use on dog
populations. These studies have used data from an animal poison control center (APCC)
and there are concerns that due to the illicit nature and social stigma concerning the use of
these drugs, owners may not always be forthcoming with veterinarians or APCC staff
regarding pet exposures to these toxicants. As a result, models derived from APCC data
that examine the predictability of opioid and cannabinoid dog poisonings using pet demo-
graphic and health disorder information may help veterinarians or APCC staff more reliably
identify these toxicants when examining or responding to a call concerning a dog poisoned
by an unknown toxicant. The fitting of epidemiologically informed statistical models has
been useful for identifying factors associated with various health conditions and as predic-
tive tools. However, machine learning, including lasso regression, has many useful features
as predictive tools, including the ability to incorporate large numbers of independent vari-
ables. Consequently, the objectives of our study were: 1) identify pet demographic and
health disorders associated with opioid and cannabinoid dog poisonings using ordinary and
mixed logistic regression models; and 2) compare the predictive performance of these mod-
els to analogous lasso logistic regression models. Data were obtained from reports of dog
poisoning events collected by the American Society for the Prevention of Cruelty to Animals’
(ASPCA) Animal Poisoning Control Center, from 2005-2014. We used ordinary and mixed
logistic regression models as well as lasso logistic regression models with and without con-
trolling for autocorrelation at the state level to train our models on half the dataset and test
their predictive performance on the remainder. Although epidemiologically informed logistic
regression models may require substantial knowledge of the disease systems being investi-
gated, they had the same predictive abilities as lasso logistic regression models. All models
had relatively high predictive parameters except for positive predictive values, due to the
rare nature of calls concerning opioid and cannabinoid poisonings. Ordinary and mixed
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logistic regression models were also substantially more parsimonious than their lasso equiv-
alents while still allowing for the epidemiological interpretation of model coefficients. Control-
ling for autocorrelation had little effect on the predictive performance of all models, but it did
reduce the number of variables included in lasso models. Several disorder variables were
associated with opioid and cannabinoid calls that were consistent with the acute effects of
these toxicants. These models may help build diagnostic evidence concerning dog expo-
sure to opioids and cannabinoids, saving time and resources when investigating these
cases.

Introduction

Drug-related death and abuse persist as a major public health concern, with opioids and can-
nabinoids amongst the most used drugs by humans in the USA [1]. Opioid-related human
deaths continue to rise with over 65,000 in 2020 in the USA alone [2-4]. Similarly, the use and
abuse of cannabinoids have increased following relaxed cannabis legislation [1, 5-7]. Despite
the increasing severity of drug abuse in humans, little is known about the impact of these
drugs on vulnerable populations, such as dogs.

Recent research has begun to unravel the impact of adult human opioid and cannabinoid
use on dog populations [8-13]. These studies identified various risk factors such as income dis-
parity, prescription rate, urbanicity, sex, weight, age, time, and reproductive status, that were
associated with accidental dog poisonings [11, 12]. Previous work also examined the spatiotem-
poral distribution of opioid and cannabinoid poisoning events, identifying several space, time,
and space-time clusters in the USA [13]. However, there have been no studies to examine the
ability of data concerning clinical signs and dog characteristics reported by callers to predict
toxicant type. Predictive models could be useful in aiding veterinarians and the public when the
toxicant to which the dog was exposed is unknown or uncertain. Predictive models may be par-
ticularly useful to veterinarians when owners are hesitant to inform a veterinarian or the APCC
that a dog was exposed to an opioid or cannabinoid due to the illicit nature and social stigma
associated with the use of these drugs, helping to reduce delay in treatment or the need for addi-
tional diagnostic tests [11, 12]. These models may assist the APCC when diagnosing a poten-
tially poisoned dog, which would be useful since the callers to APCC only have a high degree of
certainty of the toxicant in approximately 38% of calls [14]. If these models can predict opioid
and cannabinoid poisonings, predictive models may be used to predict other poisonings.

Statistical/epidemiological and algorithmic machine learning models have been created to
predict opioid poisonings in humans, and have identified a number of variables associated
with predicting opioid-related overdoses or deaths including: age, sex, race, socioeconomic
status, urbanicity, mental and physical health comorbidities, substance use disorders, and type
of opioid prescription [15-25]. These studies report high concordance statistics (c-statistic/
area under the receiver operating characteristic curve), however, their practical application
from a diagnostic perspective may be limited by their very low positive predictive values due to
the rare occurrence of the different opioid-related outcomes investigated; in studies that
include only people receiving a single opioid prescription, the opioid-related outcomes ranged
from 0.05-0.49% of the study population [15, 26-31]. However, because of the high negative
predictive values of these models (low proportion of false negatives) [26-31], they could be
useful in preventing inappropriate interventions (e.g., providing naloxone for non-opioid
related poisonings) [15]. Consequently, it may be useful to use available data concerning dog
poisoning events to build predictive models for dog populations.
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Several methods can be used to fit predictive models, with advantages and disadvantages
for each. For binary outcomes (e.g., poisoned with an opioid vs. another toxicant), variables
for a logistic regression model can be selected using an epidemiological approach. The main
benefits of logistic regression models are that they can be built with a focus on causal reason-
ing, and the model coefficients can be converted to odds ratios and interpreted by epidemiolo-
gists to understand the strength and direction of the effect an independent variable has on the
outcome. However, fitting epidemiologically informed models can be difficult with wide data-
sets and require researchers to have epidemiological and statistical training. Machine learning
is a subset of artificial intelligence that creates mathematical models that can analyze and iden-
tify patterns in large datasets and use these patterns to make predictions. Machine learning has
given rise to several automated algorithmic methods which can be used to build predictive
models, including lasso regression models [32, 33]. Models, such as lasso regression, are sub-
stantially simpler to build if outcome prediction is the only objective and their ability to auto-
matically select variables makes them particularly useful for datasets where a large number of
independent variables must be considered. However, as lasso regression models are designed
specifically for outcome prediction, the coefficients generated by lasso regression models are
less meaningful and generally are not interpreted (i.e., the models are not typically used to
understand the effect predictor variables have on the outcome) [34]. Additionally, the ability
to adjust for autocorrelated data (e.g., the outcome an individual experiences is not indepen-
dent from other members of a group, such as county or state of residence) is less developed for
lasso regression models. Few methods exist to control for autocorrelation in lasso regression
and few studies consider autocorrelation when using lasso regression to develop predictive
models [35]. Currently, lasso regression models can only account for one level of clustering
[35], which may limit their value when applied to data with multi-level structures (i.e., observa-
tions belonging to various groups within a hierarchical structure).

To date, no published studies have focused on examining the predictability of opioid or
cannabinoid poisonings in dogs. This information and models that accurately predict opioid
or cannabinoid poisonings would aid the public, veterinarians, and public health in identifying
opioid or cannabinoid poisonings when the toxicant is unknown or not reported. It would
also help to understand which clinical signs and animal characteristics that are most associated
with opioid and cannabinoid poisoning. Comparing the predictive abilities between different
predictive models would help understand which methods would be most suitable in diagnostic
settings. The use of methods to control for autocorrelation are rarely used in lasso regressions,
therefore examining the effect controlling for autocorrelation has on different predictive mod-
els would help understand the utility of such techniques and how they affect model perfor-
mance. Therefore, the objectives of this study were the following: create predictive models
using logistic regression models to examine their ability to predict opioid and cannabinoid
poisoning events in US dogs using data from a national animal poison control center; identify
disorders of body systems associated with these poisonings; compare the predictive ability of
logistic regression models to models specifically designed for prediction (i.e., lasso logistic
regression models); and examine the effect of controlling for autocorrelation on the perfor-
mance of logistic and lasso logistic regression models.

Methods
Data

All the data used in this study were collected by the Animal Poison Control Center (APCC),
which is operated by the American Society for the Prevention of Cruelty to Animals (ASPCA).
The APCC provides over-the-phone emergency toxicological advice to the public,
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veterinarians, and other poison control centers that are administering care to a potentially poi-
soned animal. From each call, the APCC collects information concerning the number of ani-
mals exposed, toxicant, patient characteristics, clinical effects, outcome, and date/location/
time of the call. These data are stored in the APCC’s AnTox toxicology database. The services
for each case cost 65 USD at the time these data were gathered, and it is not mandatory for any
party to make use of these services. Data from all 50 US states and the District of Columbia
were used.

The maximum dataset used from the AnTox database during the study period included
217,495 unique observations. Each observation represents a potentially poisoned dog associ-
ated with a call reporting the event to the APCC between January 1, 2004 through December
31, 2014. The variables used in this study from each observation were dog-level characteristics:
weight (kg), breed, age (years), reproductive status, sex, toxicant exposure, and the latitude/
longitude of the call’s location (to identify state of the caller), as well as disorder category. The
APCC categorized reported clinical signs in dogs into disorder categories. These disorder cate-
gories were recorded as present or absent and included the following: behavioural, digestive,
cardiovascular, endocrine, general, hematopoietic, integumentary, lymphatic, metabolic, mus-
culoskeletal, nervous, reproductive, respiratory, sensory, urinary, and traumatic disorders. The
location data were used to identify the state of each call.

The data were analyzed for two outcomes, one concerning cannabinoid poisonings and
another concerning opioid poisonings. For the analyses of cannabinoid poisonings, a cannabi-
noid call was defined as any call to the APCC concerning a dog that was exposed to any form
of cannabinoid or cannabinoid derivative including: raw cannabis regardless of species, tetra-
hydrocannabinol, cannabidiol, synthetic cannabinoids, prescription cannabis, cannabis oils,
and hemp seed oil. Cannabinoid products were often present in edible foods, such as brownies.
If a dog was exposed to a cannabinoid product and another toxicant at the time of the call to
the APCC, it was also considered a cannabis call. A non-cannabis call was defined as a call to
the APCC regarding a dog that was only exposed to non-cannabinoid-related toxicants.

An opioid call was defined as any call to the APCC from a dog exposed to at least one type
of opioid product. This included all prescription and illicit opioids as well as over-the-counter
drugs containing opioids that could be abused. If a dog was exposed to an opioid and another
toxicant when the call was made to the APCC, it was considered an opioid call. A non-opioid
call was considered any call to the APCC from a dog that was only exposed to non-opioid
toxicants.

The categorization of some variables has been changed from their original classification in
the AnTox database. The reproductive status variable was originally coded as immature, intact,
lactating, neutered, pregnant, or unknown. These data were used to determine if animals were
intact, neutered, or unknown for subsequent analyses. The original AnTox coding of the sex
variable was male, female, did not ask, group, and unknown. These data were used to reclassify
the dogs for this study as female, male, or unknown.

The AnTox database contained information regarding each dog’s primary/apparent breed.
These data were used to assign each dog to the following American Kennel Club (AKC) breed
classes: herding, hound, non-sporting, sporting, terrier, toy, working, Foundation Stock Ser-
vice (FSS), and other. Dogs whose breeds fell under AKC’s miscellaneous category (n = 40)
were re-classified as part of the FSS category. Dog breeds that are not recognized by the AKC
were classified into the “other” category. When the data were randomly divided into training
and testing datasets, all cannabinoid poisoning calls for the "FSS & miscellaneous” breed class
category ended up in the testing dataset. Therefore, for the cannabinoid models, the "other"
breed class was combined with the "FSS & miscellaneous" breed class and randomly selected
again to make certain the same variables were present in the training and testing datasets. The
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AnTox database contained a field for describing each dog’s breed as mixed, pure, or if the own-
ers were not asked. Approximately 74% of the observations had the field marked as “not
asked”, therefore the purity of the breed was not considered and only the primary/apparent
breed was used to classify the breed class of each dog.

Observations for the weight and age variables with impossible values recorded were treated
as missing data. Weights recorded as “0” (n = 1,698) or exceeding 114 kg for giant breed dogs
(Great Danes, Mastiffs, Neapolitan Mastiffs, Tibetan Mastiffs, Leonbergers, Boerboels, New-
foundlands, St. Bernards) (n = 0) or exceeding 75 kg for all other breeds were not used in this
study (n = 37). Ages recorded as “0” (n = 1,816) or greater than 26 years old (n = 13) were not
used in this study.

Regarding the use of the phrase "statistically significant” [36], in this manuscript, the term
"statistically significant" is not intended to infer biological/epidemiological importance or cau-
sation. It is used to indicate that based on our statistical criteria, we have enough evidence to
infer that the measure of association for a given predictor variable or contrast is different from
the null value [11]. The term “statistical significance” was used to describe results in an explor-
atory sense since our study involved a pre-existing dataset [37].

Analyses

This study used four regression models to compare their ability to predict a cannabinoid or
opioid poisoning from the AnTox dataset. For each toxicant, an ordinary logistic regression, a
logistic regression with a random intercept for state, a lasso logistic regression, and a lasso
logistic regression that adjusted for clustering by state [35] were fitted (Fig 1). The data were
randomly divided into two datasets: a training dataset, used to build the models; and a testing
dataset, used to evaluate each model’s predictive ability. It was only possible to account for
clustered data in lasso regressions at one level. Therefore, to make models comparable, we
only controlled for clustering at the state level in lasso and mixed logistic regressions. House-
holds reporting multiple dog calls were used in this study. The data in this study were analyzed
using Stata 17 (StataCorp, College Station, TX).

To assess a model’s predictive ability, the sensitivity, specificity, positive predictive value,
negative predictive value, area under the receiver operating characteristic curve (concordance
statistic), the proportion of correctly classified cases, and deviance ratios were reported. When
building predictive models with rare outcomes (i.e., less than 5% of observations), models will
favour cut-points with 100% specificity and 0% sensitivity to achieve the highest correctly
identified proportions; this situation is also referred to as a class imbalance. Therefore, proba-
bility cut-points were chosen where sensitivity versus probability and specificity versus proba-
bility curves intersected to optimize the balance between sensitivity and specificity [38]. Odds
ratios, confidence intervals, and p-values are reported for ordinary and mixed logistic regres-
sion models. All variables used in the final lasso regression models are reported with their
respective coefficients. However, coefficients estimated with lasso regression do not have con-
fidence intervals or p-values and should not be interpreted [39].

Ordinary and mixed logistic regression modeling process

Descriptive statistics, including frequencies, means, medians, interquartile ranges, and stan-
dard deviations, were estimated for all independent variables. All descriptive statistics were
reported based on the type of data (i.e., continuous or dichotomous) used for subsequent
modelling. The correlation between independent variables was examined using various corre-
lation coefficients (i.e., Pearson, Phi, and Spearman’s rank) depending on the type of indepen-
dent variables. If the correlation between two variables was greater than |0.75|, the more
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Outcome

Cannabinoid calls vs all
other toxicant calls

Regression Type Autocorrelation Methodology

Without random intercept (state)

Logistic regression

With random intercept (state)

A 4

Opioid calls vs all
other toxicant calls

A\ 4

Without cluster-adjustment (state)

Lasso logistic regression

A 4

With cluster-adjustment (state)

A 4

Without random intercept (state)

Logistic regression

»1 With random intercept (state)

Without cluster-adjustment (state)

Lasso logistic regression

\ 4

With cluster-adjustment (state)

Fig 1. Flow chart depicting the 8 different logistic regression models fitted to compare their ability to predict opioid and cannabinoid poisoning
calls to the APCC*" in US dogs (2005-2014).

https://doi.org/10.1371/journal.pone.0288339.9001

epidemiologically plausible variable was kept in the model moving forward. Locally weighted
scatterplot smoothing (LOWESS) curves were used to assess the relationship between the con-
tinuous independent variables and the log odds of being a cannabinoid or opioid-related call.
If the relationship was linear, the variable was left unchanged, if the relationship was not linear,
the independent variable was categorized, or if appropriate, was modelled as a quadratic rela-
tionship with the addition of a squared term to the model (e.g., age®).

Ordinary univariable logistic regression and mixed univariable logistic regression models
were fitted to assess the association between the independent variables and the log odds of a
dog poisoning being related to either an opioid or a cannabinoid. Independent variables with
significant associations (o = 0.05) were considered for inclusion in their respective multivari-
able models. All mixed models (i.e., univariable and multivariable) included a random inter-
cept for state.

Manual backward variable selection was performed in the multivariable regression model
building process. Independent variables were removed one at a time, starting with those with
the highest p-values (lowest Wald’s % values) until all variables met the statistical criteria.
Independent variables were included in the final multivariable models if they were
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statistically significant (o = 0.05), affected the coefficients of a significant independent vari-
able as an explanatory antecedent or distorter, or were part of a statistically significant inter-
action. Independent variables that did not meet the statistical criteria in the backward model
building process were re-introduced to the model one at a time. If a re-introduced variable
caused a 20% change or greater in the coefficient of any significant variable when re-intro-
duced, it was considered an explanatory antecedent (i.e., confounder if effect reduced) or
distorter variable (i.e., effect increased or direction of association changed), given it met the
causal criteria (i.e., non-intervening variable) based on the causal diagram (Fig 2). Biologi-
cally relevant two-way interactions (all two-way interactions between weight, age, sex, breed
class, and reproductive status) that were identified a priori were assessed one at a time in the
main effects model.

The fit of ordinary logistic regression models was assessed using a Hosmer-Lemeshow
goodness-of-fit test. Pearson and deviance residuals were assessed to identify outliers. For
mixed logistic regression models, the normality and homoscedasticity assumptions for the ran-
dom effect (i.e., best linear unbiased predictors (BLUPs)) were assessed graphically using nor-
mal quantile plots and plotting the BLUPs against the predicted outcome, respectively.
Pearson residuals were assessed to identify outliers. Variance partition coefficients at the dog
and state levels were estimated from the variance components from the final model using the
latent variable technique [40].

Lymphatic

sensory disorders

NGBS Digestive

Endocrine

General disorder

Hematopoietic

Integumentary

Traumatic disorder

Behaviour Disorder

Urinary

Respiratory

Opioid/Cannabinoid
Poisoning Call to APCC

Musculoskeletal

Cardiovascular

Metabolic Disorder

Reproductive

Dog Reproduction Status

Dog Age
Dog Weight
DogSex [ |
Dog Breed Class

Fig 2. Causal diagram depicting the relationship between dog characteristics and disorder type and calls being related to an intoxication with a

cannabinoid or opioid.

https://doi.org/10.1371/journal.pone.0288339.9002
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Lasso regression modeling process

One of the goals of this study was to compare methods used by epidemiologists to fit epidemi-
ologically-informed logistic regression models using a causal diagram to lasso regression that
can be readily automated to deal with issues concerning variable selection. With automation
in mind, collinearity among independent variables and linearity between the independent var-
iables and the outcome were not assessed. All possible independent variables of interest in our
dataset (Fig 2), including quadratic terms of continuous variables (e.g., age®), and all possible
two-way interactions were available for selection in our lasso logistic regression models using
10-fold cross-validation. For models intended to account for clustered data, we used the cluster
plug-in cross-validation method to split observations by cluster group (i.e., by state) where the
subsample is drawn in each fold by cluster group [35]. Lasso regression algorithms pre-process
potential continuous variables in the model by standardizing the variables mean to 0 and their
standard deviation to 1 [39].

Results
Descriptive statistics

As described in Howard-Azzeh et al. (2020, 2021, and 2022), cannabinoid and opioid poison-
ings made up 0.98% (n = 2,133) and 2.74% (n = 5,962) of all poisoning calls (n = 217,495) to
the APCC, respectively. Dogs in this dataset were relatively small and young, with median ages
of 2 years and a median weight of 12.2 kg (Table 1). Female dogs represented slightly more poi-
soning calls in this dataset than male dogs (Table 2). Of all dogs in this dataset, 74.30% were
neutered and 22.07% were intact (Table 2). Toy dogs were the largest breed class (24.22%),
while there were very few observations from the FSS breed class (0.27%) (Table 2).

Most disorder categories were reported relatively frequently (i.e., >4000 dogs). However,
endocrine, lymphatic, reproductive, and traumatic disorders were reported infrequently, mak-
ing up 0.01% (n =27), 0.07% (n = 148), 0.05% (n = 111), and 0.06% (n = 128) of all poisoning
calls, respectively (Table 3).

Number of variables included

For both cannabinoid and opioid calls, the models fit with lasso logistic regression had the
largest number of coefficients followed by models fit with cluster-adjusted lasso logistic regres-
sion (Table 4). Ordinary and mixed logistic regression models were fit with the fewest coeffi-
cients for both cannabinoid and opioid calls (Table 4).

Predictive ability

The predictive abilities of all cannabinoid models were almost identical (Table 5). Across all
four models, sensitivity and specificity ranged from 76.4-77.0% and 76.5-78.0%, respectively.
The positive predictive values were very small, ranging from 3.1-3.3%. Negative predictive

Table 1. Descriptive statistics concerning the age and weight of dogs from US calls reporting poisoning events to the APCC" (2005-2014).

Parameter Mean Median Standard Deviation Interquartile Range N¥
Age (Years) 3.6 2.0 3.5 0.9-6 215,589
Weight (kg) 16.4 12.2 12.7 5.8-25.8 215,684

*N identifies the number of dog-associated calls in the dataset with these variables

https://doi.org/10.1371/journal.pone.0288339.t001
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Table 2. The sex, breed, and neuter status of dogs from US calls reporting poisoning events to the APCC? (2005-
2014).

Parameter Frequency Percentage of dataset
Sex N =217,495
Female 111,830 51.42
Male 104,649 48.12
Unknown 1,016 0.47
Breed Class’ N =217,495
Herding 18,543 8.50
Hound 19,663 9.04
Foundation Stock Service 586 0.27
Non-Sporting 18,136 8.34
Sporting 50,911 23.41
Terrier 23,619 10.86
Toy 52,685 24.22
Working 19,167 8.81
Other® 14,185 6.52
Reproductive Status N =217,495
Intact 48,002 22.07
Neutered 161,605 74.30
Unknown 7,888 3.63

*Animal Poison Control Center
"Breed classes as defined by the American Kennel Club based on the primary breed reported
“Breeds in the AnTox database that are not yet categorized into American Kennel Club breed classes

N identifies the number of dog-associated calls in the dataset with these variables

https://doi.org/10.1371/journal.pone.0288339.t002

values were the same for all four models at 97.7%. The percent correctly classified ranged from
76.5-78.0%.

Like cannabinoid models, the predictive abilities of opioid models were also very similar in
all four models (Table 6). The sensitivity and specificity ranged from 65.9-67.3% and 66.0-
67.2%, respectively. The positive predictive values were small, ranging from 5.1-5.4%. Negative
predictive values ranged from 98.6-98.7%. The percent of the outcome correctly classified ran-
ged from 66.0-67.2%.

For cannabinoid and opioid models, the deviance ratios from the testing dataset were
higher for ordinary logistic regression models than lasso regression models (Tables 7 and 8).
There was also little difference in the deviance ratios between the training and the testing data-
sets for ordinary logistic regression models. The difference in deviance ratios between the
training and the testing datasets was generally much larger for lasso regression models.

Variables included

Cannabinoid models. The variables used in each of the models varied substantially. The
following variables were included in both ordinary and mixed cannabinoid logistic regression
models: age, age, sex, breed class, digestive disorders, cardiovascular disorders, hematopoietic
disorders, integumentary disorders, metabolic disorders, nervous disorders, respiratory disor-
ders, sensory disorders, and urinary disorders (Table 9). Of these variables, only weight, age?,
sporting breed class, digestive disorders, general disorders, integumentary disorders, metabolic
disorders, nervous disorders, and sensory disorders were fitted into the lasso logistic regression
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Table 3. The frequency of disorders in US dogs reported to the APCC" (2005-2014).

Parameter Frequency Percentage of dataset
Behavioural Disorders N =217,415

Not Reported 186,468 85.77

Reported 30,947 14.23
Digestive Disorders N =217,415

Not Reported 85,422 39.29

Reported 131,993 60.71
Cardiovascular Disorders N =217,415

Not Reported 190,658 87.69

Reported 26,757 12.31
Endocrine Disorders N = 217,415

Not Reported 217,388 99.99

Reported 27 0.01
General Disorders N =217,415

Not Reported 167,819 77.19

Reported 49,596 22.81
Hematopoietic Disorders N =217,415

Not Reported 212,588 97.78

Reported 4,827 2.22
Integumentary Disorders N =217,415

Not Reported 211,588 97.32

Reported 5,827 2.68
Lymphatic Disorders N =217,415

Not Reported 217,267 99.93

Reported 148 0.07
Metabolic Disorders N =217,415

Not Reported 209,034 96.15

Reported 8,381 3.85
Nervous Disorders N =217,415

Not Reported 130,206 59.89

Reported 87,209 40.11
Reproductive Disorders N =217,415

Not Reported 217,304 99.95

Reported 111 0.05
Respiratory Disorders N =217,415

Not Reported 196,878 90.55

Reported 20,537 9.45
Sensory Disorders N =217,415

Not Reported 204,870 94.23

Reported 12,545 5.77
Urinary Disorders N =217,415

Not Reported 201,141 92.51

Reported 16,274 7.49
Traumatic Disorders N =217,415

Not Reported 217,287 99.94

Reported 128 0.06
Musculoskeletal Disorders N = 217,415

Not Reported 208,324 95.82

(Continued)
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Table 3. (Continued)

Parameter Frequency Percentage of dataset
Reported 9,091 4.18

#Animal Poison Control Center

N identifies the number of dog-associated calls in the dataset with these variables

https://doi.org/10.1371/journal.pone.0288339.t003

as main effects (S1 Table). The remaining 99 coefficients were interaction terms, in which
most of their respective main effects were not included in the model. For the cluster-adjusted
lasso logistic regression, digestive and nervous disorders were the only main effects that were
included in the model. The remaining 44 coefficients were interaction terms where most of the
interaction terms did not have their main effect included in the model (S2 Table).

Opioid models. Like the cannabinoid models, the variables used in each of the models
varied substantially. The following variables were included in both ordinary and mixed opioid
logistic regression models: weight, weight?, age, age’, weight X age interaction, sex, reproduc-
tive status, breed class, behavioural disorders, digestive disorders, cardiovascular disorders,
general disorders, hematopoietic disorders, integumentary disorders, metabolic disorders, ner-
vous disorders, respiratory disorders, and sensory disorders (Table 10). In the lasso logistic
regression, the main effects included in the model were: age, age®, weight, "unknown" sex, FSS
& miscellaneous breed class, sporting breed class, toy breed class, intact reproductive status,
general disorders, hematopoietic disorders, integumentary disorders, metabolic disorders, ner-
vous disorders, reproductive disorders, urinary disorders, traumatic disorders (S3 Table). The
remaining 153 coefficients were interaction terms, in which most of their main effects were
not included in the model. In the cluster-adjusted lasso logistic regression, the main effects
included in the model were: age, weight, "unknown" sex, digestive disorders, general disorders,
hematopoietic disorders, integumentary disorders, metabolic disorders, nervous disorders,
urinary disorders (S4 Table). The remaining 35 coefficients were interaction terms, and most
of their main effects were also not in the model.

Interpretation of ordinary and mixed logistic regression coefficients

Cannabinoid models. The logistic regression models identified several statistically signifi-
cant relationships that can be readily interpreted. There was a statistically significant

Table 4. Number of coefficients in models fitted using various logistic regression models examining the associa-
tions between dog-level variables and a poisoning call to the APCC” being related to cannabinoids or opioids
(2005-2014).

Model (Regression) Number of Coefficients
Cannabinoid Lasso Logistic 117

Cluster-Adjusted Cannabinoid Lasso Logistic 46

Cannabinoid Logistic 22

Cannabinoid Logistic with Random Intercept (state) 22

Opioid Lasso Logistic 169

Cluster-Adjusted Opioid Lasso Logistic 45

Opioid Logistic 27

Opioid Logistic with Random Intercept (state) 27

#Animal Poison Control Center

https://doi.org/10.1371/journal.pone.0288339.1004
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Table 5. Statistics concerning different logistic regression models’ abilities to predict cannabinoid poisoning calls to the APCC" in US dogs (2005-2014).

Method Sensitivity (95% | Specificity (95% | Positive predictive value |Negative predictive value | ROC area” Correctly
ClIs) ClIs) (95% CIs) (95% CIs) (95% CIs) Classified
Logistic Regression 76.4% (73.7; 76.5% (76.2; 3.1% (2.9; 3.3) 99.7% (99.7; 99.7) 85.2% (84.4; 76.5% (76.2;
78.9) 76.7) 86.1) 76.7)
Logistic Regression with Random 76.9% (76.6; 78.0% (77.8; 3.3% (3.2; 3.6) 99.7% (99.7; 99.7) 86.6% (85.7; 78.0% (77.7;
Intercept (State) 77.1) 78.3) 87.4) 78.2)
Lasso Logistic Regression 76.7% (74.0; 77.0% (76.7; 3.2% (3.0; 3.4) 99.7% (99.7; 99.7) 85.7% (84.8; 77.0% (76.7;
79.3) 77.2) 86.5) 77.2)
Cluster-Adjusted Lasso Logistic 77.0% (74.3; 77.1% (76.8; 3.2% (3.0; 3.4) 99.7% (99.7; 99.7) 84.8% (83.9; 77.1% (76.8;
Regression (State) 79.5) 77.3) 85.7) 77.3)

*Animal Poison Control Center

Y Area under the receiver operating characteristic curve (concordance statistic)

https://doi.org/10.1371/journal.pone.0288339.t005

relationship between age and the odds of a poisoning call being related to a cannabinoid
(Table 9). The predicted probability of a cannabinoid poisoning call initially increased with
age and declined after 5 years (S1 Fig). The odds of a dog cannabinoid call were significantly
greater for male dogs than female dogs and varied among breeds (Table 8).

A cannabinoid poisoning call had a greater odds of occurring when a cardiovascular, gen-
eral, nervous, sensory, or urinary disorder was reported than not reported. A cannabinoid poi-
soning call had a reduced odds of occurring when a digestive, hematopoietic, integumentary,
metabolic, or respiratory disorder was reported than not reported (Table 8).

The variance partition coefficients indicate that approximately 95.2% and 4.9% of the vari-
ance was explained at the dog and state levels, respectively (Table 8).

Opioid models. As age increased, the odds of an opioid poisoning call decreased, however
this effect seemed to plateau around six years old (S2 Fig). For the youngest dogs, the odds of
an opioid poisoning call initially decreased with weight, but then flattened for heavier dogs.
For older dogs, the effect of weight was less pronounced, and the odds of an opioid poisoning
call did not change substantially as weight increased (S2 Fig). Female and intact dogs had a
greater odds of an opioid poisoning call than male and neutered dogs, respectively, and varied
among breeds (Table 10).

An opioid poisoning call had a significantly greater risk of occurring when a cardiovascular,
general, nervous, or a respiratory disorder category was reported than not reported. An opioid

Table 6. Statistics concerning different logistic regression models’ abilities to predict opioid poisoning calls to the APCC® in US dogs (2005-2014).
b

Method Sensitivity (95% | Specificity (95% | Positive predictive value |Negative predictive value | ROC area Correctly
ClIs) ClIs) (95% Cls) (95% ClIs) (95% Cls) Classified
Logistic Regression 67.0% (65.2; 67.0% (66.7; 5.4% (5.1; 5.6) 98.6% (98.6; 98.7) 74.2% (72.8; 67.0% (66.7;
68.7) 67.3) 75.7) 67.3)
Logistic Regression with Random 66.8% (68.8; 67.2% (66.9; 5.4% (5.2; 5.5) 98.6% (98.6; 98.7) 73.6% (72.2; 67.2% (66.9;
Intercept (State) 67.2) 67.4) 75.1) 67.4)
Lasso Regression 65.9% (64.2; 66.0% (65.7; 5.1% (4.9; 5.3) 98.6% (98.5; 98.7) 74.0% (73.1; 66.0% (65.7;
67.6) 66.3) 74.9) 66.2)
Cluster-Adjusted Lasso 67.3% (65.5; 67.2% (66.9; 5.4% (5.2; 5.6) 98.7% (98.6; 98.7) 71.0% (70.1; 67.2% (66.9;
Regression (State) 69.0) 67.5) 71.9) 67.5)

#Animal Poison Control Center

® Area under the receiver operating characteristic curve (concordance statistic)

https://doi.org/10.1371/journal.pone.0288339.t006
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Table 7. Deviance ratios depicting different logistic regression models’ abilities to predict cannabinoid poisoning calls to the APCC" in US dogs from their respec-
tive training and testing datasets (2005-2014).

Model Sample Deviance Deviance Ratio
Logistic Regression Training 0.0907 0.1790

Testing 0.0906 0.1767
Logistic Regression with Random Intercept (state) Training N/A* N/A*

Testing N/A* N/A*
Lasso Regression Training 0.08907 0.1923

Testing 0.09367 0.1427
Cluster-Adjusted Lasso Regression (State) Training 0.09418 0.1460

Testing 0.09468 0.1334

*Animal Poison Control Center

*Not available

https://doi.org/10.1371/journal.pone.0288339.t007

poisoning call had a significantly reduced risk of occurring when a behavioural, digestive,
hematopoietic, integumentary, metabolic, or sensory disorder category was reported than not
reported (Table 10).

The variance partition coefficients indicate that approximately 99.4% and 0.6% of the vari-
ance was explained at the dog and state levels, respectively (Table 10).

Discussion

This study examined the predictive ability of models for opioid and cannabinoid poisonings in
dogs throughout the US based on reported poisoning events, potentially aiding in the identifi-
cation of opioid and cannabinoid poisonings when the toxicant is unknown or not reported.
Using call data provided by the ASPCA concerning dog poisonings reported to the APCC, we
fit logistic regression and lasso logistic regression models and assessed their ability to predict
opioid or cannabinoid poisonings in dogs. We also examined the influence of controlling for
autocorrelation on the models’ performance and examined the associations between reported
dog disorder categories and dog cannabinoid and opioid poisoning events from logistic regres-
sion models.

Table 8. Deviance ratios depicting different logistic regression models’ abilities to predict opioid poisoning calls to the APCC" in US dogs from their respective
training and testing datasets (2005-2014).

Model Sample Deviance Deviance Ratio
Logistic Regression Training 0.2310 0.0881

Testing 0.2272 0.0883
Logistic Regression with Random Intercept (state) Training N/A* N/A*

Testing N/A* N/A*
Lasso Regression Training 0.2291 0.0940

Testing 0.2344 0.0586
Cluster-Adjusted Lasso Regression (State) Training 0.2379 0.0592

Testing 0.2358 0.0529

#Animal Poison Control Center
*Not available

https://doi.org/10.1371/journal.pone.0288339.t008
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Table 9. Results of ordinary and mixed multivariable logistic regression models examining the associations between each dog-level variable on the odds of a poison-
ing call to the APCC® being related to cannabinoids (2005-2014).

Cannabinoid Logistic regression

Cannabis Logistic Regression With Random Intercept

(state)

Parameter OR 95% Cls P-value OR 95% Cls P-value
Age 1.07 1.001; 1.13 0.027 1.06 0.998; 1.12 0.058
Age2 0.99 0.99; 0.999 0.012 0.995 0.99; 0.999 0.025
Sex

Female Referent Referent

Male 1.20 1.06; 1.36 0.004 1.20 1.06; 1.35 0.005

Unknown 0.72 0.18;2.95 0.651 0.79 0.19; 3.24 0.746
Breed Class

Herding Referent Referent

Hound 0.85 0.61;1.17 0.311 0.85 0.62;1.18 0.329

FSS, Misc & Other 1.17 0.85;1.17 0.330 1.18 0.86; 1.63 0.314

Non-Sporting 1.31 0.97; 1.77 0.076 1.26 0.93; 1.71 0.130

Sporting 0.80 0.61; 1.05 0.108 0.79 0.60; 1.04 0.098

Terrier 1.19 0.89; 1.58 0.234 1.18 0.88; 1.57 0.269

Toy 1.34 1.04;1.72 0.022 1.29 1.004; 1.66 0.046

Working 0.93 0.67; 1.28 0.646 0.92 0.67; 1.27 0.614
Digestive

Not Reported Referent Referent

Reported 0.45 0.40; 0.52 <0.001 0.45 0.39; 0.52 <0.001
Cardiovascular

Not Reported Referent Referent

Reported 1.51 1.30; 1.76 <0.001 1.50 1.29; 1.75 <0.001
General

Not Reported Referent Referent

Reported 1.29 1.130; 1.47 <0.001 1.31 1.15; 1.49 <0.001
Hematopoietic

Not Reported Referent Referent

Reported 0.27 0.13;0.58 0.001 0.27 0.13;0.58 0.001
Integumentary

Not Reported Referent Referent

Reported 0.11 0.035; 0.34 <0.001 0.11 0.035; 0.34 <0.001
Metabolic

Not Reported Referent Referent

Reported 0.44 0.29; 0.68 <0.001 0.45 0.29; 0.68 <0.001
Nervous

Not Reported Referent Referent

Reported 20.28 15.54; 26.47 <0.001 20.67 15.83; 26.97 <0.001
Respiratory

Not Reported Referent Referent

Reported 0.23 0.16; 0.33 <0.001 0.23 0.16; 0.33 <0.001
Sensory Disorder

Not Reported Referent Referent

Reported 1.80 1.52;2.14 <0.001 1.83 1.54;2.17 <0.001
Urinary

Not Reported Referent Referent

Reported 3.09 2.58; 3.69 <0.001 3.00 2.51; 3.59 <0.001

(Continued)
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Table 9. (Continued)

Cannabinoid Logistic regression

Parameter

Variance Component (State)

?Animal Poison Control Center

https://doi.org/10.1371/journal.pone.0288339.t009

Cannabis Logistic Regression With Random Intercept
(state)

OR 95% CIs P-value OR 95% Cls P-value
0.17 0.084; 0.34

Predictive ability

The predictive performance of the models fit in this study were similar regardless of the
model building strategy; there were no substantial differences in the predictive abilities
between logistic or lasso logistic regression models, with and without controlling for auto-
correlation at the state level. The predictor variables available from the AnTox dataset used
to fit our models had low positive predictive values for opioid and cannabinoid poisonings
regardless of modeling approach. This is consistent with predictive models aimed at predict-
ing opioid outcomes created from human data [15-25]. It is possible that if many more or
more predictive predictor variables (e.g., more clinical signs and test results) were available,
more of a difference would have been observed between the modeling approaches and the
lasso logistic regression models would have outperformed the logistic regression models
[41]. It is important to note that since the outcome is rare (opioid and cannabinoid poison-
ing calls), these data are considered class imbalanced. Although we dealt with class imbalance
by adjusting cut-off values to optimize sensitivity and specificity using a receiver operating
characteristic curve approach, there are several other methods to adjust for class imbalance
that might have resulted in different model performances [38]. Based on our findings, we
recommend that the decision to choose between a logistic or lasso logistic regression when
fitting a model depends on the researcher’s needs and abilities. A lasso logistic regression
may best be used when the researcher’s goals are purely predictive and making inferences
from estimated odds ratios is not necessary. Lasso logistic regressions are particularly useful
when building predictive models based on very wide datasets to take advantage of automated
variable selection where logistic regression models may have convergence issues [33, 41].
However, if inferences are important to the researcher, then fitting a statistical logistic
regression model would be necessary but would require an understanding of epidemiological
principles (e.g., causal reasoning).

The opioid and cannabinoid models had reasonable sensitivity, specificity, area under
the receiver operating characteristic curve (concordance statistic), and percent correctly
classified. They had good negative predictive values but had poor positive predictive values,
which is a result of rare outcomes. The practical application of our predictive models
depends on how reliably they can predict positive and negative drug events in dogs. The
poor positive predictive value means these models cannot be used to reliably identify a dog
exposed to an opioid or cannabinoid when the exposure is unknown, as there is a high prob-
ability any positive cases the model identified are false positives. However, the high negative
predictive value means these models could potentially be used to reliably predict that a dog
was not poisoned by an opioid or cannabinoid. Consequently, these models could be part of
the diagnostic workup to help veterinarians better advise owners concerning diagnostic and
treatment options for their pets. The consequence of a false-positive may largely depend on
the treatment involved in terms of cost and invasiveness. In predictive modelling, deviance
ratios are also used as a statistic to measure model fit and predictive ability [39, 40, 42]. For
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Table 10. Results of ordinary and mixed multivariable logistic regression models examining the associations between each dog-level variable on the odds of a poi-
soning call to the APCC" being related to opioids (2005-2014).

Opioid Logistic Regression

Opioid Logistic With Random Intercept (state)

Parameter OR 95% ClIs P-value OR 95% Cls P-value
Weight 0.98 0.97; 0.99 0.001 0.98 0.97; 0.99 0.001
Weight2 1.0003 1.00008; 1.0005 0.006 1.0003 1.00009; 1.0005 0.006
Age 0.79 0.76; 0.82 <0.001 0.79 0.76; 0.83 <0.001
Age2 1.01 1.01; 1.02 <0.001 1.01 1.01; 1.02 <0.001
Weight x Age 1.001 1.00001; 1.002 0.047 1.001 1.00001; 1.002 0.048
Sex

Female Referent

Male 0.92 0.85; 0.99 0.025 0.92 0.85; 0.99 0.028

Unknown 0.89 0.43; 1.83 0.741 0.88 0.43;1.83 0.736
Reproductive Status

Intact Referent

Neutered 0.88 0.80; 0.97 0.007 0.88 0.81; 0.97 0.009

Unknown 0.88 0.70; 1.09 0.241 0.88 0.71; 1.10 0.265
Breed Class

Herding Referent Referent

Hound 1.32 1.10; 1.60 0.004 1.31 1.09; 1.59 0.005

FSS & Misc 0.44 0.14; 1.39 0.162 0.44 0.14; 1.39 0.161

Non-Sporting 1.06 0.87; 1.30 0.549 1.06 0.87; 1.30 0.563

Sporting 0.82 0.70; 0.98 0.025 0.82 0.69; 0.97 0.020

Terrier 1.29 1.08; 1.55 0.005 1.29 1.08; 1.54 0.006

Toy 1.43 1.19; 1.70 <0.001 1.42 1.19;1.70 <0.001

Working 0.88 0.72; 1.08 0.23 0.88 0.71; 1.08 0.205

Other 0.92 0.74; 1.14 0.417 0.92 0.74; 1.14 0.419
Behavioural

Not Reported Referent Referent

Reported 0.74 0.66; 0.83 <0.001 0.74 0.69; 0.83 <0.001
Digestive

Not Reported Referent Referent

Reported 0.83 0.77; 0.90 <0.001 0.84 0.77;0.90 <0.001
Cardiovascular

Not Reported Referent Referent

Reported 1.27 1.15;1.41 <0.001 1.27 1.15;1.41 <0.001
General

Not Reported Referent Referent

Reported 1.48 1.36; 1.60 <0.001 1.48 1.36; 1.61 <0.001
Hematopoietic

Not Reported Referent Referent

Reported 0.45 0.30; 0.69 <0.001 0.45 0.30; 0.69 <0.001
Integumentary

Not Reported Referent Referent

Reported 0.21 0.13; 0.34 <0.001 0.21 0.13; 0.34 <0.001
Metabolic

Not Reported Referent Referent

Reported 0.33 0.25; 0.45 <0.001 0.33 0.25; 0.45 <0.001
Nervous

(Continued)
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Table 10. (Continued)

Parameter
Not Reported
Reported
Respiratory
Not Reported
Reported
Sensory
Not Reported
Reported

Variance Component (State)

#Animal Poison Control Center

https://doi.org/10.1371/journal.pone.0288339.t010

Opioid Logistic Regression Opioid Logistic With Random Intercept (state)

OR 95% ClIs P-value OR 95% Cls P-value

Referent Referent

2.69 2.48;2.92 <0.001 2.69 2.48;2.92 <0.001
Referent Referent

1.21 1.07; 1.36 0.002 1.21 1.07; 1.36 0.002
Referent Referent

0.41 0.33; 0.51 <0.001 0.41 0.33; 0.51 <0.001

0.021 0.0091; 0.049

both cannabinoid and opioid analyses, the logistic regression models seemed to outperform
the lasso logistic regression models in terms of deviance ratios. However, this did not corre-
spond to any epidemiologically meaningful differences in the models’ predictive
performance.

Adjusting for autocorrelation in both, logistic and lasso logistic regression models, did not
have a substantial effect on the models’ predictive abilities. This is likely because the propor-
tion of the variance in dog opioid or cannabinoid poisoning is very small at the state level and
mostly explained at the dog level. However, this may not be true for other toxicants where a
greater proportion of the variance is explained at higher levels (e.g., county or state). Therefore,
having the ability to only control for one level of clustering in lasso logistic regression models
may limit their current utility.

Number of variables and variables included in models

As expected, based on their purpose, the logistic regression models were more parsimonious
than lasso logistic regression models and interpretable; typically, lasso is not used for inference,
although there are limited methods that allow for p-values and CIs to be added by using boot-
strapping for example [43, 44], and the inclusion of too many variables in logistic regression
models will lead to over-fitting and convergence issues.

While controlling for autocorrelation had no major effect on our logistic regression
models, it substantially reduced the number of variables in lasso logistic regression models.
An inability to deal with more complex autocorrelation structures (e.g., several hierarchical
levels) may be an important limitation for the performance of lasso models in some situa-
tions [40]. For instance, mixed logistic regression models, unlike lasso regression, can
adjust for confounding by group and identify associations of variables measured at differ-
ent hierarchical levels. The logistic regression models were very similar to the cannabinoid
and opioid models made in our previous work [11, 12]. These models were mostly com-
prised of main effects coefficients, with a few quadratic and interaction terms. The lasso
logistic regression models were comprised mainly of interaction terms. Interestingly, sev-
eral of the variables which made up interaction terms did not have their main effects in the
model, adding to the difficulty in the interpretation of these models and potentially
increasing the number of variables to be collected for these models to be applied
prospectively.
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Interpretation of variables included in the models

For cannabinoids, the dog-level variables included in the models were age, sex, and breed
class. For opioids, the dog-level variables included were weight, age, sex, reproductive status,
and breed class. The direction and magnitude of the odds ratios associated with dog-level pre-
dictor variables were consistent with our previous research [11, 12]. However, the disorder cat-
egories and the knowledge gaps they fill have not been explored previously. There were
reduced odds of a cannabinoid or opioid poisoning event when digestive, hematopoietic,
integumentary, or metabolic disorders were related to the call. With the exception of digestive
disorders, these other disorders are not involved in the toxicological effects of these drugs.
While constipation can result from the consumption of opioids [45], it is unlikely to be part of
an acute poisoning event that results in a call to the APCC. There were greater odds of a call
being related to both opioids and cannabinoids when the owner reported that the dog had car-
diovascular, general, and nervous disorders. These findings were expected since both opioids
and cannabinoids affect heart rate, they cause an obvious high or euphoric state, and both
have strong effects on the central nervous system [46, 47]. There were greater odds of an opioid
poisoning event, but a lower odds of a cannabinoid poisoning event when respiratory disor-
ders were reported with the call. This is likely related to the potentially severe respiratory
depression experienced with opioid poisonings. There were greater odds of a cannabinoid poi-
soning event but a lower odds of an opioid poisoning event when sensory disorders were
reported. This may be due to the dilatory effect of cannabinoids. There were greater odds of
cannabinoid poisoning events when urinary disorders were reported, possibly due to the
incontinence caused by exposure to cannabinoids. This information may be helpful in terms
of understanding what types of disorders are being observed by users of the APCC and where
to focus educational resources to raise awareness of signs of acute poisoning with these drugs.

Conclusion

As recreational drug use continues to increase in humans [1-7], it is important to explore tools to
identify pet exposures when individuals are unwilling or unable to report the potential for expo-
sure and subsequent substance ingestion by their pet. Although we found that our cannabinoid
and opioid models had poor positive predictive values, we could use these models to help build
diagnostic evidence to reduce concerns of exposure to cannabinoids and opioids which would
help veterinarians better advise clients on diagnostic and treatment plans for their pet. While
lasso regression models are easier to automate and construct without epidemiological knowledge,
in this study they had the same predictive abilities as logistic regression models built using epide-
miological principles. Logistic regression models also have the benefit of parsimony and
interpretability. While controlling for autocorrelation at the state level did not have a major effect
on the predictive abilities of the models examined, controlling for autocorrelation substantially
decreased the number of variables in the lasso models, suggesting that further effort to develop
methods to control for autocorrelated data with lasso regression is warranted. Using logistic and
multi-level logistic regression models, we were able to identify disorder categories that are associ-
ated with these acute poisoning incidents. This information may be critical in developing tools
for clinicians and the public to recognize acute intoxications with these drugs in pet dogs.
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