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Abstract

This paper analyzes the green production efficiency (GPE) and spatial divergence of the

hog breeding industry, with the aim of providing a foundation for the rational layout of hog

breeding and promoting the industry’s high-quality development. The paper uses the SBM

model to estimate GPE in 29 provinces, cities, and districts of China from 2006 to 2019. Fur-

thermore, it analyzes the spatial divergence of GPE and its driving factors using divergence

indexes and the Geodetector. The results show that China’s GPE of the hog breeding indus-

try increased from 0.409 to 0.496 between 2006 and 2019. The highest efficiency occurred

during the I-period, while the lowest efficiency was observed during the II-period. The high-

est efficiency was in the key development region, and the lowest efficiency was in the poten-

tial growth region. The spatial divergence of GPE in the hog breeding industry expanded,

with labor input, non-point source pollution, resource endowment, and environmental load

bearing being the main driving factors for the expansion in each period. The potential growth

region had the largest spatial divergence, mainly affected by resource endowment. In con-

trast, the constrained development region had the smallest spatial divergence, mainly

affected by resource endowment and pollutant emissions. The spatial divergence of moder-

ate and key development regions was considerable, mainly affected by environmental

investment, environmental load bearing, and pollutant emissions. Therefore, the key to

improving the GPE of the hog breeding industry is to promote the adoption of advanced

technology, such as labor-saving, material-saving, and emission reduction technologies.

Moreover, several actions should be taken to reduce the spatial divergence among different

regions, such as integrated breeding, clean standards, large-scale breeding, and high-end

boutique.

Introduction

The hog breeding industry plays a crucial role as a core sector and a major component of the

livestock industry worldwide. Pork production accounts for 32.57% of the total meat output

globally Data source: EPS data platform (https://www.epsnet.com.cn) for 2020 data., with
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100.853 million tons of pork consumed worldwide in 2021 Data source: USDA Data (https://

www.usda.gov/topics/data)., serving as a significant protein source for human consumption.

Nevertheless, hog breeding is a highly polluting industry that faces prominent resource and

environmental constraints [1]. On the one hand, as the cost of land, labor, and energy contin-

ues to increase, the resource dividend is gradually disappearing. On the other hand, the heavy

and difficult-to-treat manure emissions have adverse effects on the ecological environment

[2]. Particularly, China, as the largest pork consumer and producer globally, where pork con-

sumption accounts for 44% of the world’s total consumption and production accounts for

38.3% of the total global production Data source: EPS data platform (https://www.epsnet.com.

cn) for 2020 data., continues to face increasingly serious environmental challenges while

improving pork production efficiency. It is a long way to go to achieve China’s double carbon

goal. Therefore, China’s hog breeding industry has reached a crucial stage of high-quality

development that demands equal emphasis on both “efficiency” and “decontamination” [3].

The practice of high-quality development in the Chinese hog breeding industry can signifi-

cantly contribute to the global hog industry’s development and environmental improvement.

As a crucial metric for evaluating industrial efficiency and competitiveness, Green Produc-

tion Efficiency (GPE) serves as a vital benchmark for gauging the level of high-quality develop-

ment achieved by the hog breeding industry. GPE is a study of the degree of coordination

between economic development and environmental resources, based on the limited environ-

mental carrying capacity, to achieve the goal of energy conservation, consumption reduction,

and pollution reduction in the production process, using advanced management methods and

technology. It not only evaluates the efficiency of resource inputs, such as land, labor, and capi-

tal but also takes environmental factors into account to comprehensively measure the overall

efficiency of industries under the constraints of resource and environmental factors [4]. GPE

has emerged as an important reference for assessing the status of high-quality industrial devel-

opment and providing theoretical support and policy guidance for subsequent development [5].

Scholars have shown great interest in GPE, conducting extensive research on its measure-

ment and application, focusing on its levels in regions, cities, enterprises, and industries, as

well as various key factors that affect it [6–8]. In terms of specific studies at the industry level,

researchers have concentrated on the GPE of highly polluting and socially focused industries

such as industry, manufacturing, and agriculture (plantation). However, studies on GPE in the

livestock industry are relatively scarce. Only Han et al. [9] measured the environmental TFP of

the livestock industry in each province of China and applied spatial econometric models to

explore its influencing factors. Zhong et al. [10, 11] measured the GTFP of hens and dairy

cows in different scales and regions in China. Research on GPE of hog breeding industry is

even rarer. Zhao et al. [12] evaluated the GPE of hog breeding of various scales in 18 provinces

of China based on the calculation of pollutant emission, Zhong et al. [13] conducted a detailed

analysis of the efficiency of different scale breeding based on the comprehensive evaluation of

hog GPE. Although numerous studies have been conducted on GPE in various sectors, the hog

breeding industry’s functional areas still lack sufficient research attention, failing to account

for the unique GPE characteristics that differ across these areas. Conducting more targeted

and detailed research on GPE in the hog breeding industry is crucial to achieving high-quality

development in this field.

Due to variations in resource endowments, natural conditions, and economic development

levels, the GPE of each functional area in hog breeding differs and exhibits significant spatial

divergence. This spatial divergence not only leads to an unbalanced allocation of resources and

technologies and a loss of coordination in industrial development, but also affects the effective-

ness of emission reduction and environmental management, resulting in social green inequity

and hindering high-quality development in the industry [14]. Studies have extensively
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analyzed the current situation of GPE spatial divergence and evolution at the overall agricul-

tural level, focusing on GPE index divergence and evolutionary trends, and have confirmed

the temporal, spatial, and regional variability and clustering characteristics of agricultural GPE

changes [5, 15, 16]. However, agricultural GPE is significantly different due to varying devel-

opment levels and positioning in different economic regions, and shows spatial dependence

among regions [17, 18]. Researchers have explored the causes of GPE in each region, focusing

on the effects of economic factors such as the level of economic development, agricultural

trade, agro-industrial agglomeration, agricultural output growth, and scale level on GPE [19–

21]. With the progress of industry and the development of the green concept, attention has

gradually shifted to the influence of environmental factors on production efficiency [22, 23].

Existing studies have confirmed the existence of spatial differentiation in agricultural GPE, but

the extent of spatial divergence of livestock GPE, such as hog breeding, has received less atten-

tion, and insufficient focus has been given to the sources of divergence. Moreover, while the

causes of GPE levels and evolution have received sufficient attention, few studies have explored

the drivers of GPE spatial divergence from both internal and external perspectives, leading to a

lack of basis for coordinated industrial development strategies.

Concluding this paper, statistical data is employed to measure the GPE of the hog breeding

industry in 29 provinces of China from 2006 to 2019 based on the SBM model. Additionally,

divergence indexes and Geodetector are utilized to explore the spatial divergence characteris-

tics and its driving factors, respectively. Compared to previous research, this paper’s marginal

contributions are as follows: firstly, it concentrates on the spatial divergence of GPE in the hog

breeding industry and scrutinizes the sources of its spatial divergence, providing a reference

basis for the industry’s green and coordinated development. Secondly, it examines the GPE

characteristics in different areas based on the division of functional areas of the hog breeding

industry to enhance the precision and relevance of research outcomes. Thirdly, the paper anal-

yses the driving factors of spatial divergence of GPE in hog breeding industry from both inter-

nal and external perspectives, exploring the causes of its spatial divergence. The study results

can serve as a reference for promoting coordinated regional development of the hog breeding

industry, and thus improving the quality of its development.

Methods and materials

This chapter presents a comprehensive account of the methods and data sources employed in

the research process of this paper. It elucidates the procedure for choosing indicators to mea-

sure GPE in the hog breeding industry, along with the underlying rationale for selecting the

drivers. This chapter furnishes methods and material backing for calculating and analyzing the

research findings in the subsequent section.

Data

This study considers 29 provinces, cities, and districts as the DMU for measuring the industrial

development pattern influenced by China’s development plan. To ensure comprehensive cov-

erage, the five provinces and districts of Hong Kong, Macao, Taiwan, Tibet, and Ningxia were

excluded due to missing data. The sample period is divided into three periods: the I-period

(2006~2010), the II-period (2011~2015), and the III-period (2016~2019) Classification basis:

the Eleventh Five-Year Plan for the Development of National Animal Husbandry (2006–2010),
the Twelfth Five-Year Plan for the Development of National Animal Husbandry (2011–2015)
and the National Pig Production Development Plan (2016–2020) issued by the Ministry of Agri-

culture of China in 2006, 2011 and 2016, respectively, are long-term plans, which provide for

the development of each five-year. The plans lay out the development path of the industry and

PLOS ONE Green production efficiency of China’s hog breeding industry

PLOS ONE | https://doi.org/10.1371/journal.pone.0288176 November 3, 2023 3 / 23

https://doi.org/10.1371/journal.pone.0288176


provide goals and directions for the development vision of the hog breeding industry, which

have an important guiding role for the industry. Examining the GPE of the hog breeding

industry in different planning periods can reflect the development characteristics of the indus-

try led by policies, so this paper divides the sample period into I-period (2006–2010), II-period

(2011–2015) and III-period (2016–2019).

(due to some missing data, the 2020 GPE was not calculated). Data were primarily obtained

from the Compilation of Information on the Cost and Benefit of Agricultural Products in China,

China Agricultural Statistical Yearbook, China Rural Statistical Yearbook, China Environmen-
tal Statistical Yearbook, and EPS database from 2005 to 2020. Price-related data were adjusted

for inflation using the price index of agricultural production materials (with 2006 as the base

period) to ensure accurate comparisons.

Moreover, considering various factors such as product development base, environmental

impact, resource allocation, consumer preference, slaughter, and processing, the Ministry of

Agriculture has released the China Pig Production Development Plan (2016–2020), which

divides the country into four pig development regions: key development region, constrained

development region, potential growth region, and moderate development regionChina Pig
Production Development Plan (2016–2020) issued by the Ministry of Agriculture and Rural

Affairs of the People’s Republic of China divides the pig development regions, with the key

development region including Hebei, Shandong, Henan, Chongqing, Guangxi, Sichuan, Hai-

nan; the constrained development region including Beijing, Tianjin, Shanghai, Jiangsu, Zhe-

jiang, Fujian, Anhui, Jiangxi, Hubei, Hunan and Guangdong; the potential growth region

including Liaoning, Jilin, Heilongjiang, Inner Mongolia, Yunnan and Guizhou; and the mod-

erate development region including Shanxi, Shaanxi, Gansu, Xinjiang, Tibet, Qinghai, and

Ningxia.

. In this paper, we further extend this classification to analyze the spatial divergence and

evolution of GPE.

The data utilized in this study are official statistics and do not involve human participants

or raise ethical issues. Therefore, this study was not subject to review and approval by an insti-

tutional review board (ethics committee), and participant consent was not obtained.

Variable settings

According to the arrangement of the study, this section selects the input-output variables

required to measure GPE and the driving factors variables that may affect the spatial diver-

gence of GPE to provide material support for the study. presented in Table 1.

Input-output variables. When selecting variables, it is recommended to prioritize physi-

cal quantities whenever possible [12]. In addition, to ensure scientific and comparable results,

it is important to choose variables that are consistently measured across regions and less influ-

enced by market price fluctuations [26]. Regarding input indicators, previous research has typ-

ically categorized them into two types: conventional inputs and resource inputs. The key costs

of traditional hog breeding include labor, piglets, and feed. Therefore, this study uses labor

input, piglet input, and feed input as conventional input variables to measure the production

efficiency of the hog breeding industry. To comprehensively evaluate the green production

capacity of hog breeding, this study also incorporates water and energy—both closely linked to

sustainable development—as input variables. Specifically, water input and energy input are

included in the analysis.

The selected desirable output indicator is the net main product yield (net hog weight gain),

which is the difference between the main product yield of hogs and the weight of piglets. In

regards to the selection of undesirable output indicators, both carbon emissions and non-point
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source pollutants are deemed as undesirable outputs of hog breeding [27]. While some scholars

choose carbon emission [28], others prefer the amount of non-point source pollutants [29].

This paper measures both carbon emissions and non-point source pollutants by drawing on

Zhou et al. [30] and Streimikis & Saraji [31]. To accurately estimate GPE, this paper considered

as many pollutants as possible, and finally selected COD, total nitrogen (TN), and total phos-

phorus (TP) as non-point source pollutants. The pollutants emitted from the hog breeding pro-

cess were then converted into carbon equivalents to measure their total carbon emissions.

According to the study by Zhang et al. [32], the emissions of non-point source pollutants

can be calculated by the following formulas:

COD ¼ N � T � ðGm � Gm� COD þ Gu � Gu� CODÞ ð1Þ

TN ¼ N � T � ðGm � Gm� TN þ Gu � Gu� TNÞ ð2Þ

TP ¼ N � T � ðGm � Gm� TP þ Gu � Gu� TPÞ ð3Þ

where, COD, TN, TP represent COD, TN and TP emission, N stands for hog breeding quan-

tity, measured by annual hog output, T represents feeding cycle, Gm and Gu represent daily

emission coefficient of hog manure and hog urine respectively, Gm-COD and Gu-COD represent

COD emission coefficient of hog manure and hog urine respectively, Gm-TN and Gu-TN repre-

sent TN emission coefficient of hog manure and hog urine, Gm-TP and Gu-TP represent TP

emission coefficient of hog manure and hog urine.

Table 1. Input-output and driving factors variables.

Indicators Variables Description of Variables Reference

Conventional

input

Labor input Labor cost per unit (USD) Zhao et al. [12]

Piglet input Piglet cost per unit (USD) Zhao et al. [12]

Feed input Concentrated feed cost per unit (USD) Zhao et al. [12]

Resource input Energy input Fuel power cost per unit (USD) Zhong et al. [11]

Water input Feeding water cost per unit (USD) Zhong et al. [11]

Desirable output Net hog weight gain Weight of hog product-weight of piglets (kg) Zhao et al. [12]

Undesirable

output

Non-point source pollutants

Emissions

Non-point source pollutants (10 kt) Streimikis & Saraji

[31]

Carbon emissions Carbon emissions (10 kt) Zhu et al. [24]

Driving Factors

Scale breeding Number of large-scale hog farms/total number of farms (%) Zhong et al. [11]

Environmental load bearing Hog stock/ cultivated land (head/m2) Zheng et al. [25]

Production operation capability Number of slaughtered fattened hogs/quantity of live hogs at the beginning of the

year (%)

Wang et al. [47]

Resource endowment Maize yield (10 kt) Wang et al. [47]

Environmental investment Environmental governance investment (100 million USD) Wang et al. [47]

https://doi.org/10.1371/journal.pone.0288176.t001
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Referring to Yao et al. [33], the carbon emissions from hog breeding are measured based on

the whole life cycle with the following equations:

TCsc ¼ APP� ð
coste
pricee

� efe þ
costc
pricec

� efcÞ ð4Þ

TCsg ¼ P �
MJ
e
� efe ð5Þ

APP ¼ T �
N

365
ð6Þ

where, TCsc and TCsg represent the carbon emission of feeding process and processing process

respectively, APP is the average annual feeding quantity of hogs, coste and costc represent the

electricity expenditure and coal expenditure per unit of hog breeding respectively, pricee and

pricec represent the unit price of electricity and coal respectively, efe and efc are the CO2 emis-

sion coefficient of electricity consumption and coal consumption. P represents the annual out-

put of pork, MJ is the energy dissipation coefficient of pork per unit processing, and e is the

heat value generated by consuming one unit of electricity.

TCCH4
¼ APP� ðefi� CH4

þ efj� CH4
Þ � GWPCH4

ð7Þ

TCN2O
¼ APP� efj� N2O

� GWPN2O
ð8Þ

TC ¼ ðTCsc þ TCsg þ TCCH4
þ TCN2O

Þ � etpf ð9Þ

where, TCCH4
, TCN2O

and TC represent CH4 global warming potential, N2O global warming

potential and total carbon emission of hog breeding industry respectively, efi� CH4
, efj� CH4

and

efj� N2O
represent CH4 emission coefficient of pig gastrointestinal fermentation, CH4 and N2O

emission coefficient of manure management respectively. GWPCH4
and GWPN2O

are CH4 and

N2O global warming potential respectively, and etpf is the conversion of CO2 equivalent is con-

verted to standard carbon coefficient. Table 2 shows the meaning of various emission coeffi-

cients and their values.

Driving factors variables. This paper has selected several independent variables, includ-

ing scale breeding, environmental load bearing, production and operation capacity, resource

endowment, and environmental investment, to investigate their impact on the spatial diver-

gence of GPE in hog breeding. The scale of hog breeding is closely linked to its standardization

capacity, which develops in tandem [34]. Standardization is a vital prerequisite for achieving

green and high-quality development in the hog breeding industry. Hence, scale breeding is a

crucial factor affecting GPE in this industry, and differences in scale breeding across regions

will exacerbate the spatial divergence in GPE.

The environmental load bearing refers to the number of hogs per unit of arable land, and

mitigating the environmental carrying capacity is a crucial measure for improving the indus-

try’s green efficiency and sustainable development [35]. The higher the regional environmental

loading intensity, the greater the number of hogs bred, the more significant the impact on

breeding activities and the level of environmental management. Therefore, environmental

load bearing is an important variable included in the system of driving factors.

The hog output rate, a pivotal indicator of hog production and capacity [36], is a significant

reflection of the industry’s production and operational capacity. Developing production and

operational capacity constitutes an effective approach to enhance the industry’s green
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development capacity [37]. Consequently, the variation in production and operation capacity

emerges as a crucial factor contributing to the spatial divergence in GPE of the hog breeding

industry.

Resource endowment exerts a direct and positive influence on the industry’s green develop-

ment efficiency [38] and constitutes the fundamental basis for enhancing the GPE of the hog

breeding industry. The differences in resource endowments among regions may lead to diver-

gences in GPE. Additionally, since maize is the primary raw material for hog feed, a higher

maize yield corresponds to stronger green farming capacity for hogs. Thus, this paper employs

Kolleen & Norman’s [39] methodology to gauge feed production by maize yield, which in turn

represents the resource endowment status of the hog farming industry in each province, and

scrutinizes its impact on the spatial divergence of GPE.

The effectiveness of environmental management practices is heavily influenced by the level

of environmental investment made in the region, with higher investments indicating a greater

emphasis on environmental management [40]. This highlights the importance of promoting

green hog breeding practices, which can significantly enhance the industry’s GPE. As a result,

differences in the environmental management status of each region can impact the spatial

divergence of the hog breeding industry’s GPE across regions.

Table 2. Hog breeding pollutant emission coefficient.

Emission coefficient Symbol Value Units

Non-point source pollutants emission coefficients Feeding cycle T 199 d

Daily emission coefficient of hog manure Gm 2.00 kg/d

Daily emission coefficient of hog urine Gu 3.30 kg/d

COD emission coefficient of hog manure Gm-COD 52.00 kg/t

TN emission coefficient of hog manure Gm-TN 5.88 kg/t

TP emission coefficient of hog manure Gm-TP 3.41 kg/t

COD emission coefficient of hog urine Gu-COD 9.00 kg/t

TN emission coefficient of hog urine Gu-TN 3.30 kg/t

TP emission coefficient of hog urine Gu-TP 0.52 kg/t

Carbon emission coefficients Unit price of electricity Pricee 0.062 USD/kW�h

Unit price of coal Pricec 116 USD/t

CO2 emission coefficient of electric consumption efe 0.973 tCO2/MW�h

CO2 emission coefficient of coal consumption efc 1.98 t/t

Energy dissipation coefficient per unit processing of pork MJ 3.76 MJ/kg

Heat value generated by consuming one unit of electricity e 3.60 MJ

CH4 emission coefficient of hog gastrointestinal fermentation efi-CH4 1.00 kg/ head

CH4 emission coefficient of hog manure management efj-CH4 3.50 kg/ head

N2O emission coefficient of hog manure management efj-N2O 0.530 kg/ head

CH4 global warming potential GWPCH4 21

N2O global warming potential GWPN2O 310

CO2 equivalent is converted to standard carbon coefficient etpf 0.2728

Note: The emission coefficient of non-point source pollutants is taken from the statistics released by the Ministry of Ecology and Environment of China (https://www.

mee.gov.cn). Carbon emission coefficient is determined in conjunction with IPCC guidelinesIPCC. IPCC Guidelines for National Greenhouse Gas Inventories Volume

4: Agriculture, Forestry and Other Land Use[R]. Geneva: IPCC, 2006

https://doi.org/10.1371/journal.pone.0288176.t002
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Methods

This section provides a detailed description of the methods to be applied in this study, includ-

ing the SBM model, the divergence index, and the Geodetector, which helps to improve the

applicability of the study.

SBM model. To measure the GPE of the hog breeding industry in each province, the SBM

model based on undesirable outputs is utilized. The non-radial and non-angular SBM direc-

tional distance function, proposed by Tone [41], fully addresses the input-output slackness

problem. This method directly incorporates slack variables into the objective function to solve

the non-zero input-output slackness issue, which eliminates the non-efficiency factors caused

by slackness. Furthermore, the SBM model is dimensionless and non-angular, thus avoiding

bias and effects of different magnitudes and angle selection differences. The SBM model con-

siders m inputs (x), n1 desirable outputs (yg), and n2 undesirable outputs (yb) and can be

expressed as:

Minr ¼
1 � 1

m

Xm

i¼1

s�i
xi0

1þ 1

n1þn2

Xn1

r¼1

sgr
ygr0
þ
Xn2

r¼1

sbr
ybr0

 ! ð10Þ

s:t:

x0 ¼ Xlþ s�

yg0 ¼ Ygl � sg

yb
0
¼ Yblþ sb

l � 0; s� � 0; sg � 0; sb � 0;

ð11Þ

8
>>>><

>>>>:

where s represents the slack in inputs and outputs, s- indicates too many inputs, sb indicates

too many undesirable outputs, sg indicates insufficient desirable outputs, λ indicates the

weights, ρ(0� ρ�1) indicates the attainment efficiency score, and the rates of s-, sb and sg are

strictly decreasing. When s-, sb and sg are all equal to 0, that is, when ρ=1, it means that there is

no excess of inputs and undesirable outputs, and there is no deficit of desirable outputs. Thus,

the DMU is completely efficient. However, when s-, sb and sg are all greater than 0, that is,

when ρ<1, it means that there is an efficiency loss in DMU. The output level can be main-

tained by reducing the input and undesirable output, indicating that the DMU is invalid.

Divergence index. The measurement of regional divergence in development levels is

commonly done using methods such as the Gini coefficient, the Theil index, and the mean log

deviation (generalized entropy index). These methods are sensitive to changes in high,

medium, and low levels, respectively, and their results are complementary. Thus, scholars usu-

ally analyze regional divergence in development levels based on the comparison results of

these three methods [42, 43].

The modified Gini coefficient is widely used in industrial economics and is one of the main

methods for measuring differences in the level of industrial development. There are various

methods for measuring the Gini coefficient, and this paper adopts the method proposed by

Mookherjee and Shorrocks [44]. The basic formula for this method is:

GINI ¼
1

2n2m

X
jGPEi � GPEjj ð12Þ

where n denotes the number of provinces, GPEi andGPEj represent the GPE of the hog
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breeding industry in province i and province j, respectively, and μ is the average value of GPE

in each province.

The basic formulae for the mean log deviation (GE0) and the Thiel index (GE1) are as follows:

GE0ðGPEÞ ¼
1

n

X

i2Nln
m

GPEi
ð13Þ

GE1ðGPEÞ ¼
1

n

X

i2N
GPEi

m
ln
GPEi

m
ð14Þ

where n denotes the number of provinces, μ is the average value of GPE of the hog breeding

industry in each province and GPEi denotes the level of GPE in province i.
To explore the trend of inter-provincial differences over time, this paper further examines

the convergence of GPE. α convergence is used to analyze the discrete trends in GPE of the

national and regional hog breeding industry. The α convergence formula is:

at ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1
Xn

i¼1

GPEi tð Þ � n� 1
Xn

m¼1

GPEm tð Þ

" #( )2
v
u
u
t ð15Þ

where GPEi(t) denotes the GPE of the hog breeding industry in period t of the i province,

GPEm(t) denotes the GPE in period t of the m province, and n denotes the number of prov-

inces. The decreasing value of αt indicates that the GPE in the sample period is converging and

the difference between provinces is narrowing, while the increasing of αt indicates divergence,

and the difference in GPE among provinces is enlarged.

Geodetector. The Geographic comprises of four key components, namely the factor

detector, interaction detector, risk detector, and ecological detector. The fundamental assump-

tion of this approach is that the spatial distribution of the driving factors responsible for the

change is in agreement with the spatial distribution of that particular phenomenon. It suggests

that the driving factors significantly impact the spatial divergence of the phenomenon under

study [45]. This study investigates the driving factors of spatial divergence of GPE through fac-

tor detector and interaction detector. The factor detector is utilized to examine the impact of a

factor on the spatial divergence of a variable, whereas the interaction detector is employed to

explore the effect of factor interactions on the variable. By developing a novel spatial layer

comprising two driving factors, the interaction detector assesses the impact of two factors and

their superimposed layers on spatial divergence. The primary aim of the interaction detector is

to unveil the interaction between different factors on spatial divergence and to compare the

interaction effect with that of a single factor on the variables. The factor detector assesses

whether factors affect the spatial divergence of variables by comparing whether the spatial dis-

tribution of driving factors and variables is consistent. The degree of factor detector is mea-

sured using the q-statistic, expressed as:

q ¼ 1 �

XH

h¼1

Nhs
2

h

Ns2
ð16Þ

q-statistic denotes the role of factors driving the spatial divergence of GPE, with q ranging

from 0 to 1. N denotes the regional sample size. H is the partition of factors and variables and

denotes the sample size of sub-region h. q = 0 means that the spatially stratified heterogeneity

is not influenced by the factor, and q = 1 means that the spatial divergence is completely influ-

enced by the factor. The larger the q-statistic, the greater the influence of the factor on the
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spatial divergence of GPE. In this regard, the q-statistic indicates that the spatial divergence of

factors explains the spatial divergence of variables, and it does not require a significance test

[46]. To process data, all driving factors must be transformed into quantitative variables. This

study uses the Q-type clustering analysis method to cluster independent variables into six cate-

gories according to numerical size, and observations are grouped into six types from high to

low. Finally, the Geodetector is used to calculate the degree of influence of each factor on the

spatial divergence of GPE in the hog breeding industry.

Results

This chapter employs the aforementioned materials and methods to gauge the GPE of the hog

breeding industry and conducts an analysis of the outcomes. It expounds upon the develop-

ment characteristics and evolutionary trends of GPE in diverse regions and provinces across

various time periods, examining both spatial and temporal dimensions, while offering pro-

found interpretations for the underlying reasons. The findings of this chapter serve as the

foundation for scrutinizing the spatial divergence of GPE and its driving factors.

Statistical analysis of variables

Table 3 presents the results of the descriptive statistical analysis of input and output variables.

The analysis revealed that, firstly, conventional input variables witnessed a significant increase

as compared to 2006, while resource input variables remained stable, and the net weight gain

of hogs also increased significantly. This suggests that hog production capacity increased with

the increase in resource input. Secondly, there was a significant decrease in non-point source

pollutant emissions, whereas carbon emissions increased initially and then decreased, indicat-

ing the considerable effect of pollutant emission reduction during the hog breeding process.

Measurement of the GPE

The SBM model was used to calculate the mean values of GPE in the hog breeding industry in

the key development region, constrained development region, potential growth region, and

moderate development region in the I, II, and III periods. The results are shown in Fig 1.

Table 3. Descriptive statistics of input-output variables.

Year Labor input

(USD)

Piglet input

(USD)

Feed input

(USD)

Energy input

(USD)

Water input

(USD)

Net hog weight

gain(kg)

COD (billion

tons)

TD (billion

tons)

TP (billion

tons)

Carbon emission

(billion tons)

2006 4.559 24.258 54.878 0.892 0.233 81.3 0.134 0.023 0.0086 10.51

2007 5.894 43.353 63.409 0.906 0.281 84.2 0.132 0.022 0.0084 9.65

2008 6.106 58.074 73.636 0.955 0.295 86.7 0.117 0.020 0.0075 11.73

2009 8.412 51.501 95.254 1.162 0.344 88.11 0.123 0.021 0.0079 12.43

2010 9.253 46.309 100.219 1.080 0.344 89.64 0.125 0.021 0.0080 12.19

2011 11.344 70.028 108.882 1.076 0.341 91.51 0.124 0.021 0.0079 12.79

2012 13.304 78.966 128.491 1.152 0.369 93.65 0.124 0.021 0.0079 13.68

2013 15.764 78.554 142.222 1.146 0.394 93.86 0.127 0.021 0.0081 13.66

2014 16.442 73.195 149.258 1.291 0.431 95.81 0.126 0.021 0.0081 14.98

2015 16.412 77.212 138.169 1.217 0.417 96.31 0.124 0.021 0.0079 14.97

2016 16.445 107.976 125.459 1.153 0.394 98.86 0.120 0.020 0.0077 14.69

2017 16.079 95.468 120.178 1.194 0.401 99.91 0.116 0.020 0.0074 16.34

2018 16.218 70.318 123.615 1.230 0.428 101.56 0.117 0.020 0.0075 16.53

2019 15.960 92.559 122.414 1.135 0.399 105.47 0.114 0.019 0.0073 13.46

https://doi.org/10.1371/journal.pone.0288176.t003
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As shown in Fig 1, the overall GPE increased to an average of 0.401, indicating an improve-

ment in the industry’s efficiency. The highest GPE was observed in the I-period, followed by a

decrease in the II-period, and a recovery in the III-period. Regionally, the key development

region had the highest overall GPE of 0.412, followed by the constrained and moderate devel-

opment regions, and the potential growth region had the lowest overall GPE of 0.374. In addi-

tion, except for the constrained development region, the GPE of the remaining regions grew

during the sample period, with the fastest growth rate in the potential growth region, with an

average GPE of 0.411 in the III-period, an increase of 10.5% compared to the I-period. Fol-

lowed by the key development region, with an average 5.8% increase in GPE, and the moderate

development region was stable overall, while the constrained development region decreased

by 10.8% in GPE. Nine provinces, including Beijing, Tianjin, Shanxi, Inner Mongolia, Liao-

ning, Jilin, Shanghai, Guangxi, and Gansu, experienced a decline in GPE throughout the sam-

ple period, while the remaining 20 provinces showed an increase. Most provinces exhibited an

increase in GPE in the I-period and III-period, and a decrease in the II-period.

Fig 2 depicts the chronological progression of the GPE in China’s hog breeding industry.

Nationally, the GPE observed a substantial increase from 0.409 to 0.496. GPE displayed an ini-

tial incline and subsequent decline during the I-period, reaching its highest value in 2008. The

Fig 1. GPE of the hog breeding industry. Note: HEB, SD, HEN, CQ, GX, SC, HN, IM, LN, JL, HLJ, GZ, YN, BJ, TJ, SH, JS, ZJ, AH, FJ, JX, HUB, HUN, GD,

SX, SAX, GS, QH, XJ respectively stand for Hebei province, Shandong province, Henan province, Chongqing, Guangxi province, Sichuan province, Hainan

province, Inner Mongolia province, Liaoning province, Jilin province, Heilongjiang province, Guizhou province, Yunnan province, Beijing, Shanghai, Jiangsu

province, Zhejiang province, Anhui province, Fujian province, Jiangxi province, Hubei province, Hunan province, Guangdong province, Shanxi province,

Shaanxi province, Gansu province, Qinghai province, and Xinjiang province.

https://doi.org/10.1371/journal.pone.0288176.g001
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cause was mainly attributed to the outbreak of Porcine Reproductive and Respiratory Syn-

drome (PRRS) in hogs from 2007 to 2008, leading to a persistent decline in hog population

and a consequent decrease in hog production capacity. During the II-period, GPE experienced

a slight drop between 2011 and 2013, followed by a gradual improvement in 2014. The main

reason for the decline was the lean meat powder scandal in 2011, which affected the hog pro-

duction efficiency. However, the Regulations on Prevention and Control of Pollution in Live-
stock and Poultry Scale Farming promulgated in 2014 stimulated the green development of the

hog breeding industry, thereby leading to the recovery of GPE. During the III-period, GPE

witnessed an initial decline and subsequent increase, attaining its lowest point of 0.342 in

2018, followed by a sharp rise in 2019. This was primarily due to the impact of African Swine

Fever (ASF) in 2018, which significantly reduced hog breeding efficiency and spurred the

rapid reorganization of the industry, culminating in the enhanced green development of the

hog breeding industry and a corresponding surge in hog GPE in 2019.

At the regional level, the GPE in the potential growth region exhibited cyclical fluctuations

with a period of five years, and had the highest value overall. The GPE first increased and then

decreased in the I-period, remained stable during the II-period, and increased again in the III-

period. Due to the abundance of resources in the region, the production efficiency of hog

breeding was high, and showed an upward trend. In the moderate development region, the

GPE experienced a rapid decline from 2006 to 2007, followed by a sharp increase from 2018 to

2019, with a relatively stable period in between. This region experienced less breeding pressure

and had a high level of green development overall, with little impact from the hog breeding

Fig 2. Temporal evolution of GPE in the hog breeding industry.

https://doi.org/10.1371/journal.pone.0288176.g002
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industry on its economic development and market stability. In the key development region,

the GPE of the hog breeding industry first increased and then decreased in the I-period,

remained relatively stable during the II-period, and experienced a decrease followed by an

increase in the III-period. This region had a large proportion of the hog breeding industry,

and was greatly influenced by animal diseases and government regulations, resulting in a fluc-

tuating trend. The overall GPE of hog breeding in the constrained development region was the

lowest, with a fluctuating trend in development. This region was economically developed, with

a dense water network and limited hog breeding, resulting in little influence from various fac-

tors on the GPE.

Spatial divergence

Building upon the aforementioned measurement results, this section proceeds to delve into an

in-depth analysis of the extent of divergence in GPE within various regions and provinces

throughout the sample period. Expanding on this foundation, the dispersion trend of GPE

divergence among different regions is explored through the implementation of an α conver-

gence test, while elucidating the underlying reasons behind this evolving trend. Moreover, this

chapter examines the distinctive features of spatial divergence in GPE within the hog breeding

sector across different periods and regions, affirming the driving factors through the scrutiny

of input-output factors and external factors.

In this paper, Gini coefficient, Theil index and mean log deviation were used to explore the

divergence of hog breeding industry GPE in different regions during the sample period. The

results are shown in Table 4.

The Gini coefficient, Thiel index, and mean log deviation all displayed a consistent pattern,

revealing that the spatial divergence of GPE initially decreased and then widened, ultimately

leading to an overall expansion. The I-period demonstrated a conspicuous trend of narrowing

spatial divergence, with the values of the three indicators dropping from 0.107, 0.078, and

0.089 in 2006 to 0.061, 0.023, and 0.023 in 2010. The spatial divergence experienced a slight

increase and remained relatively stable in the II-period. In the III-period, the spatial diver-

gence initially decreased and then increased, reaching its lowest point in 2018 with values of

0.076, 0.037, and 0.038 for the three indicators, and then rapidly expanding in 2019. The inter-

national community generally regards a Gini coefficient of 0.3 or less as indicating a small gap

in the level of inequality. The results demonstrate that, although China’s hog breeding indus-

try’s GPE did not significantly vary from 2006 to 2019, the inter-provincial spatial divergence

exhibited a fluctuating trend.

Table 4 examines the spatial divergence of GPE across regions during the sample period,

using the Gini coefficient as a measure. Looking at the mean values, the potential growth

region had the highest spatial divergence, with mean values of 0.104 and 0.089, followed by the

moderate development region and key development region, while the constrained develop-

ment region had the lowest spatial divergence. In terms of changes in different regions, the

overall spatial divergence of GPE remained stable in the key development region and contin-

ued to increase in the constrained development region. The spatial divergence in the moderate

development region remained stable during the I-period and II-period but increased rapidly

during the III-period. In the potential growth region, the spatial divergence decreased initially

and then increased, with the smallest spatial divergence in the II-period. It can be observed

that the divergence in the green production capacity of hogs between provinces within each

region has expanded.

Fig 3 depicts the discrete trends of the spatial divergence of GPE nationwide, using the Gini

coefficient as an example, with the α convergence test. The spatial divergence of GPE in China
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displays α discrete evolution. Except for the moderate development region, which displays

convergence evolution as a whole, the α-convergence values of all other regions expand, indi-

cating α discrete evolution. The potential growth region registers the largest value of α but the

slowest convergence rate, whereas the constrained development region has the smallest value

of α but the fastest convergence rate. The convergence trend varies across periods. In the I-

period, the spatial divergence of GPE in the moderate development and potential growth

regions displays α discrete, while the key development and constrained development regions

show α convergence. During the II-period, the regions remain stable at a lower level of conver-

gence, without significant fluctuations of spatial divergence. In the III-period, the moderate

development, potential growth, and constrained development regions evolve in convergence,

followed by discretization, whereas the key development region continues in a discrete trend.

Furthermore, the significant fluctuations in convergence during the years 2010, 2016, and

2018 were linked to the adjustments made in industrial development efforts across each

region. Between 2008 and 2009, the Chinese government strongly advocated for rural environ-

mental protection and promoted large-scale hog breeding, which led to an increase in the

green production capacity of hogs in each province and a reduction in the gap between them

in 2010. In 2014, the implementation of the Regulation on the Prevention and Control of Pollu-
tion from Large-scale Breeding of Livestock and Poultry prompted provincial governments to

adjust the direction of industrial development. However, due to differences in the provincial

baseline and response measures, spatial divergence in GPE among provinces in the hog breed-

ing industry continued to expand. In 2018, the outbreak of African Swine Fever (ASF) had a

Table 4. Divergence of GPE in the hog breeding industry.

Year GINI GE0 GE1 Key Development Region

GINI

Moderate Development Region

GINI

Potential Growth Region

GINI

Constrained Development Region

GINI

2006 0.107 0.078 0.089 0.034 0.145 0.114 0.024

2007 0.089 0.051 0.054 0.054 0.080 0.143 0.055

2008 0.101 0.065 0.070 0.105 0.077 0.138 0.053

2009 0.091 0.058 0.065 0.077 0.078 0.133 0.033

2010 0.061 0.023 0.023 0.062 0.060 0.062 0.042

I-period 0.090 0.055 0.060 0.066 0.088 0.118 0.041

2011 0.074 0.035 0.036 0.062 0.073 0.090 0.052

2012 0.073 0.035 0.036 0.057 0.086 0.088 0.053

2013 0.070 0.032 0.034 0.059 0.082 0.089 0.043

2014 0.081 0.042 0.045 0.058 0.088 0.111 0.051

2015 0.079 0.040 0.040 0.051 0.107 0.086 0.061

II-period 0.075 0.037 0.038 0.057 0.087 0.093 0.052

2016 0.102 0.069 0.071 0.055 0.126 0.116 0.083

2017 0.087 0.049 0.051 0.074 0.086 0.092 0.076

2018 0.076 0.037 0.038 0.062 0.094 0.079 0.060

2019 0.108 0.075 0.076 0.071 0.131 0.110 0.107

III-

period

0.093 0.058 0.059 0.066 0.109 0.099 0.082

Average

1

0.086 0.049 0.052 0.063 0.094 0.104 0.057

Average

2

0.072 0.033 0.035 0.055 0.083 0.089 0.051

Note: average 1 is the mean value of the three indicators from 2006 to 2019, and average 2 is the value of the three indicators measured based on the mean value of GPE

in each province from 2006 to 2019.

https://doi.org/10.1371/journal.pone.0288176.t004
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severe impact on the hog breeding industry across all regions, leading to a decline in capacity

and a reduction in the production gap, resulting in spatial divergence evolving into conver-

gence. Although production capacity recovered after 2018, the direction and strength of

adjustments made in the hog industry varied among provinces, which ultimately led to the

expansion of spatial divergence.

Driving factors of the spatial divergence

GPE can be broken down into the productivity of various inputs and outputs, and differences

in regional inputs and outputs may impact the spatial divergence of GPE. Additionally, envi-

ronmental investments, resource endowments, environmental load bearing, scale breeding,

and production operation capacity may also have an effect on spatial divergence. This study

employs factor detector and interaction detector techniques of Geodetector to examine the

influence of constituent and external factors on the spatial-temporal divergence of GPE.

Driving factors of the spatial divergence across periods. Tables 5 and 6 present the out-

comes of the factor detector and interaction detector analyses regarding the impact of input-

output factors on the spatial divergence of GPE. The factor detector reveals that non-point

source pollutants and labor inputs were the primary drivers of spatial divergence in GPE

throughout the sample period. During the I-period, feed inputs and non-point source pollut-

ants played significant roles in spatial divergence. In the II-period, spatial divergence in GPE

primarily stemmed from labor inputs, carbon emissions, and non-point source pollutants. In

the III-period, labor inputs and non-point source pollutants emerged as the main driving fac-

tors of spatial divergence.

Fig 3. Convergence trend of GPE in the hog breeding industry.

https://doi.org/10.1371/journal.pone.0288176.g003
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The interaction detector demonstrates that the combined effect of two factors on GPE

exceeded that of individual factors. Among the interactions, the combination of labor inputs

and non-point source pollutants had the most substantial impact on spatial divergence of

GPE, with a value of 0.293. In the I-period, the interaction between feed inputs and non-point

source pollutants had the greatest influence, reaching a value of 0.506. In the II-period, the

interaction between piglet inputs and carbon emissions had the largest effect, reaching a value

of 0.614. In the III-period, the interaction between piglet inputs and water input had the most

significant impact, with a value of 0.529.

These findings indicate a decreasing influence of feed inputs and carbon emissions on the

spatial divergence of GPE, while the impact of labor inputs, energy inputs, and net output on

spatial divergence has gradually increased. The interactions between input factors consistently

displayed a stronger effect, with the interaction between labor inputs and non-point source

pollutants exhibiting a growing influence.

The impact of external factors, including environmental investment, resource endowment,

environmental load bearing, scale breeding, and production operation capacity, on the GPE of

the hog breeding industry is noteworthy. Tables 7 and 8 present the test results of the factor

detector and interaction detector for each period. The factor detector indicates that resource

endowment had the greatest influence on the spatial divergence of GPE, but its impact

decreased over time, with q-statistic decreasing from 0.293 in the I-period to 0.153 in the III-

period. This was followed by environmental load bearing, which saw a decrease in q-statistic

from 0.091 to 0.076, and scale breeding, which experienced a decrease in q-statistic from 0.149

to 0.030. Meanwhile, the influence of environmental investment and production operation

capacity on the spatial divergence decreased to 0.036 and 0.047, respectively, in the III-period.

Resource endowment and environmental load bearing were the most important driving fac-

tors for the spatial divergence of GPE in the III-period, followed by production operation

capacity, environmental investment, and scale breeding. The interaction detector shows that

the interaction between all factors in each period had a greater impact than the effect of single

factors. The interaction between resource endowment and environmental load bearing had

the highest driving value of 0.388 across all periods. It can be concluded that resource

Table 5. Effect of input-output on spatial divergence of GPE across periods.

Periods Labor input Piglet input Feed input Water input Energy input Net Output Carbon Emission Pollutant emission

Overall 0.112 0.044 0.013 0.079 0.030 0.023 0.067 0.113

I-period 0.055 0.085 0.091 0.070 0.033 0.038 0.085 0.193

II-period 0.288 0.117 0.026 0.124 0.080 0.038 0.164 0.133

III-period 0.140 0.085 0.053 0.093 0.071 0.066 0.043 0.133

https://doi.org/10.1371/journal.pone.0288176.t005

Table 6. Interactive effect of input-output on spatial divergence of GPE across periods.

Periods Leading interaction factor q-statistic Interaction

Overall Labor input \ Pollutant emission 0.293 Enhancement

Piglet input \ Carbon Emission 0.292 Enhancement

I-period Feed input \ Pollutant emission 0.506 Enhancement

Piglet input \ Pollutant emission 0.491 Enhancement

II-period Piglet input \ Carbon Emission 0.614 Enhancement

Labor input \ Pollutant emission 0.588 Enhancement

III-period Piglet input \Water input 0.529 Enhancement

Piglet input \ Net Output 0.506 Enhancement

https://doi.org/10.1371/journal.pone.0288176.t006
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endowment and environmental load bearing were the most important factors for the spatial

divergence of GPE among regions, leading to the expansion of the spatial divergence of GPE.

Driving factors of the spatial divergence across regions. Tables 9 and 10 exhibit the

results of the factor detector and interaction detector for input-output on the spatial diver-

gence across regions. The factor detector indicates that net output and non-point source pol-

lutants were the primary driving factors for the spatial divergence of GPE in the key

development region, with a q-statistic of 0.244 and 0.249, respectively. In the moderate devel-

opment region, piglet input and net output had the greatest impact on spatial divergence, with

q-statistics of 0.319 and 0.301, respectively. Meanwhile, piglet input had the most significant

influence on the potential growth region, followed by water inputs, with q-statistics of 0.394

and 0.252, respectively. Carbon emissions and non-point source pollutants significantly

affected the spatial divergence in the constrained development region, with q-values of 0.165

and 0.229, respectively.

The interaction detector suggests that the interaction of each factor played a major role in

the spatial divergence of GPE. The interaction of net output and non-point source pollutants

had the most significant effect on the spatial divergence in the key development region, with a

value of 0.495. In the moderate development region, the interaction between labor input and

net output was the most significant, with a value of 0.727. The largest effect of the interaction,

with a q-statistic of 0.694, was between piglet input and net output in the potential growth

region. Energy input and non-point source pollutants had the greatest impact on spatial diver-

gence in the constrained development region, reaching 0.496.

Thus, it can be concluded that inputs were the primary reason for the spatial divergence of

GPE in the hog breeding industry, while output status and pollution emission were the pri-

mary constraints for the green development of the hog breeding industry.

Tables 11 and 12 depict the effect of external factors on the spatial divergence of GPE in the

hog breeding industry across regions. The factor detector reveals that environmental invest-

ment was the primary driver of spatial divergence in the key and moderate development

regions, with a q-statistic of 0.256 and 0.145, respectively. Furthermore, resource endowment

had a significant impact on the spatial divergence of the potential growth and constrained

development regions, with q-statistics of 0.528 and 0.165, respectively. The interaction detector

indicates that the interaction between environmental investment and environmental load

bearing had the greatest impact on the spatial divergence in the key and moderate develop-

ment regions, with q-statistics of 0.515 and 0.405, respectively. In the potential growth region,

Table 7. Effect of external factors on spatial divergence of GPE across periods.

Periods Environmental Investment Resource Endowment Environmental Load Bearing Scale Breeding Production Operation

Overall 0.007 0.247 0.073 0.065 0.007

I-period 0.030 0.293 0.091 0.149 0.016

II-period 0.018 0.426 0.222 0.165 0.062

III-period 0.036 0.153 0.076 0.030 0.047

https://doi.org/10.1371/journal.pone.0288176.t007

Table 8. Interactive effect of external factors on spatial divergence of GPE across periods.

Periods Leading interaction factor q-statistic Interaction

Overall Resource Endowment \ Environmental Load Bearing 0.388 Enhancement

I-period Resource Endowment \ Environmental Load Bearing 0.528 Enhancement

II-period Resource Endowment \ Environmental Load Bearing 0.575 Enhancement

III-period Resource Endowment \ Environmental Load Bearing 0.410 Enhancement

https://doi.org/10.1371/journal.pone.0288176.t008
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the interaction of resource endowment and environmental load bearing had the most signifi-

cant impact on spatial divergence, at 0.714. The spatial divergence in the constrained develop-

ment region was mainly influenced by the interaction between scale breeding and resource

endowment, with an effective degree of 0.382. It can be observed that environmental invest-

ment and environmental load bearing were the primary drivers of spatial divergence in the key

and moderate development regions, while resource endowment had the most significant

impact on spatial divergence in the potential growth and constrained development regions.

The interaction between these factors formed each region’s distinctive spatial divergence

development pattern.

Conclusions and suggestions

The study aimed to illuminate the spatial divergence of GPE within China’s hog breeding

industry and the underlying driving factors, offering valuable insights to facilitate the indus-

try’s pursuit of high-quality development. The GPE, along with its spatial divergence, was

assessed utilizing the SBM model and divergence indexes across various regions from 2006 to

2019. Subsequently, the Geodetector was employed for further analysis of the driving forces

behind spatial divergence. The findings revealed a positive trend in the GPE of the hog breed-

ing industry in China and all regions, with an average value of 0.401 during the study period.

Notably, key development areas exhibited the highest average GPE, while potential growth

areas registered the lowest average GPE. Previous studies, such as Wang et al. [47] employed

the SFA model to demonstrate the upward trend in cost efficiency for fattening pigs, sows, and

piglets, with respective values of 0.77, 0.79, and 0.53. Wu et al. [48] utilized the SBM-Malm-

quist-Tobit model, revealing significant inter-provincial variations in the ecological efficiency

of hog production, ranging from 0.557 to 1.19 across Chinese provinces in 2018. Hence, this

paper aligns closely with the findings of prior research.

The drivers of GPE within China’s hog breeding industry primarily encompass well-consid-

ered policy planning and technological advancements [46, 47]. To ensure an ample pork sup-

ply, diverse regions have devised hog development strategies based on resource allocation,

Table 10. Interactive effect of input-output on spatial divergence of GPE across regions.

Regions Leading interaction factor q-statistic Interaction

Key Development Region Net Output \ Pollutant emission 0.495 Enhancement

Water input \ Pollutant emission 0.494 Enhancement

Moderate Development Region Labor input \ Net Output 0.727 Enhancement

Labor input \ Energy input 0.711 Enhancement

Potential Growth Region Piglet input \ Net Output 0.694 Enhancement

Piglet input \ Feed input 0.687 Enhancement

Constrained Development Region Energy input \ Pollutant emission 0.496 Enhancement

Feed input \Water input 0.485 Enhancement

https://doi.org/10.1371/journal.pone.0288176.t010

Table 9. Effect of input-output on spatial divergence of GPE across regions.

Regions Labor input Piglet input Feed input Water input Energy input Net Output Carbon Emission Pollutant emission

Key Development Region 0.221 0.102 0.074 0.041 0.029 0.244 0.123 0.249

Moderate Development Region 0.178 0.319 0.127 0.077 0.225 0.301 0.112 0.204

Potential Growth Region 0.248 0.394 0.101 0.252 0.159 0.205 0.070 0.111

Constrained Development Region 0.098 0.124 0.045 0.148 0.060 0.133 0.165 0.229

https://doi.org/10.1371/journal.pone.0288176.t009
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industrial foundations, environmental capacities, and developmental requirements. Under the

auspices of the sustainable green development paradigm, GPE has exhibited continuous

advancement. However, the industry faces risks associated with epidemics and market fluctua-

tions, which impede its stability. The promotion of large-scale breeding practices and

increased investments in environmental management bolster the progression of eco-friendly

breeding technologies, thereby furnishing effective safeguards against breeding risks. More-

over, these endeavors facilitate the enhancement of input-output efficiency and GPE.

Regarding temporal progression, the spatial divergence of GPE within China’s hog breeding

industry undergoes a cycle of contraction followed by expansion, characterized by significant

fluctuations and dispersion trends across the nation and its regions, thereby affirming the con-

clusions drawn in existing studies [47]. External risks, along with the industry’s limited capac-

ity to cope with such risks, profoundly influence the evolution of spatial divergence and

contribute to fluctuations in GPE [49, 50]. Unexpected occurrences like outbreaks of diseases

such as PRRS and ASF, as well as social incidents like the lean meat powder scandal, trigger

unforeseen fluctuations in GPE and its spatial divergence, exerting adverse effects on the stable

and sustainable development of the hog breeding industry. As the backbone of China’s animal

husbandry sector, the hog breeding industry’s frequent market fluctuations have garnered

widespread attention. Support for the industry’s green development, encompassing capital,

technology, and policy aspects, has spurred continuous growth in GPE amid these fluctua-

tions. Furthermore, differing developmental foundations and strategic orientations across

regions, as well as the formulation of distinct green development measures, inevitably contrib-

ute to the expansion of spatial divergence.

The spatial divergence of GPE witnessed expansion across all regions, excluding the key

development region. The driving factors behind spatial divergence vary across different regions,

predominantly influenced by resource endowment and environmental factors. While existing

studies have extensively examined the influencing factors on GPE itself, exploring the causes of

temporal fluctuations and the current state of GPE in various regions [46, 47, 49], limited atten-

tion has been devoted to the causes of spatial divergence, which this paper seeks to address. The

findings reveal distinct driving factors contributing to GPE spatial divergence in different

regions, primarily encompassing input-output factors and external influences. Among the

external factors, environmental governance and environmental carrying capacity play signifi-

cant roles as driving forces for GPE spatial divergence in key and moderate development areas,

while resource endowment serves as the primary driving factor for spatial divergence in

Table 11. Effect of external factors on the spatial divergence of GPE across regions.

Regions Environmental Investment Resource Endowment Environmental Load Bearing Scale Breeding Production Operation

Key Development Region 0.256 0.094 0.138 0.150 0.106

Moderate Development Region 0.145 0.096 0.059 0.013 0.055

Potential Growth Region 0.123 0.528 0.260 0.134 0.131

Constrained Development Region 0.071 0.165 0.045 0.094 0.029

https://doi.org/10.1371/journal.pone.0288176.t011

Table 12. Interaction effect of external factors on the spatial divergence of GPE across regions.

Regions Leading interaction factor q-statistic Interaction

Key Development Region Environmental Investment \ Environmental Load Bearing 0.515 Enhancement

Moderate Development Region Environmental Investment \ Environmental Load Bearing 0.405 Enhancement

Potential Growth Region Resource Endowment \ Environmental Load Bearing 0.714 Enhancement

Constrained Development Region Resource Endowment \ Scale Breeding 0.382 Enhancement

https://doi.org/10.1371/journal.pone.0288176.t012
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potential growth and restricted development areas. In terms of input-output factors, the impact

of feed input and carbon emissions on spatial divergence gradually diminishes, while the influ-

ence of labor input, energy input, and net output on spatial divergence progressively increases.

The disparities in various resource inputs emerge as the primary reasons for spatial divergence

in GPE among regions, with output status and pollution emissions acting as crucial constraints

on the green development of the hog breeding industry in each respective region.

In general, the spatial divergence of GPE in each region is primarily influenced by the

regional endowment of resources and environmental factors, aligning with the conclusions

drawn from previous research [12]. Hogs exhibit characteristics such as dense farming, signifi-

cant emissions, and substantial governance challenges, while divergence in resources and the

environment play a decisive role in determining the capacity and level of green development

in hog breeding. Therefore, the future endeavor lies in addressing resource and environmental

constraints, as well as bridging the gap in industrial development among regions through tech-

nological advancements and strategic planning.

To mitigate the impact of GPE’s spatial divergence on industrial development, a series of

targeted measures are imperative. Firstly, the green breeding technology level needs to be

enhanced, with particular focus on the research and development of labor-saving technology,

material-saving technology, and emission-reduction technology, to enable the automation,

mechanization, cleanliness, and efficiency of the hog breeding industry. Secondly, the key

development region should combine breeding and planting, with increased investment in

environmental management, optimization of livestock breed structure, and the development

of hog breeds adapted to regional characteristics. Thirdly, clean and standardized hog breeding

actions should be taken in the moderate development region, with acceleration in the promo-

tion of clean technologies and equipment, and standardized breeding for reduced pollutant

emissions. Fourthly, large-scale hog breeding, following the principle of "land-based breeding",

should be carried out in the potential growth region, with development of large-scale, special-

ized, intensive breeding, and cultivation of leading enterprises. Lastly, high-end boutique

actions should be carried out in the constrained development region, to extend the industrial

chain, deepen product processing, and improve breeding efficiency.

However, this paper has some limitations. Firstly, it did not examine the differences in GPE

among different scales of hog breeding, but instead included it as a driving factor in the analysis

system to investigate the impact of scaled breeding on spatial divergence. Therefore, this paper

considers the hog breeding industry as a whole and explores the spatial divergence of GPE and

its driving factors. Secondly, a variety of factors at the macro, meso, and micro levels all affect

the spatial divergence of GPE in the hog breeding industry. This paper integrates previous

research and identifies some under-explored yet crucial industry-level factors for analysis.

Future studies could select variables from multiple levels and perspectives to construct a com-

prehensive analysis framework of driving factors. Furthermore, due to data availability and

study period, the development status of the hog industry after the COVID-19 outbreak was not

fully addressed, and the epidemic’s impact on the industry requires further exploration to pro-

vide an empirical reference for the Chinese hog breeding industry to respond to external

shocks.
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