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Abstract

Drug discovery relies on predicting drug-target interaction (DTI), which is an important chal-

lenging task. The purpose of DTI is to identify the interaction between drug chemical com-

pounds and protein targets. Traditional wet lab experiments are time-consuming and

expensive, that’s why in recent years, the use of computational methods based on machine

learning has attracted the attention of many researchers. Actually, a dry lab environment

focusing more on computational methods of interaction prediction can be helpful in limiting

search space for wet lab experiments. In this paper, a novel multi-stage approach for DTI is

proposed that called SRX-DTI. In the first stage, combination of various descriptors from

protein sequences, and a FP2 fingerprint that is encoded from drug are extracted as feature

vectors. A major challenge in this application is the imbalanced data due to the lack of

known interactions, in this regard, in the second stage, the One-SVM-US technique is pro-

posed to deal with this problem. Next, the FFS-RF algorithm, a forward feature selection

algorithm, coupled with a random forest (RF) classifier is developed to maximize the predic-

tive performance. This feature selection algorithm removes irrelevant features to obtain opti-

mal features. Finally, balanced dataset with optimal features is given to the XGBoost

classifier to identify DTIs. The experimental results demonstrate that our proposed

approach SRX-DTI achieves higher performance than other existing methods in predicting

DTIs. The datasets and source code are available at: https://github.com/Khojasteh-hb/SRX-

DTI.

1. Introduction

The main phase in the drug discovery process is to identify interactions between drugs and tar-

gets (or proteins), which can be performed by in vitro experiments. Identifying drug-target

interaction plays a vital role in drug development that aims to identify new drug compounds

for known targets and find new targets for current drugs [1,2]. The expansion of the human
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genome project has provided a better diagnosis of disease, early detection of certain diseases,

and identifying drug-target interactions (DTIs) [3]. Although significant efforts have been

done in previous years, only a limited number of drug candidates have been permitted to

reach the market by the Food and Drug Administration (FDA) whereas the maximum number

of drug candidates have been rejected during clinical verifications, due to side effects or low

efficacy [4]. Moreover, the cost of a new chemistry-based drug is often 2.6 billion dollars, and

it takes typically 15 years to finish the drug development and approval procedure. This issue

has been changing into a bottleneck to identifying the targets of any candidate drug molecules

[2,5]. The experiment-based methods involve high cost, time-consuming, and small-scale limi-

tations that motivate researchers to constantly develop computational methods for the exploi-

tation of new drugs [2,6,7]. These computational methods offer a more efficient and cost-

effective approach to drug discovery, allowing researchers to explore a larger range of potential

drug candidates and predict their efficacy before investing significant resources into experi-

mental testing. On the other side, the availability of online databases in this area, such as

KEGG [8,9], DrugBank [10], PubChem [11], Davis [12], TTD [13,14], and STITCH [15] have

been influencing Machine Learning (ML) researchers to develop high throughput computa-

tional methods.

Drug discovery involves identifying molecules that can effectively target and modulate the

function of disease-related proteins. Besides developing computational methods for predicting

drug-target interactions (DTIs), studying protein-protein interactions (PPIs) has also become

a top priority for drug discovery, especially due to the SARS-CoV-2 pandemic [16–19]. Pro-

teins are responsible for various essential processes in vivo via interactions with other mole-

cules. Dysfunctional proteins are often responsible for diseases, making them crucial targets

for the drug discovery process [20,21]. Abnormal PPIs can support the development of life-

threatening diseases like cancer, further emphasizing the importance of identifying critical

proteins and their interactions. Therefore, developing computational methods for identifying

critical proteins in PPIs has become an important branch of drug discovery and treatment

development [21,22]. In summary, understanding both DTIs and PPIs is critical for successful

drug discovery. While this paper focuses on DTI prediction, it is important to consider PPI

analysis as well in order to identify potential drug targets and improve the efficacy of drug

development efforts.

The prior methods in DTI prediction can be mainly categorized into similarity-based meth-

ods and feature-based methods. In similarity-based methods, similar drugs or proteins are

considered to find similar interaction patterns. These methods use many different similarity

measures based on drug chemical similarity and target sequence similarity to identify drug-tar-

get interaction [23–25]. Feature-based methods consider drug–target interaction prediction as

a binary classification problem and different classification algorithms such as Support Vector

Machine (SVM) [26], random forest [27], rotation forest [28,29], XGBoost [30], and deep

learning [31–35] have been employed to identify new interactions.

Various machine learning (ML) methods have been applied for drug-target prediction.

Mousavian et al. utilized a support vector machine with features extracted from the Position

Specific Scoring Matrix (PSSM) of proteins and molecular substructure fingerprint of drugs

[26]. Shi et al. presented the LRF-DTIs method based on random forest, using pseudo-position

specific scoring matrix (PsePSSM) and FP2 molecular fingerprint to extract features from pro-

teins and drugs, and employing Lasso dimensionality reduction and Synthetic Minority Over-

sampling Technique (SMOTE) to handle unbalanced data [27]. Wang et al. proposed two

methods based on Rotation Forest: RFDT, which used a PSSM descriptor and drug fingerprint

as feature vectors [29], and RoFDT, which combined feature-weighted Rotation Forest

(FwRF) with protein sequence encoded as PSSM, and drug structure fingerprints [28]. These
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methods have shown promising results in predicting DTIs. Moreover, Mahmud et al. [30] pro-

posed a computational model, called iDTi-CSsmoteB for the identification of DTIs. They uti-

lized PSSM, amphiphilic pseudo amino acid composition (AM-PseAAC), and dipeptide

PseAAC descriptors to present protein and molecular substructure fingerprint (MSF) to pres-

ent drug molecule structure. Then, the oversampling SMOTE technique was applied to handle

the imbalance of datasets, and the XGBoost algorithm as a classifier to predict DTIs.

The increase in the volume and diversity of data has led to the development of various deep

learning platforms and libraries, such as DeepPurpose [32] and DeepDrug [35]. DeepPurpose

[32] takes the SMILES format of the drug and amino acid sequence of the protein as input and

transforms it into a specific format using a specific function. This format is then converted

into a vector representation to be used in subsequent steps. This library provides eight encod-

ers using different modalities of compounds, as well as utility functions to load pre-trained

models and predict new drugs and targets. Yin et al. [35] proposed another deep learning

framework called DeepDrug. Furthermore, variants of graph neural networks such as graph

convolutional networks (GCNs) [35], graph attention networks (GATs) [36,37], and gated

graph neural networks (GGNNs) [31,33,34] have been developed for DTI prediction.

We introduce SRX-DTI, a novel ML-based method for improving drug-target interaction

prediction. First, we generate various descriptors for protein sequences, including Amino Acid

Composition (AAC), Dipeptide Composition (DPC), Grouped Amino Acid Composition

(GAAC), Dipeptide Deviation from Expected Mean (DDE), Pseudo Amino Acid Composition

(PseAAC), Pseudo-Position-Specific Scoring Matrix (PsePSSM), Composition of K-spaced

Amino Acid Group Pairs (CKSAAGP), Grouped Dipeptide Composition (GDPC), and

Grouped Tripeptide Composition (GTPC). The drug is encoded as FP2 molecular fingerprint.

Second, we use the technique namely Under Sampling by One-class Support Vector Machine

(One-SVM-US) to balance the data, and the positive and negative samples are constructed

using drug-target interaction information on the extracted features. Then, we perform the

FFS-RF algorithm to select the optimal subset of features. Finally, after comparing various ML

classifiers, we choose the XGBoost classifier to predict DTIs using 5-Fold cross-validation

(CV). We evaluate the performance of our method using several metrics, including AUROC,

AUPR, ACC, SEN, SPE, and F1-score. Our method achieves high AUROC values of 0.9920,

0.9880, 0.9788, and 0.9329 for EN, GPCR, IC, and NR, respectively. These results demonstrate

that SRX-DTI outperforms existing methods for DTI prediction.

The rest of the paper is organized as follows: Materials and methods section describes the

detail of the gold standard datasets, feature extraction, data balancing, and feature selection, we

utilized in this paper. In the Results and discussion section, performance evaluation and experi-

mental results are provided. Finally, the Conclusions section summarizes the conclusions.

2. Materials and methods

In this study, we propose a novel method of drug-target interaction prediction, which is called

SRX-DTI. In the first step, drug chemical structures (SMILE format) and protein sequences

(FASTA format) are collected from DrugBank and KEGG databases using their specific access

IDs. In the next step, different feature extraction methods are applied to drug compounds and

protein sequences to create a variety of features. Drug-target pair vectors are made based on

known interactions and extracted features. Afterward, a balancing technique is utilized on

DTI vectors to deal with imbalanced datasets, and drug–target features are selected through

the FFS-RF to boost prediction performance. Finally, the XGBoost classifier is used on the bal-

anced datasets with optimal features to predict DTIs. A schematic diagram of our proposed

SRX-DTI model is shown in Fig 1.
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2.1 Drug–Target datasets

In this research, four golden standard datasets, including enzymes (EN), G-protein-coupled

receptors (GPCR), ion channel (IC), and nuclear receptors (NR) released by Yamanishi et al.

[38] are explored as benchmark datasets to evaluate the performance of the proposed SRX-DTI

method in DTI prediction. All these datasets are freely available from http://web.kuicr.kyoto-

u.ac.jp/supp/yoshi/drugtarget/. Yamanishi et al. [38] extracted information about drug-target

interactions from DrugBank [39], KEGG [8,9], BRENDA [40], and SuperTarget [41]. The

numbers of known interactions including enzymes, ion channels, GPCRs, and nuclear recep-

tors are 2926, 1476, 635, and 90 respectively. The SRX-DTI model is also evaluated on the

Davis Kinase binding affinity dataset [12]. The original Davis dataset represents 30,056 affinity

bindings interactions between 442 proteins and 68 drug molecules. Here, we filter the dataset

by removing all interactions with affinity < 7, resulting in the dataset used in this research.

Finally, 2502 interactions are considered between proteins and drug molecules in the Davis

dataset. A brief summary of these datasets is given in Table 1.

3. Feature extraction methods

In order to better identify drug-protein interactions, it seems advantageous to extract different

features from drugs and targets. This allows us to have more complete information about the

Fig 1. The workflow of the proposed model to predict drug-target interactions.

https://doi.org/10.1371/journal.pone.0288173.g001
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known interactions and increase the detection rate. A brief summary of the ten groups of fea-

tures is given in Table 2. Notice that there are two types of features. Drug related features and

target related features in nine groups A, B, C, D, E, F, G, H, and I. In the following, these fea-

tures are described, respectively. Whereas data diversity in the predictive models is very

important, various subsets of these groups have been examined to select appropriate subsets.

Based on drug and target descriptors, we constructed four subsets of features (AB, CD, EF, and

GHI), which are given in Table 3. Also, notice that the drug features are coupled with singular

target groups and these subsets. These four subsets have been selected to preserve certain prop-

erties of whole feature groups and at the same time, keep diversity in them.

3.1 Drug features

For drug compounds, different types of descriptors can be defined based on various types of

drug properties such as FP2, FP3, FP4, and MACCS [42–44]. Some studies showed that these

descriptors are molecular structure fingerprints that effectively represent the drug [27,45,46].

In this study, the FP2 format fingerprint is used to present drug compounds. This molecular

fingerprint of the drug was extracted through these steps:

Step 1: For each drug, molecular structure as mol format is downloaded from the KEGG data-

base (https://www.kegg.jp/kegg/drug/) by using its drug ID.

Step 2: The OpenBabel Software (available from http://openbabel.org/) is downloaded and

installed.

Step 3: The drug molecules with mol file format are converted into the FP2 format molecular

fingerprint using the OpenBabel software. The FP2 format molecular fingerprint is a

Table 1. Description of the gold standard datasets [12,38].

Datasets Drugs Targets Interactions

EN 445 664 2926

GPCR 223 95 635

IC 210 204 1476

NR 54 26 90

Davis 68 442 2502 (Affinity� 7)

https://doi.org/10.1371/journal.pone.0288173.t001

Table 2. List of descriptors used in this study.

Descriptor Number of Features Feature Type Feature Group

Molecular fingerprint 256 drug

Amino acid composition (AAC) 20 target A

Dipeptide composition (DPC) 400 target B

Grouped amino acid composition (GAAC) 5 target C

Dipeptide deviation from expected mean (DDE) 400 target D

Pseudo amino acid composition (PseAAC) 28 target E

Pseudo-position-specific scoring matrix (PsePSSM) 220 target F

Composition of k-spaced amino acid group pairs

(CKSAAGP)

150 target G

Grouped dipeptide composition (GDPC) 25 target H

Grouped tripeptide composition (GTPC) 125 target I

https://doi.org/10.1371/journal.pone.0288173.t002
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hexadecimal digit sequence of length 256 that is converted to a drug molecule 256-dimen-

sional vector as a decimal digit sequence between 0 and 15.

3.2 Target features

A) Amino acid composition (AAC): The amino acid composition [47] is a vector of 20

dimensions, which calculates the frequencies of all 20 natural amino acids (i.e. “ACDEF-
GHIKLMNPQRSTVWY”) as:

ft ¼
N tð Þ

N
; t 2 A;C;D; . . . ;Yf g ð1Þ

where N(t) is the number of amino acid type t, while N is the length of a protein sequence.

B) Dipeptide composition (DPC): The Dipeptide Composition [48] gives 400 descriptors

for protein sequence. It is calculated as:

D r; sð Þ ¼
Nrs

N � 1
; t 2 A;C;D; . . . ;Yf g ð2Þ

where Nrs is the number of dipeptides represented by amino acid types r and s and N denotes

the length of protein.

C) Grouped Amino Acid Composition (GAAC): In the GAAC encoding [49], the 20

amino acid types are considered five classes according to their physicochemical properties.

GAAC descriptor is the frequency of each amino acid group, which is calculated as:

f gð Þ ¼
N gð Þ

N
; t 2 g1; g2; g3; g4; g5f g ð3Þ

N gtð Þ ¼
X

N tð Þ; t 2 g ð4Þ

where N(g) is the number of amino acids in group g, N(t) is the number of amino acid type t,
and N is the length of protein sequence.

D) Dipeptide Deviation from Expected mean (DDE): The Dipeptide Deviation from

Expected mean [48] is a feature vector, which is constructed by computing three parameters,

i.e. dipeptide composition (Dc), theoretical mean (Tm), and theoretical variance (Tv). These

three parameters and the DDE are defined as follows. Dc(r, s), the dipeptide composition mea-

sure for the dipeptide ‘rs’, is given as:

Dc r; sð Þ ¼
Nrs

N � 1
; r; s 2 A;C;D; . . . ;Yf g ð5Þ

Table 3. Four subsets of features based on drug and target descriptors.

Feature Combination Number of Features

AB

(with drug features)

676

CD

(with drug features)

661

EF

(with drug features)

504

GHI

(with drug features)

556

https://doi.org/10.1371/journal.pone.0288173.t003
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where Nrs is the number of dipeptides represented by amino acid types r and s and N is the

length of protein. Tm(r, s), the theoretical mean, is given by:

Tm r; sð Þ ¼
Cr

CN
�

Cs

CN
ð6Þ

where Cr is the number of codons, coding for the first amino acid, and Cs is the number of

codons, coding for the second amino acid in the given dipeptide ‘rs’ and CN is the total number

of possible codons. Tv(r, s), the theoretical variance of the dipeptide ‘rs’, is given by:

Tv r; sð Þ ¼
Tm r; sð Þ 1 � Tm r; sð Þð Þ

N � 1
ð7Þ

Finally, DDE(r, s) is calculated as:

DDE r; sð Þ ¼
Dc r; sð Þ � Tm r; sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tv r; sð Þ

p ð8Þ

E) Pseudo Amino Acid composition (PseAAC): To avoid completely losing the sequence-

order information, the concept of PseAAC (pseudo amino acid composition) was proposed by

Chou [50]; The idea of PseAAC has been widely used in bioinformatics including proteomics

[51], system biology [52], such as predicting protein structural class [53], predicting protein

subcellular localization [54], predicting DNA-binding proteins [55] and many other applica-

tions. In contrast with AAC which includes 20 components with each reflecting the occurrence

frequency for One of the 20 native amino acids in a protein, the PseAAC contains a set of

greater than 20 discrete factors, where the first 20 represent the components of its conventional

amino acid composition while the additional factors are a series of rank-different correlation

factors along a protein chain. According to the concept of PseAAC [50], any protein sequence

formulated as a PseAAC vector given by:

x ¼ x1; x2; . . . ; x19; x20; x20þ1; . . . ; x20þl

� �T
; ðl < LÞ ð9Þ

where L is the length of protein sequence, and λ is the sequence-related factor that choosing a

different integer for, will lead to a dimension-different PseAAC. Each of the components can

be defined as follows:

xu ¼

fi
X20

i¼1
fi þ w

Xl

k¼1
tk

; 1 � u � 20

wtu� 20
X20

i¼1
fi þ w

Xl

k¼1
tk

; 20þ 1 � u � 20þ l

ð10Þ

8
>>>><

>>>>:

where w is the weight factor, and fi indicates the frequency at i − th AA in protein sequence.

The τk, the k-th tier correlation factor reflects the sequence order correlation between all the k-

th most contiguous residues as formulated by:

tk ¼
1

L � K

XL� K

i¼1

Ji;iþk;K < L ð11Þ

with

Ji;iþk ¼
1

G

XG

q� 1

Fq Riþk

� �
� Fq Rið Þ

h i2

ð12Þ

PLOS ONE Predicting drug-target interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0288173 August 3, 2023 7 / 25

https://doi.org/10.1371/journal.pone.0288173


where Fq(Ri) is the q-th function of amino acid Ri, and Γ is the total number of the functions

considered. In this research, the protein functions which are considered, includes hydropho-

bicity value, hydrophilicity value, and side chain mass of amino acid. Therefore, the total num-

ber of functions Γ is 3.

In this study, λ is set to 1 and W is set to 0.05. The output characteristic dimensions of each

target protein are 28 for the PseAAC descriptor.

F) Pseudo position specific scoring matrix (PsePSSM): To represent characteristics of the

amino acid (AA) sequence for protein sequences, the pseudo-position specific scoring matrix

(PsePSSM) features introduced by Shen et al. [56] are used. The pseudo-position specific scor-

ing matrix (PsePSSM) features encode the protein sequence’s evolution and information

which have been broadly used in bioinformatics research [16,56,57].

For each target sequence P with L amino acid residues, PSSM is used as its descriptor pro-

posed by Jones et al. [58]. The position-specific scoring matrix (PSSM) with a dimension of

L×20 can be defined as:

PPSSM ¼

M1!1 M1!2 . . . M1!20

M2!1 M2!2 . . . M2!20

..

. ..
. ..

. ..
.

Mi!1 Mi!2 . . . Mi!20

..

. ..
. ..

. ..
.

ML!1 ML!2 . . . ML!20

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð13Þ

where Mi,j indicates the score of the amino acid residue in the ith position of the protein

sequence being mutated to amino acid type j during the evolution process. Here, for simplify-

ing the formulation, it is used the numerical codes 1, 2,. . ., 20 to represent the 20 native amino

acid types according to the alphabetical order of their single character codes. It can be searched

using the PSI-BLAST [59] in the Swiss-Prot database. A positive score shows that the corre-

sponding residue is mutated more frequently than expected, and a negative score is just the

contrary.

In this work, the parameters of PSI-BLAST are set as the threshold of E-value equals 0.001,

the maximum number of iterations for multiple searches equals 3, and the rest of the parame-

ters by default. Each element in the original PSSM matrix was normalized to the interval (0, 1)

using Eq (14):

Mi!j ¼
1

1þ exp � Mi!j

� � ð14Þ

However, due to different lengths in target sequences, making the PSSM descriptor as a uni-

form representation can be helpful, one possible representation of the protein sample P is:

PPSSM ¼ M1;M2; . . . ;M20

� �
ð15Þ

where T is the transpose operator, and

Mj ¼
1

L

XL

i¼1

Mi!j j ¼ 1; 2; . . . ; 20ð Þ ð16Þ

where Mi!j is the average score of the amino acid residues in the protein P changed to the jth
amino acid residue after normalization, Mj represents the average score of the amino acid resi-

due in protein P being mutated amino acid type j during the process of evolution. However, if
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PPSSM of Eq (13) represents the protein P, all the sequence-order information would be lost. To

avoid complete loss of the sequence-order information, the concept of the pseudo amino acid

composition introduced by Chou [60], i.e. instead of Eq (11), we use position-specific scoring

matrix (PsePSSM) to represent the protein P:

PlpsePSSM ¼ M1;M2; . . . ; M20;G
1

1
;G1

2
; . . . ; G1

20
;Gl

1
;Gl

2
; . . . ; Gl

20

� �
T ð17Þ

where

Gl

j ¼
1

L � l

XL� l

i¼1

�
Mi!j � M iþlð Þ!j

�2

j ¼ 1; 2; . . . ; 20; 0 � l � Lð Þ
ð18Þ

where Gl
j represents the correlation factor of the j - th amino acid and λ is the continuous dis-

tance along the protein sequence. This means that G1
j is the relevant factor coupled along the

most continuous PSSM score on the protein chain of amino acid type j, G2
j is the second closest

PSSM score by coupling, and so on. Therefore, a protein sequence can be defined as Eq (15)

using PsePSSM and produces a 20 + 20 × λ-dimensional feature vector. In this study, λ is set to

10. The output characteristic dimension of each target protein is 220 for the PsePSSM

descriptor.

G) Composition of k-spaced amino acid group pairs (CKSAAGP): The Composition of

k-Spaced Amino Acid Group Pairs (CKSAAGP) [61] defines the frequency of amino acid

group pairs separated by any k residues (the default maximum value of k is set as 5). If k = 0,

the 0-spaced group pairs are represented as:

Ng1g1

Ntotal
;
Ng1g2

Ntotal
;
Ng1g3

Ntotal
; . . . ;

Ng5g5

Ntotal

� �

25

ð19Þ

where the value of each descriptor indicates the composition of the corresponding residue

group pair in a protein sequence. For a protein of length P and k = 0, 1, 2, 3, 4 and 5, the values

of Ntotal are P—1, P—2, P—3, P—4, P—5 and P—6 respectively.

H) Grouped dipeptide composition (GDPC): The Grouped Di-Peptide Composition

encoding [61] is a vector of 25 dimensions, which is another variation of the DPC descriptor.

It is defined as:

f r; sð Þ ¼
Nrs

N � 1
; r; s 2 g1; g2; g3; g4; g5f g ð20Þ

where Nrs is the number of dipeptides represented by amino acid types r and s and N denotes

the length of a protein.

I) Grouped tripeptide composition (GTPC): The Grouped Tri-Peptide Composition

encoding [61] is also a variation of the TPC descriptor, which generates a vector of 125 dimen-

sions, defined as:

f r; sð Þ ¼
Nrst

N � 2
; r; s; t 2 g1; g2; g3; g4; g5f g ð21Þ

where Nrst is the number of tripeptides represented by amino acid types r, s and t. N denotes

the length of a protein.
Algorithm 1. UnderSampling by One-class SVM (One-SVM-US).
1: nminority  number of minority class samples
2: nmajority  number of majority class samples
3: df [1. . .. nmajority]  Majority class Samples
4: df [1. . .. nminority]  Minority class Samples
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5: Model  OneClassSVM(df [1. . . .nmajority]) // One-class SVM with RBF
kernel and
6: // γ = 1/nmajority
7: scores  � Model.makeDecision(df [1. . . .nmajority])
8: Q  � maxscores decisionFunction(scores)
9: outlierScores  � Q-scores
10: sortedScores  � sort(outlierScores)
11: SelectedIndices = sortedScores [1. . . .nminority]
12: X1 = {}
13: for each index 2 selectedIndices do
14: X1 = X1 [ df [index]
15: endfor
16: FinalData = X1 [ df [1. . . .nminority]

4. Data balancing technique

The experiment datasets that we used in this study were highly imbalanced. Imbalanced data-

sets can present a challenge for many machine learning algorithms, as they may prioritize the

majority class and ignore the minority class, leading to poor performance on the minority

class. Different techniques have been utilized to balance the imbalanced dataset, such as ran-

dom undersampling [26,62,63], cluster undersampling [64,65], and SMOTE technique

[27,30]. To address the issue of imbalanced data in our study, we developed a new undersam-

pling algorithm called One-SVM-US, which uses One-class Support Vector Machine (SVM)

to deal with imbalanced data. The steps of the One-SVM-US algorithm were implemented as

Algorithm 1. In the first step, the known DTIs are considered positive samples. For enzymes,

ion channels, GPCRs, nuclear receptors, and the Davis dataset, the number of positives is

2926, 1476, 635, 90, and 2502, respectively. In the next step, the algorithm considers all of the

possible interactions in five datasets as negative samples except the ones that have been known

as positive. By performing the One-SVM-US algorithm, it would result in a balanced dataset

with equal numbers of positive and negative samples.

A One-Class Support Vector Machine (One-class SVM) [66], is a semi-supervised global

anomaly detector. This algorithm needs a training set that contains only one class. The One-

SVM-US technique based on One-class SVM considers all possible combinations of drug and

target by discarding those that are positive samples. This algorithm uses a hypersphere to

encompass all of the instances instead of using a hyperplane to separate two classes of samples.

We apply the RBF kernel for SVM. The setting for the parameter γ was investigated, which

was the simple heuristic γ = 1/no. of data points. To compute the outlier score, first, the maxi-

mum value of the decision function is obtained by:

Q ¼ max
x

decision function x0ð Þ ð22Þ

where x refers to the vector of scores. Then, we obtained the outlier score as follows:

outlier scores ¼ Q � decision function xð Þ ð23Þ

Then, the outlier scores are sorted in ascending and the nminority samples are selected from

the sorted list. The final data is constructed from the combination of the minority class from

the original experimental dataset and the majority class chosen by the proposed method. Even

though, we would like to mention that Algorithm 1 performs effectively to make balanced

datasets.
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5. Feature selection technique

Considering that reducing the number of input features can lead to both reducing the compu-

tational cost of modeling and, in some cases, improving the performance of the model. We

develop a feature selection algorithm with RF, called FFS-RF. This algorithm was developed

and implemented based on the forward feature selection (FFS) technique [67] that coupled

with RF to obtain optimal features in DTI. The RF approach [68] is an ensemble method that

combines a large number of individual binary decision trees. The performance of the RF

model in feature selection was evaluated by a 5-fold CV to construct an effective prediction

framework. Forward feature selection is an iterative process, which begins with an empty set of

features. After each iteration, it keeps adding on a feature and evaluates the performance to

check whether it is improving the performance or not. The FFS-RF technique continues until

the addition of a new feature does not improve the performance of the model, as outlined in

Algorithm 2 step by step.
Algorithm 2. Forward Feature Selection algorithm with RF (FFS-RF).
1: FS0 = ;
2: F0 = {f1, f2, . . ., fn}
3: i = 0
4: opt = 0
5: iter = 0
6: while (i < n)
7: k = size (F(i))
8: max = 0
9: feature = 0
10: for j from 1 to k
11: score = eval (F(i)j)
12: if (score > max)
13: max = score
14: feature = F(i)j
15: endif
16: endfor
17: if (max > opt)
18: opt = max
19: iter = i
20: endif
21: FS(i+1) = F(i) + feature
22: F(i+1) = F(i) − feature
23: i++
24: endwhile

6. Results and discussion

In this section, we explain the experimental results of our proposed method in DTI prediction.

We implemented all the phases, i.e., features extraction, data balancing, and classifiers of the

proposed model in Python language (Python 3.10 version) using the Scikit-learn library. Some

of the target descriptors were calculated by the iFeature package [61] and the rest of them were

implemented in Python language. OpenBabel Software was used to extract fingerprint descrip-

tors from drugs. All of the implantations were performed on a computer with a processor 2.50

GHz Intel Xeon Gold 5–2670 CPU and 64 GB RAM.

6.1 Performance evaluation

Most of the methods in DTI prediction [5,6,26,30] have utilized 5-fold cross validation (CV) to

assess the power of the model to generalize. We also use the 5-fold CV to estimate the skill of
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the SRX-DTI model on new data and make a fair comparison with the other state-of-the-art

methods. The drug–target datasets were split into 5 subsets where each subset was used as a

testing set. In the first iteration, the first subset is used to test the model and the rest are used to

train the model. In the second iteration, 2nd subset is used as the testing set while the rest

serves as the training set. This process is repeated until each fold of the 5 folds is used as the

testing set. Then, the performance is reported as the average of the five validation results for

drug-target datasets.

In this study, we perform three types of analyses. First, the importance of feature extraction

is discussed. Secondly, we investigate the impact of our balancing technique (One-SVM-US)

versus the random undersampling technique on CV results. Finally, the effectiveness of the

feature selection method is analyzed.

We used the following evaluation metrics to assess the performance of the proposed model:

accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1 Score.

ACC ¼
TP þ TN

TP þ FP þ TN þ FN
ð24Þ

SEN ¼
TP

TPþ FN
ð25Þ

SPE ¼
TN

TN þ FP
ð26Þ

F1 ¼
2TP

2TPþ FPþ FN
ð27Þ

where based on four metrics, namely true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN) are to present an overview of performance. Moreover, we used

AUROC (Area Under Receiver Operating Characteristic curve) to show the power of discrimi-

nation of the model between the positive class and the negative class. The AUPR (Area Under

Precision Recall curve) was also used which would be more informative when there is a high

imbalance in the data [69].

6.2 The effectiveness of feature groups

We constructed nine different feature groups namely A, B, C, D, E, F, G, H, and I, which all

were coupled with drug features to assess the effects of the different sets of features on the per-

formance of the different classifiers including SVM, RF, MLP, and XGBoost. The feature

groups have already been reported in Table 2. We also created some subsets from the groups

(AB, CD, EF, and GHI), which are given in Table 3. The selection of the best combination can

be considered an optimization problem. Here, we combine feature descriptors based on non-

monotonic information and the performance results we get for different classifiers in single

feature groups.

We performed experiments to test the effectiveness of the feature groups. In the experi-

ments, we changed the feature groups and applied the random undersampling technique to

balance datasets. Statistics of the prediction performance for different classifier models are

given in Tables 4 and 5.

Focus on the EN dataset, we compared the DTI prediction performance of four different

classifiers on nine feature groups and four subsets of them. We also highlighted several possi-

ble characteristics that could be considered to select the best classifier in DTI prediction. The
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results indicated that XGBoost is competitive in predicting interactions. We also made some

subsets from single groups namely: AB, CD, EF, and GHI. Two classifiers include MLP and

XGBoost had close performance and outperforms other ML methods to predict DTIs.

6.3 The influence of the data balancing techniques

Imbalanced data classification is a significant challenge for predictive modeling. Most of the

machine learning algorithms used for classification were designed around the assumption of

an equal number of samples for each class. Imbalanced data lead to biased prediction results in

Table 4. Performance of Support Vector Machine, Random Forest, Multilayer perception, and XGBoost classifiers on the gold standard datasets using different fea-

ture group combinations and random undersampling technique.

Dataset Feature Combination Classifier AUROC AUPR ACC SEN SPE F1

EN A SVM 0.8687 0.8642 0.7771 0.7457 0.8085 0.7700

RF 0.8050 0.8042 0.7242 0.6382 0.8103 0.6984

MLP 0.8939 0.8933 0.8335 0.8635 0.8034 0.8384

XGBoost 0.9253 0.9265 0.8565 0.8447 0.8684 0.8549

B SVM 0.9135 0.9019 0.8429 0.8396 0.8462 0.8425

RF 0.8109 0.8277 0.7378 0.6365 0.8393 0.7085

MLP 0.9391 0.9378 0.8702 0.8976 0.8427 0.8738

XGBoost 0.9271 0.9254 0.8531 0.8601 0.8462 0.8542

C SVM 0.8457 0.8521 0.7763 0.7457 0.8068 0.7694

RF 0.7832 0.7840 0.7037 0.5939 0.8137 0.6673

MLP 0.8573 0.8496 0.7925 0.8242 0.7607 0.7990

XGBoost 0.9071 0.9064 0.8386 0.8362 0.8410 0.8383

D SVM 0.9164 0.9042 0.8454 0.8447 0.8462 0.8454

RF 0.7761 0.7949 0.7054 0.6109 0.8000 0.6748

MLP 0.9385 0.9331 0.8702 0.9027 0.8376 0.8744

XGBoost 0.9307 0.9326 0.8642 0.8584 0.8701 0.8635

E SVM 0.8588 0.8621 0.7788 0.7474 0.8103 0.7718

RF 0.8004 0.8070 0.7208 0.6416 0.8000 0.6969

MLP 0.8970 0.8954 0.8412 0.8567 0.8256 0.8437

XGBoost 0.9327 0.9348 0.8634 0.8652 0.8615 0.8637

F SVM 0.8777 0.8708 0.8155 0.7628 0.8684 0.8054

RF 0.7972 0.8052 0.7233 0.5751 0.8718 0.6754

MLP 0.9156 0.9083 0.8352 0.9044 0.7658 0.8460

XGBoost 0.9368 0.9356 0.8745 0.8737 0.8752 0.8745

G SVM 0.8946 0.8972 0.8155 0.7986 0.8325 0.8125

RF 0.8096 0.8176 0.7319 0.6672 0.7966 0.7135

MLP 0.9254 0.9202 0.8736 0.8754 0.8718 0.8739

XGBoost 0.9317 0.9322 0.8599 0.8652 0.8547 0.8608

H SVM 0.8645 0.8741 0.7797 0.7457 0.8137 0.7721

RF 0.8020 0.7990 0.7293 0.6126 0.8462 0.6937

MLP 0.9007 0.8999 0.8215 0.8379 0.8051 0.8245

XGBoost 0.9233 0.9216 0.8488 0.8447 0.8530 0.8483

I SVM 0.8931 0.8953 0.8079 0.7833 0.8325 0.8031

RF 0.8132 0.8112 0.7455 0.6485 0.8427 0.7183

MLP 0.9203 0.9092 0.8676 0.8805 0.8547 0.8694

XGBoost 0.9235 0.9234 0.8497 0.8464 0.8530 0.8493

https://doi.org/10.1371/journal.pone.0288173.t004
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ML problems. The drug–target datasets are highly imbalanced. The number of known DTI

(positive samples) is significantly smaller than that of unknown DTI (negative samples), which

causes to achieve poor performance results of the prediction model. To make balancing in

datasets, we used the One-SVM-US technique to build a powerful model. Here, we make

experiments to compare the One-SVM-US technique and random undersampling technique

to balance datasets in the model. The experimental results are shown in Tables 6–8, which

reveal the efficiency of the One-SVM-US algorithm.

We observe from Table 6 that the model performance on balanced with Random under-

sampling and balanced with One-SVM-US in group AB. The results show a significant prefer-

ence for the AUROC, AUPR, ACC, SEN, SPE, and F1 evaluation metrics by applying One-

SVM-US. For the EN dataset, the model achieved AUROC values of 0.9920 in One-SVM-US,

and 0.8753 in Random undersampling. In the case of the GPCR dataset, the model obtained

AUROC values of 0.9880 and 0.7866, in One-SVM-US and Random undersampling, respec-

tively. For the IC dataset, the model yielded an AUROC of 0.9788 in One-SVM-US and 0.8513

in Random undersampling. Similarly, AUROC values of the model using NR data are 0.9329

in One-SVM-US and 0.6496 in Random undersampling.

Table 5. Performance of Support Vector Machine, Random Forest, Multilayer perception, and XGBoost classifiers on the gold standard datasets using different

subsets of feature groups combinations and random undersampling technique.

Dataset Feature Combination Classifier AUROC AUPR ACC SEN SPE F1

EN AB SVM 0.9133 0.9023 0.8429 0.8396 0.8462 0.8425

RF 0.8092 0.8145 0.7404 0.6280 0.8530 0.7077

MLP 0.9395 0.9373 0.8779 0.8857 0.8701 0.8789

XGBoost 0.9277 0.9290 0.8599 0.8618 0.8581 0.8603

CD SVM 0.9162 0.9039 0.8454 0.8447 0.8462 0.8454

RF 0.7746 0.7881 0.7096 0.6297 0.7897 0.6846

MLP 0.9406 0.9387 0.8719 0.8908 0.8530 0.8744

XGBoost 0.9328 0.9379 0.8659 0.8652 0.8667 0.8659

EF SVM 0.8855 0.8798 0.8155 0.7628 0.8684 0.8054

RF 0.7997 0.8115 0.7190 0.5597 0.8786 0.6660

MLP 0.9308 0.9315 0.8591 0.8925 0.8256 0.8637

XGBoost 0.9397 0.9411 0.8779 0.8857 0.8701 0.8789

GHI SVM 0.9051 0.9020 0.8318 0.8157 0.8479 0.8291

RF 0.8201 0.8351 0.7592 0.7321 0.7863 0.7526

MLP 0.9278 0.9189 0.8668 0.8805 0.8530 0.8687

XGBoost 0.9288 0.9316 0.8531 0.8618 0.8444 0.8545

https://doi.org/10.1371/journal.pone.0288173.t005

Table 6. Comparison of prediction results on balanced with Random undersampling and balanced with One-SVM-US in group AB.

Dataset Sampling method AUROC AUPR ACC SEN SPE F1

EN Random undersampling 0.8753 0.8625 0.8006 0.8491 0.7887 0.8196

One-SVM-US 0.9920 0.9975 0.9901 0.9947 0.9967 0.9956

GPCR Random undersampling 0.7866 0.7728 0.7354 0.7907 0.7360 0.7727

One-SVM-US 0.9880 0.9940 0.9732 0.9658 1.0000 0.9826

IC Random undersampling 0.8513 0.8289 0.7873 0.8447 0.7730 0.8233

One-SVM-US 0.9788 0.9863 0.9543 0.9429 0.9743 0.9565

NR Random undersampling 0.6496 0.6115 0.6556 0.9231 0.7826 0.8000

One-SVM-US 0.9329 0.9407 0.8611 1.0000 0.8889 0.9474

https://doi.org/10.1371/journal.pone.0288173.t006
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There is a similar pattern in group EF, which is shown in Table 7. In the case of EN, the pre-

diction results of ACC, SEN, SPE, and F1 on balanced data with One-SVM-US are 0.9901,

0.9947, 0.9967, and 0.9956, which are 0.1895, 0.1456, 0.208, and 0.176 higher than those bal-

anced with Random undersampling, respectively. These prediction results show that the One-

SVM-US technique obtains a comparatively advantageous performance. In the case of GPCR,

IC, and NR datasets, the ACC, SEN, SPE, and F1 results for balanced data with One-SVM-US

and balanced with Random undersampling are in Table 6. The values of these metrics are also

shown in Table 7 for group EF. To better analyze the proposed methods, the ROC curves of

two data balancing techniques are shown in Fig 2a–2d. These curves demonstrate discrimina-

tive ability in group AB, the ROC curve using the One-SVM-US covers the largest area, which

is higher than the Random undersampling. The ROC curves of group EF are also shown in Fig

3a–3d, which also cover the larger area in the One-SVM-US technique in comparison with the

Random undersampling technique.

We can see from Table 8 that the model performance on balanced with Random under-

sampling and balanced with One-SVM-US on the Davis dataset. It can be observed that the

proposed One-SVM-US exhibits a similar performance in all datasets. For the Davis dataset,

the model AUROC values are 0.9786, 0.9839, 0.9756, and 0.9696 in groups AB, CD, EF, and

GHI, respectively. For each feature group, the One-SVM-US technique performs better in

terms of AUPR 0.9848, 0.9896, 0.9835, and 0.9781 for groups AB, CD, EF, and GHI, respec-

tively. These results demonstrate that the balanced dataset using One-SVM-US significantly

outperforms the balanced dataset using Random undersampling in the case of ROC curves.

The accuracy of the XGBoost classifier has been improved after utilizing the One-SVM-US.

For all five datasets on the SEN, SPE, and F1 metrics, the results are significantly better in

Table 7. Comparison of prediction results on balanced with Random undersampling and balanced with One-SVM-US in group EF.

Dataset Sampling method AUROC AUPR ACC SEN SPE F1

EN Random undersampling 0.9024 0.9008 0.8271 0.8737 0.8286 0.8506

One-SVM-US 0.9910 0.9964 0.9766 0.9647 0.9934 0.9785

GPCR Random undersampling 0.8236 0.7762 0.7740 0.8527 0.6800 0.7885

One-SVM-US 0.9881 0.9928 0.9638 0.9487 0.9562 0.9487

IC Random undersampling 0.8765 0.8527 0.8150 0.8479 0.8191 0.8424

One-SVM-US 0.9796 0.9880 0.9580 0.9643 0.9807 0.9712

NR Random undersampling 0.7781 0.7029 0.7278 0.9231 0.7391 0.7742

One-SVM-US 0.8837 0.9033 0.8000 1.0000 0.7778 0.9000

https://doi.org/10.1371/journal.pone.0288173.t007

Table 8. Comparison of prediction results on balanced with Random undersampling and balanced with One-SVM-US on Davis dataset.

Groups Sampling method AUROC AUPR ACC SEN SPE F1

AB Random undersampling 0.8566 0.8287 0.7932 0.8182 0.8058 0.8182

One-SVM-US 0.9786 0.9848 0.9384 0.9256 0.9555 0.9382

CD Random undersampling 0.8812 0.8800 0.8054 0.8337 0.8161 0.8312

One-SVM-US 0.9839 0.9896 0.9474 0.9483 0.9768 0.9613

EF Random undersampling 0.8898 0.8847 0.8098 0.8085 0.8079 0.8132

One-SVM-US 0.9756 0.9835 0.9329 0.9153 0.9478 0.9287

GHI Random undersampling 0.8703 0.8543 0.8000 0.8298 0.8058 0.8250

One-SVM-US 0.9696 0.9781 0.9207 0.8967 0.9807 0.9353

https://doi.org/10.1371/journal.pone.0288173.t008
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One-SVM-US. Ultimately, One-SVM-US is the efficient method to make balanced datasets

to reduce bias and boost the model’s performance.

6.4 The effectiveness of feature selection technique

Feature selection is extremely important in ML because it primarily serves as a fundamental

technique to direct the use of informative features for a given ML algorithm. Feature selection

techniques are especially indispensable in scenarios with many features, which is known as the

curse of dimensionality. The solution is to decrease the dimensionality of the feature space via

a feature selection method.

A feature selection technique by selecting an optimal subset of features reduces the

computational cost. Various feature selection techniques have been utilized in DTI predic-

tion [1,6,64]. The wrapper-based methods refer to a category of supervised feature selec-

tion methods that uses a model to score different subsets of features to finally select the

best one. Forward selection is one of the Wrapper based methods, which starts from a null

model with zero features and adds them greedily one at a time to maximize the model

performance.

Fig 2. ROC curves of the feature group AB using Random undersampling and One-SVM-US techniques on the datasets: (a) EN, (b) GPCR, (c) IC,

and (d) NR.

https://doi.org/10.1371/journal.pone.0288173.g002
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Here, we use the FFS-RF algorithm to find the optimal subset and maximize performance.

Table 9 indicates the performance results of FFS-RF on the EN dataset in groups AB, CD, EF,

and GHI. Table 9 shows ACC, AUROC, and AUPR metrics of the FFS-RF method which

reduces the input features to the model. The worth of the FFS-RF is clearly observable; For the

EN dataset, we just use 8 features instead of 676 features in group AB, 10 features instead of

Fig 3. ROC curves of the feature group EF using Random undersampling and One-SVM-US techniques on the datasets: (a) EN, (b) GPCR, (c) IC,

and (d) NR.

https://doi.org/10.1371/journal.pone.0288173.g003

Table 9. The performance results of FFS-RF on the EN dataset.

Feature Combination Number of Features Number of Selected Features ACC AUROC AUPR

AB

(with drug features)

676 8 1.0000 0.9910 0.9968

CD

(with drug features)

661 10 0.9897 0.9903 0.9958

EF

(with drug features)

504 7 0.9874 0.9903 0.9954

GHI

(with drug features)

556 10 0.9965 0.9923 0.9976

https://doi.org/10.1371/journal.pone.0288173.t009
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661 features in group CD, 7 features instead of 504 features in group EF, and 10 features

instead of 556 features in group GHI. Moreover, the ACC of the FFS-RF method is 100%, 98%,

98%, and 99% in groups AB, CD, EF, and GHI, respectively. The AUROC and AUPR scores

are approximately 0.99 in all four groups. In the case of the EN dataset, the feature groups AB

and EF had the best and the worst model performance. So, we performed the FFS-RF method

on the remaining datasets, i.e. GPCR, IC, and NR for these feature groups. The ACC, AUROC,

and AUPR metrics are shown in Tables 10 and 11 for groups AB and EF, respectively. In

group AB, the best feature dimensions selected by FFS-RF are 8, 10, 7, and 10, respectively,

which ACC scores are 100%, 99%, 96%, and 97%. The AUROC values of group AB for FFS-RF

are 0.9910, 0.9854, 0.9715, and 0.9217. In this group, 0.9968, 0.9924, 0.9769, and 0.9282 are

obtained for the AUPR metric. We can see a similar pattern for group EF. Thus, FFS-RF is an

effective method to avoid overfitting, improve prediction performance and reduce experimen-

tal cost.

6.5 Selection of predictor model

In this study, we focus on four classifiers: SVM, Random Forest (RF), MLP, and XGBoost. To

evaluate these classifier models, we apply Cross Validation (CV) technique to select an appro-

priate predictor model for our problem. The results of the different predictive models are

shown for the EN dataset in group AB in Table 12. To make an obvious comparison of predic-

tion effects, the results are also demonstrated as a bar graph for the EN dataset in Fig 4. Com-

parison among the prediction results of the EN dataset from Table 12 reveals that the highest

results of AUROC, AUPR, ACC, SEN, SPE, and F1 obtained by the XGBoost algorithm are

0.9920, 0.9975, 0.9901, 0.9947, 0.9967, and 0.9956, respectively. The overall prediction ACC of

SVM, RF, MLP, and XGBoost is 0.8698, 0.9863, 0.8956, and 0.9901, respectively. The XGBoost

ACC is 12%, 0.38%, and 9.45% higher than that obtained by SVM, RF, and MLP classifiers.

The prediction performance of the XGBoost classifier is premier than the other three

classifiers.

To make a better evaluation, we compare the DTI prediction performance of classifier

models using the benchmark Yamanishi and Davis datasets. For each classifier, we use the bal-

anced datasets with optimal features to predict DTIs. Table 13 provides a comparison of the

XGBoost for SRX-DTI, as the best performing method, and RF, as the second-best performing

Table 10. The performance results of FFS-RF on the datasets in group AB.

Feature Combination Dataset Number of Selected Features ACC AUROC AUPR

AB

(with drug features)

EN 8 1.0000 0.9910 0.9968

GPCR 4 0.9921 0.9854 0.9924

IC 9 0.9695 0.9715 0.9769

NR 4 0.9722 0.9217 0.9282

https://doi.org/10.1371/journal.pone.0288173.t010

Table 11. The performance results of FFS-RF on the datasets in group EF.

Feature Combination Dataset Number of Selected Features ACC AUROC AUPR

EF

(with drug features)

EN 7 0.9874 0.9903 0.9954

GPCR 10 0.9737 0.9844 0.9893

IC 9 0.9762 0.9647 0.9762

NR 8 0.9444 0.8993 0.9296

https://doi.org/10.1371/journal.pone.0288173.t011
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method under the 5-Fold CV on four datasets in groups AB and EF. Table 14 also reports the

AUROC values under the 5-Fold CV on the Davis dataset. Average AUROC (Mean) values

and standard deviation (Std) are also given in Tables 13 and 14 for each classifier model. These

results indicate that the XGBoost outperforms other methods in different folds. Therefore, we

select the XGBoost classifier as a classification algorithm to predict DTIs. Most of the classifiers

pose low standard deviations which reveals our proposed model is a noise-resistant ML

method and it does not depend on the classifier and dataset very much. Eventually, we can see

the acceptable performance in most of the classifiers.

6.6 Comparison with other methods

During the last decade, different machine learning frameworks have been proposed to predict

DTIs. Some of the proposed methods use feature selection techniques and some of those do

not use feature selection. Most of the studies (as well as our approach) have used the dataset

proposed by Yamanishi et al. [38] to assess the prediction ability of the proposed methods. To

evaluate the effectiveness of our method, we consider six drug–target methods under the

AUROC values for the same dataset under the 5-fold CV. In the following, we compare the

AUROC of the SRX-DTI model with the other state-of-the-art methods proposed by Mousa-

vian et al. [26], Li et al. [70], Meng et al. [71], Wang et al. [29], Mahmud et al. [64], Wang et al.

[28], and Mahmud et al. [6]. The AUROCs generated by these models are listed in Table 15.

As seen in the table, the AUROC of the proposed model is superior in comparison with the

AUROC of other methods in all the datasets.

Average AUROC values of SRX-DTI on EN, GPCR, IC, and NR are 0.9920, 0.9880, 0.9788,

and 0.9329, respectively. It should be considered that most of the existing models are without a

Table 12. The comparison of different ML algorithms on EN dataset in group AB.s.

Classifier AUROC AUPR ACC SEN SPE F1

SVM 0.9417 0.9544 0.8698 0.7898 0.9620 0.8629

RF 0.9910 0.9968 0.9863 0.9965 0.9967 0.9965

MLP 0.9586 0.9661 0.8956 0.8534 0.9488 0.8944

XGBoost 0.9920 0.9975 0.9901 0.9947 0.9967 0.9956

https://doi.org/10.1371/journal.pone.0288173.t012

Fig 4. Performance comparison of different feature selection techniques on EN dataset in group AB.

https://doi.org/10.1371/journal.pone.0288173.g004
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feature selection phase [26,28,29,70,71]. Training the model with more features can lead to

overfitting and reduce the power of generalization in the model. Whereas we can achieve the

AUROC of 0.9920 in group AB by using just eight features instead of using all 676 features.

This is significantly valuable in terms of computational cost. Moreover, our balancing method

superlatively addresses the imbalance problem in the datasets, and feature selection techniques

select an optimal subset of features for five datasets. Ultimately, the XGBoost classifier is so scal-

able that can perform better in comparison with other classifiers for identifying the new DTIs.

7. Conclusion

The identification of drug-target interactions through experimentation is a costly and time-

consuming process. Therefore, the development of computational methods for identifying

Table 13. Comparison of AUROC values under the 5-Fold cross-validation on four datasets in groups AB and EF.

Feature groups

Dataset AB EF

EN Fold SVM RF MLP XGBOOST SVM RF MLP XGBOOST

1 0.9363 0.9921 0.9562 0.9949 0.9343 0.9925 0.9160 0.9952

2 0.9563 0.9945 0.9655 0.9959 0.9177 0.9948 0.9180 0.9961

3 0.9387 0.9978 0.9562 0.9978 0.9162 0.9975 0.9169 0.9972

4 0.9510 0.9983 0.9633 0.9987 0.9284 0.9933 0.9241 0.9953

5 0.9395 0.9950 0.9658 0.9958 0.9173 0.9938 0.9132 0.9936

Mean 0.9417 0.9910 0.9586 0.9920 0.9211 0.9903 0.9158 0.9910

Std 0.0078 0.0023 0.0043 0.0014 0.0073 0.0017 0.0036 0.0012

GPCR Fold SVM RF MLP XGBOOST SVM RF MLP XGBOOST

1 0.8122 0.9794 0.8284 0.9880 0.8700 0.9873 0.8145 0.9913

2 0.7483 0.9977 0.7683 0.9990 0.8960 0.9894 0.8741 0.9923

3 0.8342 0.9964 0.8301 0.9978 0.8688 0.9844 0.8254 0.9918

4 0.7703 0.9855 0.7808 0.9896 0.8864 0.9924 0.8568 0.9944

5 0.7825 0.9902 0.8000 0.9891 0.8850 0.9864 0.8452 0.9914

Mean 0.7883 0.9854 0.8003 0.9880 0.8795 0.9844 0.8418 0.9881

Std 0.0304 0.0068 0.0248 0.0047 0.0104 0.0027 0.0214 0.0011

IC Fold SVM RF MLP XGBOOST SVM RF MLP XGBOOST

1 0.8742 0.9645 0.8670 0.9822 0.8056 0.9736 0.8063 0.9862

2 0.8842 0.9857 0.8537 0.9852 0.8012 0.9726 0.8197 0.9868

3 0.8698 0.9626 0.8364 0.9730 0.7924 0.9674 0.8320 0.9859

4 0.8818 0.9731 0.8559 0.9843 0.8033 0.9723 0.8170 0.9827

5 0.8820 0.9826 0.8594 0.9883 0.8127 0.9579 0.7935 0.9781

Mean 0.8762 0.9715 0.8528 0.9788 0.8008 0.9647 0.8118 0.9796

Std 0.0055 0.0093 0.0101 0.0052 0.0066 0.0058 0.0130 0.0032

NR Fold SVM RF MLP XGBOOST SVM RF MLP XGBOOST

1 0.8210 0.9321 0.8210 0.9506 0.8981 0.9105 0.8858 0.8673

2 0.8204 0.9195 0.7616 0.9288 0.8731 0.9009 0.7678 0.9319

3 0.7608 0.9352 0.8164 0.9506 0.8812 0.9398 0.7670 0.9475

4 0.8642 0.9583 0.8549 0.9738 0.8457 0.8765 0.8179 0.8364

5 0.7817 0.8777 0.7539 0.8777 0.8638 0.8854 0.7678 0.8483

Mean 0.8090 0.9217 0.8007 0.9329 0.8695 0.8993 0.8000 0.8837

Std 0.0357 0.0266 0.0383 0.0326 0.0175 0.0220 0.0466 0.0450

https://doi.org/10.1371/journal.pone.0288173.t013
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interactions between drugs and target proteins has become a critical step in reducing the

search space for laboratory experiments. In this work, we proposed a novel framework for pre-

dicting drug-target interactions. Our approach is unique in that we use a variety of descriptors

for target proteins. We implement the One-SVM-US technique to address unbalanced data.

The most important advantage of the proposed method is developing the FFS-RF algorithm to

find an optimal subset of features to reduce computational cost and improve prediction per-

formance. We also compare the performance of four classifiers on balanced datasets with opti-

mal features, ultimately selecting the XGBoost classifier to predict DTIs in our model. We then

employ the XGBoost classifier to predict DTIs on five benchmark datasets. Our SRX-DTI

model achieved good prediction results, which showed that the proposed method outperforms

other methods to predict DTIs.

The only limitation of this work can be the necessity of feature engineering in comparison

with deep learning methods. However, the feature selection technique can also be considered a

knowledge discovery tool that provides an understanding of the problem through the analysis

of the most relevant features. On the other side, deep neural networks (DNNs) require large

amounts of data to learn parameters, but our proposed model work on small data. This

research showed that our robust framework is capable of capturing more potent and

Table 14. Comparison of AUROC values under the 5-Fold cross-validation on Davis dataset.

Feature groups

Dataset AB CD

Davis Fold SVM RF MLP XGBOOST SVM RF MLP XGBOOST

1 0.8926 0.9750 0.8715 0.9790 0.9327 0.9807 0.9019 0.9883

2 0.9055 0.9752 0.8630 0.9798 0.9514 0.9875 0.9289 0.9877

3 0.8893 0.9815 0.8599 0.9846 0.9185 0.9794 0.8853 0.9868

4 0.9089 0.9832 0.8909 0.9852 0.9330 0.9861 0.9057 0.9891

5 0.9005 0.9839 0.8941 0.9813 0.9295 0.9843 0.9206 0.9874

Mean 0.8976 0.9769 0.8742 0.9786 0.9319 0.9797 0.9070 0.9839

Std 0.0074 0.0039 0.0142 0.0025 0.0106 0.0031 0.0152 0.0008

EF GHI

Fold SVM RF MLP XGBOOST SVM RF MLP XGBOOST

1 0.9095 0.9626 0.9054 0.9789 0.8818 0.9581 0.8671 0.9684

2 0.9052 0.9698 0.9129 0.9776 0.8926 0.9683 0.8878 0.9741

3 0.8988 0.9703 0.9030 0.9833 0.9008 0.9686 0.8809 0.9715

4 0.9002 0.9694 0.8985 0.9814 0.8987 0.9677 0.8861 0.9752

5 0.8919 0.9635 0.8902 0.9766 0.9096 0.9715 0.8983 0.9776

Mean 0.8986 0.9643 0.8995 0.9756 0.8948 0.9636 0.8830 0.9696

Std 0.0060 0.0034 0.0075 0.0025 0.0093 0.0046 0.0102 0.0032

https://doi.org/10.1371/journal.pone.0288173.t014

Table 15. Comparison of proposed model with existing methods on four datasets.

Dataset Mousavian et al. [26] Li et al. [70] Meng et al. [71] Wang et al. [29] Mahmud et al. [64] Wang et al. [28] Mahmud et al. [6] Proposed method

EN 0.9480 0.9288 0.9773 0.9150 0.9808 0.9172 0.9656 0.9920

IC 0.8890 0.9171 0.9312 0.8900 0.9727 0.8827 0.9612 0.9880

GPCR 0.8720 0.8856 0.8677 0.8450 0.9390 0.8557 0.9249 0.9788

NR 0.8690 0.9300 0.8778 0.7230 0.9198 0.7531 0.8652 0.9329

https://doi.org/10.1371/journal.pone.0288173.t015
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informative features among massive features. Furthermore, the proposed framework poses

resistance against noise and it is a data-independent machine learning method.
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