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Abstract

In this paper some important qualitative dynamical properties of generalized ribosome flow

models are studied. Ribosome flow models known from the literature are generalized by

allowing an arbitrary directed network structure between compartments, and by assuming

general time-varying rate functions corresponding to the transitions. Persistence of the

dynamics is shown using the chemical reaction network (CRN) representation of the system

where the state variables correspond to ribosome density and the amount of free space in

the compartments. The L1 contractivity of solutions is also proved in the case of periodic

reaction rates having the same period. Further we prove the stability of different compart-

mental structures including strongly connected ones with entropy-like logarithmic Lyapunov

functions through embedding the model into a weakly reversible CRN with time-varying

reaction rates in a reduced state space. Moreover, it is shown that different Lyapunov func-

tions may be assigned to the same model depending on the non-unique factorization of the

reaction rates. The results are illustrated through several examples with biological meaning

including the classical ribosome flow model on a ring.

1 Introduction

Compartmental models are used to describe and analyze the transport between different con-

tainers, called compartments in various natural and technological systems [1, 2]. Compart-

ments can be assigned to tissues or organs in pharmacokinetic models, mass containers in

process systems, distinct disease states in epidemiological models, road sections in transporta-

tion systems or different habitats in ecological models. The modeled objects (molecules, peo-

ple, vehicles, etc.) can move between compartments obeying the given constraints such as

limits of directions, flow rates, or capacities. A fundamental feature of compartmental models

is that each modeled object can be present in exactly one compartment at a given time. Natu-

rally, compartmental models written in the original physical coordinates belong to the class of

nonnegative systems for which the nonnegative orthant is invariant with respect to the dynam-

ics [3, 4]. This special property supports the dynamical analysis and control design in several

ways. The controllability, observability, realizability and identifiability of mainly linear
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compartmental system are addressed in [5]. An excellent overview of the qualitative dynamical

properties of general compartmental systems can be found in [6].

The dynamical modeling of the mRNA translation process has been in the focus of

research since the second half of the 20th century (see, e.g. [7–9]). The first large scale anal-

ysis of gene translation through the so-called ribosome flow model (RFM) was presented in

[10], where the applied second order nonnegative and nonlinear model based on the princi-

ple of Totally Asymmetric Exclusion [11] was able to capture the most important dynamical

features of the translation process. Also in [10], the RFM model was validated through bio-

logical data obtained from three different organisms, and it was clearly shown that its pre-

dictive power is superior to several other popular techniques. In [12] the RFM was

equipped with an appropriate input-output pair, and it was shown that after applying an

affine positive output feedback, the system had a unique equilibrium point which is globally

stable in the bounded operating domain. A circular RFM structure was analyzed in [13],

where the authors proved using the theory of cooperative systems that the system has a con-

tinuum of equilibria, but each equilibrium is globally asymptotically stable within the

equivalence class of trajectories determined by the initial conditions. The stability of peri-

odic solutions was also shown. In [14] a bounded pool of free ribosomes was added to the

RFM generating a competition among the arbitrary number of mRNA molecules for ribo-

somes. This generates a special network structure for RFM subsystems, for which the

uniqueness and stability of equilibria together with the properties of periodic solutions

were proved, too. Different compartment sizes of the RFM were assumed in [15], and it was

shown that this modification does not change the favorable dynamical properties of the sys-

tem. In [16], the ribosome flow model with Langmuir kinetics (RFMLK) is introduced, and

a network structure is constructed with RFMLK subsystems connected through a pool.

Among other results, it is shown that the trajectories of such a network always converge to

a unique equilibrium.

Chemical reaction networks (CRNs) also called kinetic systems can be considered as uni-

versal descriptors of nonlinear dynamics, especially that of nonnegative systems [17]. Since

the 1970’s the theory of CRNs has been intensively studied, and there are several fundamen-

tal results on the relation between network structure/parametrization and dynamical proper-

ties [18]. The stability of mass-action type CRNs is most often analyzed using an entropy-like

logarithmic Lyapunov function, originally called a “pseudo-Helmholtz function” in [19].

Probably the most well-known conjecture of chemical reaction network theory is the “Global

attractor conjecture” according to which complex balanced kinetic systems are globally sta-

ble with respect to the nonnegative orthant with the logarithmic Lyapunov function [20].

This conjecture was proved for complex balanced reaction networks with a reaction graph of

one component [21]. One of the most important results from the point of view of this paper

is [22] studying zero deficiency networks, where the allowed kinetics is more general than

mass action, the rate coefficients can be time-varying, and the logarithmic Lyapunov func-

tion is also generalized. The Lyapunov-function-based stability analysis of RFMs is men-

tioned as an important problem in [23], which will be addressed in this paper using the CRN

representation of the system. In [24] a so-called Max-Min type robust Lyapunov function

composed of piecewise linear terms was constructed for a tubular RFM with mass action

kinetics.

It is interesting to mention that mathematical models which are equivalent to RFMs can

also be obtained through a special finite volume spatial discretization of widely used flow mod-

els in PDE form [25, 26]. These models also have a transparent representation in CRN form

supporting further dynamical analysis. An arbitrary directed graph structure of such models

with general time-invariant kinetics was considered in [27], where the existence and
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uniqueness of equlibria, persistence and contractivity (non-expansive property) of the solu-

tions was shown using the theory of Petri nets, compartmental systems, and earlier results on

RFMs. The stability of this model class with logarithmic Lyapunov functions was shown in

[28], while a port-Hamiltonian description was given in [29].

Based on the above overview, the aim of this paper is to extend the results of [27, 28] in the

following respects: considering even more general kinetics with explicit time-dependence, the

qualitative analysis of periodic solutions, and finally, stability analysis with a family of different

logarithmic Lyapunov functions.

The structure of the paper is the following. Section 2 contains the applied mathematical

notations for compartmental models and kinetic systems. In Section 3 the kinetic representa-

tion of the studied model class is described, while new results on persistence and periodic

behaviour in the time-varying case are proposed in Section 4. Stability analysis results with a

family of non-unique logarithmic Lyapunov functions are described in Section 5, and finally,

Section 6 summarizes the main results of the paper.

2 Notations and background

In this section, we describe the basic notations and building blocks of a compartmental system

class and chemical reaction networks (CRNs). The notations and overview in this section are

based on [27, 29].

2.1 Compartmental models

Throughout the paper we consider systems containing a set of interconnected compartments

and objects (such as ribosomes, particles, molecules, vehicles etc.) moving between them. We

assume that the rate of transfer between compartments depends on the amount of objects in

the source compartment as well as on the amount of free space in the target compartment.

This naturally implies that each compartment has a well-defined finite capacity that limits the

amount of modeled quantities that can be contained in the given compartment. We also allow

explicit time dependence and in some cases dependence on the amount of objects and free

space in other compartments.

For the formal definition, let us consider the set Q = {q1, q2, . . ., qm} of compartments and

the set A� Q ×Q of transitions, where (qi, qj) 2 A represents the transition from compartment

qi into qj. Then, the directed graph D = (Q, A) is called the compartmental graph and it

describes the structure of the compartmental model. The transitions are assumed to be imme-

diate, thus loop edges are not allowed in the model since they do not introduce additional

dynamical terms. Similarly, we do not allow parallel edges between two compartments in the

same direction since they can be replaced by a single transition. We say that a (compartmental)

graph is strongly connected if there exists a directed path between any two vertices in both

directions, and we say that a graph is weakly reversible if it is a collection of isolated strongly

connected subgraphs.

For each compartment qi we introduce the sets of donors and receptors, respectively, as

Di ¼ fj 2 f1; 2; � � � ;mgjðqj; qiÞ 2 Ag;

Ri ¼ fj 2 f1; 2; � � � ;mgjðqi; qjÞ 2 Ag;
ð1Þ

that is, the set of donors of a given compartment are the compartments where an incoming

transition originates from and the set of receptors are the compartments where an outgoing

transition terminates in.
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2.2 Chemical reaction networks (kinetic systems)

In this subsection we give a brief introduction of kinetic systems based on [18, 19], where

more details can be found. A chemical reaction network (CRN) contains a set of species S =

{X1, X2, . . ., XN} and the corresponding species vector is given by X = [X1 X2 . . . XN]T. The spe-

cies of a CRN are transformed into each other through elementary reaction steps of the form

Cj ��!
KjðtÞ Cj0 j ¼ 1; 2; � � � ;R; ð2Þ

where Cj ¼ yTj X and Cj0 ¼ yTj0X are the source and product complexes, respectively, the vectors

yj; yj0 2 N
N
0

are stoichiometric coefficient vectors and functions Kj : R
þ
N � R

þ
7!R

þ
are the rate

functions with R
þ

denoting the set of nonnegative real numbers. The matrix Y containing the

stoichiometric coefficient vectors as columns is called the stoichiometric matrix. The subspace

S � RN spanned by the so-called reaction vectors yj0 − yj is called the stoichiometric subspace of

the CRN.

The CRN structure can be uniquely described by a directed graph as follows. For each com-

plex we assign a vertex in the graph and for each elementary reaction step of the form Cj! Cj0
we assign a directed edge between the corresponding vertices. We call the resulting graph the

reaction graph of the CRN. The deficiency of the CRN is defined as δ = m − ℓ − s, where m is

the number of distinct complexes, ℓ is the number of linkage classes (graph components) in

the reaction graph and s is the dimension of the stoichiometric subspace.

Let xðtÞ 2 R
þ
N denote the state vector of the species as a function of time for t� 0. Based on

the above, the dynamics of the CRN is given by

_xðtÞ ¼
XR

j¼1

Kjðx; tÞ½yj0 � yj�: ð3Þ

We assume that a reaction can only take place if each species of the given reaction have non-

zero concentration; that is, we assume that KjðxðtÞ; tÞ ¼ 0 whenever there exists k 2 supp(yj)
such that xk(t) = 0, where we say that k 2 supp(yj) if [yj]k> 0. This property ensures the invari-

ance of the nonnegative orthant (or a part of it). We also presume standard regularity assump-

tions of the rate functions that guarantee local existence and uniqueness of solutions. Different

results in this paper require different sets of such assumptions, thus for the sake of generality

they will be specified later. Dynamics of the form of (3) is called persistent if no trajectory that

starts in the positive orthant has an omega-limit point on the boundary of RN
þ

.

We note that for any v 2 S? (where S denotes the stoichiometric subspace) we have that

h _x; vi ¼
XR

j¼1

Kjðx; tÞhyj0 � yj; vi ¼ 0 ð4Þ

and thus hx, vi is constant. Since v 2 S? was arbitrary we have that xðtÞ 2 xð0Þ þ S. This

shows that the translates of S define invariant linear manifolds for the system. We further

define for each p 2 Rn
þ

a positive stoichiometric compatibility class Sp ¼ ðpþ SÞ \ R
þ
n.

A set of ODEs of the form _x ¼ f ðx; tÞ is called kinetic if it can be written in the form (3)

with appropriate rate functions and stoichiometric coefficient vectors.

3 Kinetic representation

In this section we construct a kinetic representation of the above compartmental system class.

To do so, we assign a CRN that incorporates the compartmental structure. This allows the
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introduction of a system of ODEs of the form (3) describing the time evolution of the compart-

mental model. Some of the following steps are described in [27] or [29] in a time-invariant set-

ting but here we recall and extend them for convenience.

3.1 Kinetic modeling of compartmental transitions

Let us consider a compartmental model D = (Q, A). Let the set of species be S = {N1, N2, . . .,

Nm} [ {S1, S2, . . ., Sm} where Ni and Si represent the number of particles and available spaces in

compartment qi, respectively. To each transition (qi, qj) 2 A we assign a reaction of the form

(see, also [24])

Ni þ Sj �!
Kij Nj þ Si; ð5Þ

where Kij is the rate function of the transition. Such a reaction represents that during the tran-

sition from compartment qi to compartment qj the number of items decreases in qi and

increases in qj, while the number of available spaces increases in qi and decreases in qj. Let ni
and si denote the continuous amount of particles and free space in qi, respectively.

Based on (3) the dynamics of the system is given by

_ni ¼
X

j2Di

Kjiðn; s; tÞ �
X

j2Ri

Kijðn; s; tÞ;

_si ¼ �
X

j2Di

Kjiðn; s; tÞ þ
X

j2Ri

Kijðn; s; tÞ
ð6Þ

where n and s denote the vectorized form of the variables ni and si, respectively. It is easy to

check that the model class in Eq (6) contains ribosome flow models described in [23] or [15],

and extends them in two ways: firstly, the reaction rate function K is not necessarily mass-

action type and moreover, is time-varying, and secondly, the compartmental graph of the sys-

tem can be arbitrary (i.e., there can be transitions between any two compartments). Note, that

we also allow the transition rates to depend on the amount of objects and free space in other

compartments as well, possibly describing inhibitory phenomena. Therefore, we call (6) a gen-
eralized time-varying ribosome flow model. Thus, our novel results not only extend the theory

of ribosome flow models, but can be applied to other TASEP based transport models [30–34]

and other flow models, such as the Traffic Reaction Model of [25] or the Nonlocal Flow Reac-

tion Model of [26]. Finally, we note, that while more complicated network structures may not

be biologically relevant in the case of ribosome flows, but can serve as a great tool for the analy-

sis of other flow based physical models, e.g. traffic flows.

Clearly the reaction graph of the assigned CRN of a compartmental model is generally not

strongly connected nor weakly reversible even if the compartmental graph is strongly con-

nected. In fact, the reaction graph is weakly reversible if and only if each transition in the com-

partmental system is reversible. Even though the reaction graph, in some sense, loses the

regularities of the compartmental graph, we can explicitly determine its deficiency from the

compartmental topology and, as described in [27], CRNs of the form (6) exhibit persistence

and stability properties in various senses in the time-invariant case.

3.2 Deficiency of CRNs realizing compartmental models

For a compartmental system D = (Q, A) let jDj ¼ ðQ; ~AÞ denote the undirected graph where

the parallel edges are merged.

Theorem 3.1 The deficiency of a CRN assigned to a compartmental model D = (Q, A) is
equal to the number of chordless cycles in the undirected graph jDj ¼ ðQ; ~AÞ.
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Proof. For each transition between qi and qj we assign two complexes, namely Ni + Sj and

Si + Nj, regardless of the transitions’ direction, so reversible reactions do not introduce addi-

tional complexes, and thus the number of stoichiometrically distinct complexes is m ¼ 2j~Aj. A

complex of the form Ni + Sj is only connected with the complex Si + Nj, and thus we have ‘ ¼

j~Aj linkage classes each consisting of exactly two complexes. To find the dimension of the stoi-

chiometric subspace, denoted by s ¼ dim S, observe that the reaction vector of a reaction of

the form Ni + Sj! Nj + Si is

yi!j ¼ � ei þ ej þ emþi � emj
; ð7Þ

where ek 2 R
2m denotes the kth unit vector. Again, since yi!j = −yj!i it suffices to consider the

undirected graph |D|. Assume that yi!j is such that

yi!j ¼
P

cl!l0yl!l0 : ð8Þ

Then by (7) we have that for each non-zero term of the form c.!l0y.!l0 the right-hand side

also contains at least one non-zero term cl0!.yl0!., including the terms ci!.yi!. and c.!jy.!j.

This shows that the edges corresponding to the reaction vectors of the right-hand side form

possibly multiple cycles in |D|. Without the loss of generality we may assume that this sub-

graph does not contain cycles isolated from (qi, qj). We have to consider the following cases:

1. First, we assume that the right-hand side is a single chordless cycle and contains the transi-

tions

qi ! ql1 ! ql2 ! � � � ! qlr ! qj ! qi: ð9Þ

Taking the inner product of unit vectors ei; el1 ; el2 ; . . . ; elr ; ej and

yi!j ¼ ci!l1
yi!l1
þ
Xr� 1

k¼1

clk!lkþ1
ylk!lkþ1

þ clr!jylr!j ð10Þ

yields the system of linear equations:

� 1 ¼ � ci!l1

0 ¼ ci!l1
� cl1!l2

0 ¼ cl1!l2
� cl2!l3

..

.

0 ¼ clr� 1!lr
� clr!j

1 ¼ clr!j

ð11Þ

which clearly has one solution where each weight is equal to one.

2. If the right-hand side consists of multiple cycles, then repeatedly using the previous argu-

ment we can replace the arcs not containing (qi, qj) with chords. Note, that if the reaction

vector corresponding to the chord is already on the right-hand side, then we just have to

modify its coefficient. This method decomposes the right-hand side and will leave us with

one chordless cycle containing (qi, qj), leading back to the previous case with exactly one

solution. Repeating the arc substitutions we can see that each arc becomes a chordless cycle

with the reintroduced edges and the arising systems of linear equations have exactly one

solution.
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The first case above shows that the dimension of the stiochiometric subspace reduces by

one for each set of reaction vectors that correspond to edges forming a chordless cycle in |D|

and the second case shows that is reduced by that exact amount. If σ denotes the number of

chordless cycles in ~Q, then the deficiency of the reaction network can be computed as

d ¼ m � ‘ � s ¼ 2j~Aj � j~Aj � ðj~Aj � sÞ ¼ s.

3.3 Linear conservation laws

System (6) exhibits conservation in several senses. First of all, we have that

Xm

i¼1

ð _ni þ _siÞ ¼ 0; ð12Þ

thus the sum of modeled quantities and free spaces in the system is constant along the trajecto-

ries of (6); that is, the function H : R2m 7!R defined for x 2 R2m as

HðxÞ ¼
X2m

i¼1

xi; ð13Þ

is a first integral, where x1, x2, . . ., xm and xm+1, xm+2, . . ., x2m correspond to the variables

n1, n2, . . ., nm and s1, s2, . . ., sm, respectively. Our next observation is that _ni þ _si ¼ 0 holds for

each compartment, thus ci≔ ni + si is the constant capacity of compartment qi. Let c(m) be a

vector such that its ith coordinate is ci. Substituting s = c(m) − n we can rewrite (6) in a reduced

state space as

_ni ¼
X

j2Di

Kjiðn; c
ðmÞ � n; tÞ �

X

j2Ri

Kijðn; c
ðmÞ � n; tÞ ð14Þ

or after an analogous substitution, as

_si ¼ �
X

j2Di

Kjiðc
ðmÞ � s; s; tÞ þ

X

j2Ri

Kijðc
ðmÞ � s; s; tÞ: ð15Þ

As a consequence of the preceding observations, the function ~H : Rm 7!R, defined for

x 2 Rm as

~HðxÞ ¼
Xm

i¼1

xi ð16Þ

is a first integral for (14), in which case each xi = ni (and similarly for (15) if each xi = si). This

shows that while the state space of the decomposed systems is

~C :¼ ½0; c1� � ½0; c2� � . . .� ½0; cm�, for a given initial condition xð0Þ~C the trajectories are con-

tained in the (m − 1)-dimensional manifold (hyperplane) defined by

fx 2 ~Cj ~HðxÞ � ~Hðxð0ÞÞ ¼ 0g: ð17Þ

For a generalized ribosome flow define c ¼
Pn

i¼1
ci and for r 2 [0, c] let Lr �

~C be the level

set of H corresponding to r; that is,

Lr ¼ fa 2 ~C : HðaÞ ¼ rg: ð18Þ

Example 1.1: (generalized) RFMR. As a small example let us consider a Ribosome Flow

Model on a Ring (RFMR) [13] with three sites. The underlying compartmental model is given
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by D = (Q, A), where

Q ¼ fq1; q2; q2g;

A ¼ fðq1; q2Þ; ðq2; q3Þ; ðq3; q1Þg:
ð19Þ

The topology is shown in Fig 1.

The corresponding CRN has the following species and reactions:

S ¼ fN1;N2;N3; S1; S2; S3g

R1 : N1 þ S2 �!
K12 S1 þ N2

R2 : N2 þ S3 �!
K23 S2 þ N3

R3 : N3 þ S1 �!
K31 S3 þ N1:

ð20Þ

It is easy to see that, indeed, the reaction graph is not weakly reversible and its deficiency is

one. The dynamics of the model in the full state space is given by (6) as

_n1 ¼ K31ðn; s; tÞ � K12ðn; s; tÞ

_s1 ¼ � K31ðn; s; tÞ þK12ðn; s; tÞ

_n2 ¼ K12ðn; s; tÞ � K23ðn; s; tÞ

_s2 ¼ � K12ðn; s; tÞ þK23ðn; s; tÞ

_n3 ¼ K23ðn; s; tÞ � K31ðn; s; tÞ

_s3 ¼ � K23ðn; s; tÞ þK31ðn; s; tÞ

ð21Þ

Fig 1. Compartmental graph of a three-dimensional RFMR.

https://doi.org/10.1371/journal.pone.0288148.g001
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which can be rewritten in the reduced state space based on (14) as

_n1 ¼ K31ðn; cðmÞ � n; tÞ � K12ðn; cðmÞ � n; tÞ

_n2 ¼ K12ðn; cðmÞ � n; tÞ � K23ðn; cðmÞ � n; tÞ

_n3 ¼ K23ðn; cðmÞ � n; tÞ � K31ðn; cðmÞ � n; tÞ:

ð22Þ

In a classical RFMR each ci = 1 and each transition-rate Kij depends only on ni and

ci − ni = 1 − ni, and follows the mass-action law. In an RFMR with different site sizes

(RFMRD) [15] we allow arbitrary site sizes, in which case the above equation can be written as

_n1 ¼ k31n3ðc1 � n1Þ � k12n1ðc2 � n2Þ

_n2 ¼ k12n1ðc2 � n2Þ � k23n2ðc3 � n3Þ

_n3 ¼ k23n2ðc3 � n3Þ � k31n3ðc1 � n1Þ:

ð23Þ

4 Analysis of persistence and stability

In this section we show that systems of the form (6) exhibit various interesting dynamical

properties that can be characterized under different assumptions of the transition rate func-

tions. First we will consider time-invariant systems to demonstrate the regularity of equilibria.

Then we return to time-varying systems to generalize the results of [27].

4.1 Equilibria of time-invariant systems

In this subsection we assume that the Kijðn; s; tÞ rate functions are continuously differentiable

and only depend on the variables ni and sj in a nondecreasing manner; that is, we assume that

Kijðn; s; tÞ � Kijðni; sjÞ for each i and j. Then the results [27] show that a system of the form

(14) is cooperative (the name also highlights the importance of the exclusion of inhibitory phe-

nomena), is (strongly) monotone and each level set Lr contains a unique globally (relative to its

level set) asymptotically stable steady state. This implies that the steady states form a linearly

ordered set. For i = 1, 2, . . ., m let ei: [0, c] 7! [0, ci] denote the ith coordinate function of the

steady state; that is, let

eiðrÞ≔ log
t!1

rðt; nð0ÞÞi ð24Þ

where n(0) 2 Lr is arbitrary and ρ(t, n(0)) denotes the solution at time t with ρ(0, n(0)) = n(0).

Clearly each ei is continuous and the monotonicity of the system also shows that each ei func-

tion is strictly increasing; that is, they are differentiable almost everywhere and their derivative

are positive.

Example 1.2: Equilibria of generalized RFMR. Let us consider a generalized version of

the RFMR in Fig 1. Its time evolution in the reduced state space is given in the form (14) as

_n1 ¼ K31ðn3; c1 � n1Þ � K12ðn1; c2 � n2Þ;

_n2 ¼ K12ðn1; c2 � n2Þ � K23ðn2; c3 � n3Þ;

_n3 ¼ K23ðn2; c3 � n3Þ � K31ðn3; c1 � n1Þ;

ð25Þ

and for the simulations we set capacities c1 = 5, c2 = 25, c3 = 50. The rate functions in the
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different cases are assumed to have the form Kijðni; cj � njÞ ¼ kijniðcj � njÞ (corresponding to

the classical RFMRD) or to be rational functions of the form

Kijðni; cj � njÞ ¼ kij
n3
i

ðl þ niÞ
3
�
ðcj � njÞ

3

ðlþ cj � njÞ
3

for some l> 0 with k12 = 100, k23 = 40, k31 = 60. Fig 2 shows the equilibrium curves for these

rate functions with various l values.

Example 2: Not strongly connected model. Let us consider consider a not strongly con-

nected compartmental model given by D = (Q, A), where

Q ¼ fq1; q2; q2g;

A ¼ fðq2; q3Þ; ðq3; q2Þ; ðq3; q1Þg:
ð26Þ

The topology is shown in Fig 3.

Fig 2. Loci of equilibria of a generalized RFMR as a function of the total number of ribosomes for different l
saturation parameters.

https://doi.org/10.1371/journal.pone.0288148.g002
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The corresponding CRN has the following species and reactions:

S ¼ fN1;N2;N3; S1; S2; S3g

R1 : N2 þ S3 �!
K23 S2 þ N3

R2 : N3 þ S2 �!
K32 S3 þ N2

R3 : N3 þ S1 �!
K31 S3 þ N1:

ð27Þ

The dynamics of the system in the reduced state space is given by

_n1 ¼ K31ðn3; c1 � n1Þ

_n2 ¼ K32ðn3; c2 � n2Þ � K23ðn2; c3 � n3Þ

_n3 ¼ K23ðn2; c3 � n3Þ � K32ðn3; c2 � n2Þ � K31ðn3; c1 � n1Þ:

ð28Þ

Since the compartmental graph is not strongly connected the persistence and stability

results of [27] are not applicable. However, empirical results show that the long-time behav-

iour of the system still exhibits some regularity, which can be divided into two cases base on

the initial values of the system:

1. If r≔H(n(0))� c1, then

lim
t!1

n2ðtÞ ¼ lim
t!1

n3ðtÞ ¼ 0 and lim
t!1

n1ðtÞ ¼ r:

2. If r≔H(n(0)) > c1, then

lim
t!1

n1ðtÞ ¼ c1

Fig 3. Compartmental graph of a not strongly connected model.

https://doi.org/10.1371/journal.pone.0288148.g003
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and n1(t) and n2(t) will converge to the unique equilibrium on the level set

fðn2; n3Þ 2 ½0; c2� � ½0; c3�jn2 þ n3 ¼ r � c1g

of the reduced compartmental model D0 = (Q0, A0) given by Q0 = {q2, q3},

A0 ¼ fðq2; q3Þ; ðq3; q2Þg. Note that since D0 is strongly connected, the results of [27] and the

above investigation can be applied.

For the simulations we set c1 = c2 = c3 = 100. The rate functions in the different cases are

assumed to have form Kijðni; cj � njÞ ¼ kijniðcj � njÞ (corresponding to mass-action kinetics)

or to be rational functions of the form

Kijðni; cj � njÞ ¼ kij
ni

l þ ni
�

cj � nj
lþ cj � nj

for some l> 0 with k23 = 15, k32 = 25, k31 = 35. Fig 4 shows the equilibrium curves for these

rate functions with various l values. As described by the above cases we see that until the sum

of the initial value exceed the capacity of the q1 compartment the equilibrium lies on the n1

axis. After that the equilibrium lies on the plane fn1 ¼ c1g � R
3

and since D0 is strongly con-

nected we have that the coordinate functions of the equilibria e2(r) and e3(r), restricted to the

set [c1, c], are continuous and strictly increasing. We note that while the system is not strongly

connected it exhibits many similar qualitative properties as strongly connected models. For

example, for initial values satisfying H(n(0)) > c1 the system is Lyapunov stable as described in

[29].

Fig 4. Loci of equilibria of a not strongly connected model as a function of the amount of modeled quantities for

different l saturation parameters.

https://doi.org/10.1371/journal.pone.0288148.g004
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Remark 4.1. The authors hypothesize that the long-time behaviour of a compartmental
model with arbitrary compartmental structure can be similarly described. Recall that a (com-
partmental) graph D = (Q, A) can be written as a directed acyclic hypergraph of strongly con-
nected components. The hypergraph will then contain three types of components:

1. we call a component trap if it does not have any outgoing edges,

2. we call a component source if it does not have any incoming edges,

3. we call a component intermediate if it is not a trap and not a source.

Based on the initial value and the exact compartmental structure the following phenomena
can be observed:

• Traps (and only traps) can become full, thus possibly creating new traps.

• Sources (and only sources) can become empty, thus possibly creating new sources.

• After a sufficient number of traps are filled and sources are emptied, the compartmental graph
D is decomposed into isolated strongly connected components; that is, the resulting graph is
weakly reversible, in which case the results of [27] can be applied.

While these observations are elementary and show that the system is stable, the equilibria are
clearly non-unique with respect to the total mass of the network and in general it is not straight-
forward to predict from the initial value which components will fill and empty.

4.2 Persistence

In this subsection we consider time-varying generalized ribosome flows of the form (6) only

under mild regularity assumptions described by the following theorem, which is based on the

results of [35] but the statements are rephrased to be more aligned with our framework. For

the definition of notions related to Petri nets (e.g. siphons) and their exact connection with

CRNs we refer to [27, 35].

Theorem 4.2. [35] The dynamics of a CRN of the form (3) is persistent if

(i) Each siphon of the CRN contains a subset of species which define a positive linear conserved
quantity for the dynamics.

(ii) There exists a positive linear conserved quantity cTx for the dynamics.

(iii) There are nonnegative, continuous functionsK jðxÞ, KjðxÞ such that

(a) if xk > ~xk for each k 2 supp(yj), thenK jðxÞ > K jð~xÞ (and similarly forKj) holds for each j
= 1, 2, . . ., R, and

(ii) for each j = 1, 2, . . ., R, for all x 2 RN
þ
and for all t� 0 we haveK jðxÞ � Kjðx; tÞ � KjðxÞ.

To verify condition (i) we would, in general, need to enumerate all siphons of the CRN,

which is well-known to be an NP-hard problem. However, in our recent paper [27] we explic-

itly characterized the siphons of a CRN assigned to a strongly connected compartmental mod-

els in the time-invariant case. However, one can observe that conditions (i) and (ii) of 4.2 are

independent of the choice of transition rates and even independent from whether the system is

time-invariant or not; that is, our results, formulated in the following theorem, hold for time-

varying compartmental systems as well.
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Theorem 4.3. [27, Corollary 4.6] A siphon in the Petri net of a strongly connected compart-
mental graph either contains the vertices Ni and Si corresponding to the same compartment qi, or
it contains all the vertices N1, N2, . . ., Nm or S1, S2, . . ., Sm.

Then the conclusions of Section 3.3 show that conditions (i) and (ii) are satisfied by virtue

of the first integrals (16) and (13), respectively.

It is not straightforward to determine exactly what types of reaction rates satisfy condition

(iii). For the sake of specificity, we characterize a class of reaction rates of special interest

which can be written in the following form

Kijðn; s; tÞ ¼ kijðtÞ
yiðniÞnjðsjÞ

1þCijðn; sÞ
ð29Þ

where we assume that the transformations yi; nj 2 C1
ðRÞ are nondecreasing, have θi(0) = νj(0)

= 0 and satisfy
R 1

0
jlog yiðrÞjdr <1 and

R 1

0
jlog njðrÞjdr <1 for each i, j = 1, 2, . . ., m. We

also assume that the functions Cij take the form

Cijðn; sÞ ¼
P
arð1Þ ;rð2Þ

Ym

l¼1

y
rð1Þl
l ðnlÞn

rð2Þl
l ðslÞ ð30Þ

where rð1Þ; rð2Þ 2 Nm and arð1Þ ;rð2Þ 2 Rþ. We further assume that for kij(t) there exist kij; kij > 0

such that kij � kijðtÞ � kij for all t� 0. In this case we have

Kijðni; sjÞ≔
kij

1þCijðcðmÞ; cðmÞÞ
yiðniÞnjðsjÞ � Kijðni; sj; tÞ � kijyiðniÞnjðsjÞ ¼: Kijðni; sjÞ ð31Þ

which are clearly monotonous in the sense of Theorem 4.2, and thus condition (i) is satisfied

and the system is persistent.

Remark 4.4. The above investigation and, in particular, condition (iii) of Theorem 4.2 shows
that Lemmata 5.1, 5.2 and Remark 5.3 of [27] can be modified to the time-varying case; that is,
for a system of the form (6) with strongly connected compartmental graph and reaction rates of
the form (29), for each τ> 0 there exists �(τ) > 0 with �(τ)! 0 as τ! 0 such that ni(t), si(t) 2
[�, ci − �] holds for each i = 1, 2, . . ., m and t� τ.

The denominator of (29) contains positive terms which can be interpreted as the inhibitory

effect of other species, and the time-varying coefficient kij(t) introduces the dependence of the

system parameters on various factors such as temperature or the dynamical behaviour of other

species that are not explicitly modeled as state variables. This class of rate functions contains

many well-known examples, demonstrating the range and flexibility of reaction rates of the

above form:

1. Setting each θi(ni) = ni and νj(sj) = sj and Cij(n, s) = 0 we obtain the case of classical mass-

action kinetics with time-varying rate coefficients: Kijðn; s; tÞ ¼ kijðtÞnisj.

2. Setting each θi(ni) = ni and νj(sj) = sj and Cij(n, s) = l2 − 1 + lni + lsj + nisj for some l> 0

yields

Kijðn; s; tÞ ¼ kijðtÞ
nisj

ðl þ niÞðl þ sjÞ
ð32Þ

corresponding to simple saturating kinetics described by the Monod equation.
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3. The previous example can also be obtained by setting yiðniÞ ¼
ni
lþni

and njðsjÞ ¼
sj
lþsj

and

Cij(n, s) = 0, showing that (29) is not unique. Notice however, that for fixed θi, νj transfor-

mations the function Cij, and thus the fraction itself, is unique.

4. Setting each yiðniÞ ¼
nLi
lþnLi

and njðsjÞ ¼
sLj
lþsLj

for some l> 0 yields the classical Hill kinetics.

Example 1.3: Time-varying generalized RFMR. Let us again consider a generalized ver-

sion of the RFMR from Fig 1. For this example we set c1 = c2 = c3 = 100, l = 100 and

K12ðn1; c2 � n2; tÞ ¼ k12ðtÞ
n1ðc2 � n2Þ

ðlþ n1Þðl þ c2 � n2Þ
;

K23ðn2; c3 � n3; tÞ ¼ k23ðtÞ
n2ðc3 � n3Þ

ðlþ n2Þðl þ c3 � n3Þ
;

K31ðn3; c1 � n1; tÞ ¼ k31ðtÞ
n3ðc1 � n1Þ

ðlþ n3Þðl þ c1 � n1Þ
;

ð33Þ

where the coefficient functions are considered to be exponentially decaying perturbations of

the nominal values

k12 ¼ 40 k23 ¼ 25 k31 ¼ 50 ð34Þ

of the form

k12ðtÞ ¼ k12ð1þ e� 3t
100Þ k23 1þ e� 5t

100

� �
k31 1þ e� 2t

100

� �
: ð35Þ

As a comparison let us consider the solution ~nðtÞ of the time-invariant system with the

above nominal values. Fig 5a shows the phase portrait of the perturbed and the original sys-

tems starting from various initial conditions with H(n(0)) = 150. Fig 5b shows the time

Fig 5. Trajectories and time evolution of a generalized time-varying RFMR with decaying time dependence. (a) Phase portrait of the system. (b)

Time evolution of state variables.

https://doi.org/10.1371/journal.pone.0288148.g005
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evolution of the state variables with n(0) = [5 45 100]T, where the state variables of the per-

turbed and the time-invariant system are depicted with blue lines and red lines, respectively.

We can observe that since the time dependent terms are exponentially decaying and both sys-

tems evolve on the same linear manifold, the systems tend to the same equilibrium, as

expected.

4.3 Stability of the solutions for periodic transition rates

In this section we investigate the periodic behaviour of the generalized ribosome flows based

on the ideas of [36]. Let us consider a generalized ribosome flow in the reduced state space of

the form (14) with transition rates of the form (29) and assume that the transition functions

are C1
and periodic with the same period (but having possibly different phases). Write (14) as

_n ¼ Fðt; nÞ and assume that the right-hand side satisfies the following monotonicity condi-

tion: Fi(t, x)� Fi(t, y) for any two distinct points x; y 2 ~C such that xi = yi and xj� yj for j 6¼ i.
This condition is satisfied if, for example, the transition rates are such that Cij� 0; that is, if

there are no inhibitory phenomena. Then the system phase locks (or entrains) with the peri-

odic excitations.

Theorem 4.5. Consider a system of the form (14) satisfying the above monotonicity assump-
tion, where eachKijðtÞ is periodic with a common period T. Then for each r 2 [0, c] there exists a
unique periodic function �r : R

þ
: 7! ~C with period T such that for all a 2 Lr we have that

lim
t!1
k rðt; aÞ � �rðtÞL1 k¼ 0: ð36Þ

Proof. The properties of the rate functions and the fact thatrH is positive implies the result

via [37, 38].

Remark 4.6. Since, in some sense, time-invariant systems can be seen as periodic, the stability
result [27, Proposition 5.5] is a special case of the above theorem, where ϕr is reduced to a single
point of the manifold Lr.

Example 1.4: Entrainment of generalized RFMR. Let us again consider a generalized

version of the RFMR from Fig 1. For this example we set c1 = c2 = c3 = 100 and

K12ðn1; c2 � n2; tÞ ¼ 100ð3þ 2 cosðt þ 0:5ÞÞ
n1ðc2 � n2Þ

ðl þ n1Þðl þ c2 � n2Þ
;

K23ðn2; c3 � n3; tÞ ¼ 100ð7þ 5 sinð3t � 2:5ÞÞ
n2ðc3 � n3Þ

ðl þ n2Þðlþ c3 � n3Þ
;

K31ðn3; c1 � n1; tÞ ¼ 100ð2þ cosð2t � 1ÞÞ
n3ðc1 � n1Þ

ðl þ n3Þðl þ c1 � n1Þ
;

ð37Þ

which clearly have the same period T = 2π. Fig 6a and 6b show the phase portrait of the system

starting from various initial conditions with l = 100, H(n(0)) = 150 and the time evolution of

the state variables with n(0) = [5 45 100]T, respectively.

5 Lyapunov stability analysis

In this section we show that generalized ribosome flows with reaction rate functions of the

form (29) with piecewise locally Lipschitz kij(t) coefficients satisfy a certain notion of robust-

ness to the changes in the time-varying rate functions that can be traced back to the input-to-

state stability of rate-controlled biochemical networks thoroughly investigated in [22]. The

main difficulty in applying these results lies in the aforementioned fact that the CRN assigned
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to a compartmental model is generally not weakly reversible and its deficiency is generally not

zero (see, Theorem 3.1) even if the compartmental topology is strongly connected. In order to

circumvent this, we will perform a model reduction and rewrite (14) by factoring out appro-

priate terms. Let us first recall the most important notions and results of [22].

Consider the system corresponding to a CRN with R reactions

_x ¼ f ðx; uÞ ¼
XR

i¼1

XR

j¼1

uijðtÞ
Yn

l¼1

y
yij
i ðxiÞ½yi � yj�; ð38Þ

where the nonnegative functions uij are piecewise locally Lipschitz with a finite number of dis-

continuities and the stoichiometric coefficient vectors yi, yj are as described in 2.2. Motivated

by control designs for ribosome flow models [39] we introduce such time dependence not

only to handle some uncertainty originating from fluctuating external factors but to measure

the robustness of the system to certain control inputs.

In this section, however, we restrict the conditions on the transformation functions

yi : R
þ
7! ½0;1Þ. Namely, we assume that

(a) θi is real analytic,

(b) θi(0) = 0,

(c)
R 1

0
jlog yiðrÞjdr <1

(d) θi is strictly increasing and onto the set [0, σi) for some σi 2 [0,1),

(e) lim t!log si

R t
a r
� 1
i ðrÞdr � pt ¼ 1 for any a< log σi and any constant p> 0, where ρi = log

θi.

Before continuing with the definitions, we consider the case when u(t) is a constant matrix

A. We assume that A has nonnegative entries and is irreducible; that is, the underlying reaction

graph is strongly connected. We denote the set of such A matrices as A. Then the equilibria of

Fig 6. Entrainment of a generalized RFMR with periodic transition rates. (a) Phase portrait of the system. (b) Time evolution of state variables.

https://doi.org/10.1371/journal.pone.0288148.g006
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_x ¼ f ðx;AÞ can be divided into the sets of boundary equilibria and positive equilibria:

E0 ¼ fx 2 @Rþnjf ðx;AÞ ¼ 0g;

EA;þ ¼ fx 2 R
n
þ
jf ðx;AÞ ¼ 0g:

ð39Þ

Then, the result [22, Theorem 2.1] (and also [40, Theorem 2]) shows that if there are no

boundary equilibria in any positive class, then each positive class contains a unique globally

(relative to the positive class) asymptotically stable positive equilibrium. Denote the unique

positive equilibrium in the same class as x0 as xðx0;AÞ and notice that

EA;þ ¼ fxðx0;AÞjx0 2 R
n
þ
g. Finally, denote

E ¼
[

A2A

EA;þ: ð40Þ

Definition 5.1 We define the following function classes:

(i) A function a : R
þ
7!R

þ
is said to be of class K if it is continuous, strictly increasing and has

α(0) = 0.

(ii) The subset of unbounded functions of classK are denoted byK1.

(iii) A function b : R
þ
� R

þ
is said to be of class KL if β(., t) is of classK for all t� 0 and β(r,.)

is strictly decreasing to zero for all r> 0.

We consider nonnegative time-varying inputs such that at any time instant the reaction

graph is strongly connected; that is, the input-value set U is a subset of A. Furthermore, let

k.k2 denote the spectral norm induced by the Euclidian norm and for u : Rþ 7!U define

k u kU ¼ ess sup
t2½0;1Þ

k uðtÞ k2: ð41Þ

Definition 5.2. A system _x ¼ f ðx; uÞ is uniformly input-to-state stable (ISS) with input-value
setU if for every compact set P � E and every compact set F � R

þ
n containing P, there exist func-

tions β = βP of class KL and ϕ = ϕP of class K1 such that, for every xo 2 P \ Eu0;þ
for some u0 2

U we have that

k xðtÞ � x
0
k� bðk x0 � x

0
k; tÞ þ �ðk u � u0 kUÞ ð42Þ

holds for each u : R
þ
7!U input and every initial condition x0 2 F \ Sx

0
and for all t� 0 such

that x(s) 2 F for s 2 [0, t].
According to the above definition we say that a system is ISS if it is globally asymptotically

stable in the absence of external inputs and if its trajectories are bounded by an appropriate

function of the input. In some sense this definition is intended to capture the idea of “bounded

input bounded output” stability, since for bounded u input (u − u0 to be more precise) the tra-

jectories will remain in a ball and, in fact, approach the ball �ðku � u0kUÞ as t increases [41].

We assume that there exists a uniform lower bound on the parameters; that is, we consider

input-value sets of the form

A � U� ¼ fu 2 AjuijðtÞ � � 8t � 0; or uijðtÞ ¼ 0 8t � 0g: ð43Þ
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We also recall that the input functions are piecewise locally Lipschitz in time with a finite

number of discontinuities, thus we introduce

W ¼ fw : R
þ
7!U�jw is piecewise locally Lipschitzg: ð44Þ

Then the main Theorem of [22] states:

Theorem 5.3. Consider the system (38) with and suppose that is is mass-conservative; that is,
there exists v 2 Rn

þ
such that vTf(x, u) = 0 for all x 2 R

þ
n and u 2 A. Then the system with input

maps u 2W is uniformly ISS with input-value set U2.

The proof relies on the candidate ISS-Lyapunov function (for the definition of which and

for the exact connection with ISS stability we refer to [22])

Vðx; xÞ ¼
Xn

i¼1

Z xi

xi

ðlog yiðrÞ � log yiðxiÞÞdr ð45Þ

which, for mass-action systems, yields the classical entropy-like Lyapunov function well-

known from the theory of chemical reaction networks, see (65). We note that Vðx; xÞ is

uniquely determined by the θi functions and does not depend explicitly on the reaction/com-

partmental structure or the time-varying uij(t) functions; that is, it is universal in the sense of

[42].

Remark 5.4. We note that the assumption that the compartmental graph (and thus the reac-
tion graph of the factored model) is strongly connected is purely technical. For time-invariant sys-
tems it simply ensures that the unique equilibrium on each level set of the first integral is positive
(except for the trivial case of an empty network of course). In fact, in some cases the initial values
of the network can ensure the positivity of the equilibrium even for not strongly connected systems
(see Example 2 and [29] for more details), in which case the above Lyapunov function can be
applied.

5.1 Factorization of the transition rates

Let us consider a generalized ribosome flow in the reduced state space of the form (14), in this

case given by

_ni ¼
X

j2Di

Kjiðn; c � n; tÞ �
X

j2Ri

Kijðn; c � n; tÞ

¼
X

j2Di

kjiðtÞ
yjðnjÞniðci � niÞ

1þCjiðn; cðmÞ � nÞ
�
X

j2Ri

kijðtÞ
yiðniÞnjðcj � njÞ

1þCijðn; cðmÞ � nÞ
:

ð46Þ

Notice that we can naturally factor some terms of the transition rates into the time-varying

coefficient as

kijðtÞ
yiðniÞnjðcj � njÞ

1þCijðn; cðmÞ � nÞ
¼

kijðtÞnjðcj � njÞ
1þCijðn; cðmÞ � cÞ

yiðniÞ ¼: ~kijðtÞyiðniÞ: ð47Þ

Then (46) can be rewritten as

_ni ¼
X

j2Di

~kjiðtÞyjðnjÞ �
X

j2Ri

~kijðtÞyiðniÞ: ð48Þ

This equation can be clearly embedded into the class of strongly connected systems of the

form (38), since the reaction graph of (48) consists of species S = {N1, N2, . . ., Nm}, has the m ×
m identity matrix as its stoichiometric matrix and for each transition (qi, qj) 2 A we assign a
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reaction of the form

Ni ��!
~K ijðtÞ Nj; ð49Þ

and thus the system of differential equations can be written as

_n ¼ I~AkðtÞyðnÞ ð50Þ

where the elements of ~Ak are given by

½~AkðtÞ�ij ¼

�
P

l2Ri
~kilðtÞ if i ¼ j;

~kjiðtÞ if j 2 Di;

0 otherwise:

8
>><

>>:

ð51Þ

Note that the fractions
njðcj � njÞ

1þCijðn;cðmÞ� nÞ
are differentiable (and thus Lipschitz) and each kij(t) is

piecewise locally Lipschitz, hence each ~kijðtÞ is piecewise locally Lipschitz. This shows that

generalized ribosome flows can be embedded into the class of rate-controlled biochemical

networks described in [22] in a way that preserves the compartmental structure; that is, the

reaction graph of (50) is topologically isomorph to the compartmental graph. In particular

if the compartmental model is strongly connected, then the reaction graph of the reduced

system (50) is strongly connected as well. Furthermore, combining the persistence of the

system with Remark 4.4 we find that ~Ak 2W, and thus Theorem 5.3 ensures input-to-state

stability.

5.2 Quasi-LTV factorization

A classical argument shows that the model reduction above can result in a Linear Time-Vary-

ing (LTV) system [6]. Consider an FðxÞ 2 Ck
ðRÞ nonnegative function such that F(0) = 0,

where k� 1. Then for the function F(rx) we have

dF rxð Þ
dr

¼ xF0 rxð Þ ð52Þ

and thus

FðxÞ � Fð0Þ ¼ x
Z 1

0

F0ðrxÞdr ¼ xf ðxÞ ð53Þ

and since F(0) = 0, we find that F(x) = xf(x). Note, that the calculation also shows that

f 2 Ck� 1
ðRÞ. Since θi is real analytic we have that yiðniÞ ¼ ŷ iðniÞni for some ŷ i real analytic

function. Then (48) can be rewritten as

_ni ¼
X

j2Di

k̂jiðtÞnj �
X

j2Ri

k̂ijðtÞni ð54Þ

where

k̂ijðtÞ ¼
kijðtÞŷ iðniÞnjðcj � njÞ
1þCijðn; cðmÞ � nÞ

: ð55Þ

Similarly as before, the reaction graph of (54) consists of species S = {N1, N2, . . ., Nm}, has

the m ×m identity matrix as its stoichiometric matrix and for each transition (qi, qj) 2 A we
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assign a reaction of the form

Ni ��!
K̂ ijðtÞNj; ð56Þ

and thus the system of differential equations can be written as

_n ¼ IÂkðtÞn ð57Þ

where the elements of Âk are given by

½ÂkðtÞ�ij ¼

�
P

l2Ri
k̂ilðtÞ if i ¼ j;

k̂jiðtÞ if j 2 Di;

0 otherwise:

8
>>>><

>>>>:

ð58Þ

Again, each k̂ijðtÞ is piecewise locally Lipschitz, thus for strongly connected compartmental

models Theorem 5.3 ensures input-to-state stability via Remark 4.4.

5.3 Factorization of Monod kinetics

Let us consider a generalized version of the RFMR in Fig 1 with rational rate functions corre-

sponding to Monod kinetics of the form

_n1 ¼ k31ðtÞ
n3

l þ n3

c1 � n1

l þ c1 � n1

� k12ðtÞ
n1

l þ n1

c2 � n2

l þ c2 � n2

_n2 ¼ k12ðtÞ
n1

l þ n1

c2 � n2

l þ c2 � n2

� k23ðtÞ
n2

l þ n2

c3 � n3

l þ c3 � n3

_n3 ¼ k23ðtÞ
n2

l þ n2

c3 � n3

l þ c3 � n3

� k31ðtÞ
n3

l þ n3

c1 � n1

l þ c1 � n1

ð59Þ

for some l> 0. As discussed before, the corresponding CRN is not strongly connected. How-

ever, using the functions

~k31ðtÞ ¼ k31ðtÞ
c1 � n1

l þ c1 � n1

~k12ðtÞ ¼ k12ðtÞ
c2 � n2

l þ c2 � n2

~k23ðtÞ ¼ k23ðtÞ
c3 � n3

lþ c3 � n3

ð60Þ

we can to rewrite (59) as

_n1 ¼ ~k31ðtÞ
n3

l þ n3

� ~k12ðtÞ
n1

lþ n1

_n2 ¼ ~k12ðtÞ
n1

l þ n1

� ~k23ðtÞ
n2

lþ n2

_n3 ¼ ~k23ðtÞ
n2

l þ n2

� ~k31ðtÞ
n3

lþ n3

:

ð61Þ
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Then the CRN corresponding to (64) has the following species and reactions:

S ¼ fN1;N2;N3g

R1 : N1 ��!
~k12 N2

R2 : N2 ��!
~k23 N3

R3 : N3 ��!
~k31 N1:

ð62Þ

which is strongly connected and isomorph to the compartmental model in Fig 1. We arrive at

the same conclusion if we instead use the functions

k̂31ðtÞ ¼ k31ðtÞ
1

lþ n3

c1 � n1

lþ c1 � n1

k̂12ðtÞ ¼ k12ðtÞ
1

lþ n1

c2 � n2

lþ c2 � n2

k̂23ðtÞ ¼ k23ðtÞ
1

lþ n2

c3 � n3

lþ c3 � n3

ð63Þ

to rewrite (59) as

_n1 ¼ k̂31ðtÞn3 � k̂12ðtÞn1

_n2 ¼ k̂12ðtÞn1 � k̂23ðtÞn2

_n3 ¼ k̂23ðtÞn2 � k̂31ðtÞn3:

ð64Þ

Note that the quasi-LTV factorization might be more complicated in some cases, but the

construction described in Section 5.2 guarantees its existence.

5.4 Induced family of Lyapunov functions

The above investigation demonstrates that generalized ribosome flows can be embedded into

rate-controlled biochemical networks in at least two different ways, where each embedding

induces a different Lyapunov function of the form (45). Thus, in general, we may use at least

two different Lyapunov functions governing the same dynamics. To characterize their exact

relation, consider a factored system of the form (50) with its ISS-Lyapunov function Vðn; nÞ.
The quasi-LTV representation of the system admits an ISS-Lyapunov function of the form

VLTVðn; nÞ ¼
Xm

i¼1

Z ni

ni

ðlog r � log niÞdr

¼
Xm

i¼1

ni log
ni
ni
þ ni � ni

!

¼:
Xm

i¼1

VLTV
i ðni; niÞð65Þ
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so that we can write

Vðn; nÞ ¼
Xm

i¼1

Z ni

ni

ðlog ðŷ iðrÞrÞ � log ðŷðniÞniÞÞdr ¼
Xm

i¼1

Z ni

ni

ðlog ŷ iðrÞ � log ŷ iðniÞÞdr

þ
Xm

i¼1

Z ni

ni

ðlog r � log niÞdr ¼
Xm

i¼1

Z ni

ni

ðlog ŷ iðrÞ � log ŷ iðniÞÞdr þ VLTVðn; nÞ:

ð66Þ

Remark 5.5. Since
Pm

i¼1
ni ¼

Pm
i¼1

ni we have that

VLTVðn; nÞ ¼
Xm

i¼1

ni log
ni
ni
;

which is exactly the Kullback-Leibler divergence DKLðnjjnÞ. It is important to note that the Kull-
back-Leibler divergence is not a metric, since DKLðnjjnÞ 6¼ DKLðnjjnÞ and it does not satisfy the tri-
angle inequality. However, it is a nonnegative measure, meaning that it is nonnegative and zero
if and only if n ¼ n and it is often used to measure the “distance” of probability distributions for
example in information theory and machine learning [43].

While in general we are restricted to the above factorizations, in some special cases we may

use a whole family of factorizations and corresponding Lyapunov functions. To illustrate this,

consider an example when each yiðrÞ ¼ rai
ðlþrÞbi

for some l> 0 and ai 2 N, bi 2 N0, ai� bi (these

properties ensure that the functions θi are nondecreasing). Then, after the factorization

described in Section 5.1, the Lyapunov function (45) becomes

Vðl;a;bÞðn; nÞ ¼
Xm

i¼1

ðai � biÞðni � niÞ þ aini log
ni
ni
þ biðl þ niÞ log

l þ ni
l þ ni

!

:ð67Þ

 

We emphasize that (45) only depends on the θi functions, in this case parametrized with the

l, ai, bi values; that is, it is independent of the network structure and transition rate coefficients.

We can also perform the factorization yiðrÞ ¼ ~y iðrÞ râ i

ðlþrÞb̂ i
with âi 2 N, âi < ai, b̂i 2 N0, âi � b̂i

yielding the Lyapunov function Vðl;â;b̂Þ of the same form as in (67). This shows that the parame-

ters a and b can be freely (apart from the constraints above) chosen in (67). We may also

observe some interesting behaviour at the extrema of the parameters b̂ and l, namely, that if we

choose each b̂i ¼ 0 then the Lyapunov function in (67) is independent of l; that is, we have

that

V ðl;â ;0Þðn; nÞ ¼
Xm

i¼1

âiV
LTV
i ðni; niÞ: ð68Þ

Moreover, letting l!1 yields the convergence

lim
l!1

Vðl;â;b̂Þðn; nÞ ¼
Xm

i¼1

âiV
LTV
i ðni; niÞ ð69Þ

where VLTV
i is defined in (65).

Example 1.5: Family of Lyapunov functions of a generalized RFMR. Let us again con-

sider a generalized version of the RFMR in the reduced state space from Fig 1. For a given ini-

tial condition n0 we can substitute n3 = H(n0) − n1 − n2, and thus the Lyapunov function

restricted to the manifold fHðnÞ ¼ Hðn0Þg can be seen as a two dimensional function with

local coordinates n1 and n2.
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We set the capacities as c1 = c2 = c3 = 100 and k12 = 100, k23 = 60, k31 = 20. The system has

transition rates as described above with each ai = bi = 3; that is, we have that

K12ðn1; c2 � n2Þ ¼ 100 �
n3

1

ðl þ n1Þ
3
�
ðc2 � n2Þ

3

ðlþ c2 � n2Þ
3

K23ðn2; c3 � n3Þ ¼ 60 �
n3

2

ðlþ n2Þ
3
�
ðc3 � n3Þ

3

ðl þ c3 � n3Þ
3

K31ðn3; c1 � n1Þ ¼ 20 �
n3

3

ðlþ n3Þ
3
�
ðc1 � n1Þ

3

ðl þ c1 � n1Þ
3
:

ð70Þ

Fig 7. Comparison of Lyapunov functions for a generalized RFMR. (a) l = 25, â ¼ ½3 3 3�; b̂ ¼ ½3 3 3�. (b) l = 25, â ¼ ½1 2 3�; b̂ ¼ ½0 0 1�. (c) l = 25,

â ¼ ½3 1 1�; b̂ ¼ ½3 1 1�. (d) l = 25, â ¼ ½2 3 2�; b̂ ¼ ½2 0 2�. (e) l = 100, â ¼ ½2 3 3�; b̂ ¼ ½2 0 2�. (f) l = 200, â ¼ ½2 3 2�; b̂ ¼ ½2 0 2�. (g) l = 25,

â ¼ ½2 3 2�; b̂ ¼ ½2 0 2�. (h) l = 100, â ¼ ½2 3 2�; b̂ ¼ ½2 0 2�. (i) l = 200, â ¼ ½2 3 2�; b̂ ¼ ½2 0 2�.

https://doi.org/10.1371/journal.pone.0288148.g007
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The simulations were performed with H(n0) = 150. Fig 7a–7c show the Lyapunov function

Vðl;â;b̂Þ for various choices of â and b̂ with l = 25 fixed. The second and third rows demonstrate

the convergence characterized in (69); Fig 7d–7f show Vðl;â ;b̂Þ for increasing l values Fig 7g–7i

shows
Pm

i¼1
âiVLTV

i for the same increasing l values.

Example 3: Family of Lyapunov functions for a larger network. Let us consider a com-

partmental system with m = 100 compartments in the reduced state space. We assume that the

transition rate functions are corresponding to Hill kinetics (modified intentionally to have dif-

ferent powers in the numerator and the denominator) and are of the form

Kijðni; cj � njÞ ¼ kij
n3
i ðcj � njÞ

3

ðlþ n2
i Þðl þ ðcj � njÞ

2
Þ

ð71Þ

with l = 350. We assume that the only nonzero coefficients are

kiðiþ1Þ ¼ 20 kiðiþ2Þ ¼ 18 kiðiþ3Þ ¼ 16 kiðiþ4Þ ¼ 14

kiðiþ5Þ ¼ 12 kiðiþ6Þ ¼ 10 kiðiþ7Þ ¼ 8 kiðiþ8Þ ¼ 6
ð72Þ

for i = 1, 2, . . ., m, where indices are understood as modulo m. Clearly this compartmental

graph is strongly connected. Finally, we set capacities

c1 ¼ c2 ¼ � � � ¼ c50 ¼ 50 c51 ¼ c52 ¼ � � � ¼ c100 ¼ 100 ð73Þ

Then the Lyapunov function (45) takes the form

Vðl;3;2ÞHill ðn; nÞ ¼
Xm

i¼1

 

ðni � niÞ þ 3ni log
ni

ni

þ ni log
n2
i þ l

n2
i þ l

þ2
ffiffi
l
p

atan
niffiffi
l
p � atan

niffiffi
l
p

�� �

:

ð74Þ

We can also factorize as yiðrÞ ¼ ŷ iðrÞ r2
lþr2, when (45) becomes

V ðl;2;2ÞHill ðn; nÞ ¼
Xm

i¼1

2ni log
ni
ni
þ ni log

n2
i þ l

n2
i þ l

þ 2
ffiffi
l
p

atan
niffiffi
l
p � atan

niffiffi
l
p

��

:ð75Þ

��

Fig 8 shows the time evolution of Lyapunov functions Vðl;3;2ÞHill , Vðl;2;2ÞHill and VLTV and their

time derivatives.

Remark 5.6. In the above examples we restricted the factorizations to integer exponents so
that we have real analytic transformations. However, the underlying dynamics is not changed
through the factorizations and real analyticity is not directly used in the investigation of the
ISS-Lyapunov function (45). Thus, as long as the factored k̂ijðtÞ is piecewise locally Lipschitz
(which holds after an arbitrarily short time in virtue of Remark 4.4), we can generalize (67) for
other values as well; to be precise, we can use any 0 < âi � ai and 0 � b̂i � âi real numbers.

Next, focusing on the Hill kinetics in (71), we note that while the denominator of the transfor-
mation yiðrÞ ¼ r3

lþr2 in (71) cannot be factorized we can rearrange the transformation as

yiðrÞ ¼
r3

l þ r2
¼
r3� aiðl þ rbiÞ

l þ r2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ŷ iðrÞ

rai
lþ rbi

¼ ŷ iðrÞ
rai

l þ rbi
ð76Þ
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where choosing 0< ai� 3 and 0� bi� ai ensures that the time-varying coefficient functions are
piecewise locally Lipschitz. In this case the exact value of the integral in (45) involves the general-
ized hypergeometric function and generally cannot be expressed in a closed form. However, in
some special cases (such as bi = 2 above) we can calculate the integral explicitly; for example set-
ting ai = 1.5 and bi = 0.5 yields

Vðl;1:5;0:5ÞHill ðn; nÞ ¼
Xm

i¼1

ðni � niÞ þ
3

2
ni log

ni

ni

þ ðni � l2Þlog
ffiffiffiffi
ni
p
þ l

ffiffiffiffini
p
þ l
þ l

ffiffiffiffi
ni

p
�

ffiffiffiffi
ni
p
Þ

�

:ð77Þ

��

Example 4: Competition for ribosomes in the cell. In this example we introduce a set of

generalized ribosome flows connected by a finite pool of ribosomes to model competition in

the cell. We follow [14], where the authors introduced a model for simultaneous translation

and [16], where the authors generalized the model to include premature drop-off and attach-

ment effects modeled with Langmuir kinetics. We will focus on the latter case and show that

with a slight modification it can be formalized as a generalized ribosome flow model with a

clear and natural compartmental interpretation. This demonstrates the usefulness and model-

ing power of generalized ribosome flows as one can prove various properties of many existing

models of different conceptual levels. Moreover, our results show that many qualitative prop-

erties of the system carry over to more general settings, e.g. when the translation, drop-off and

attachment rates are modeled with more sophisticated functions or when some (or all) rates

are time-dependent.

For the sake of simplicity we will present this example in the reduced state space. Let us

consider N mRNAs consisting of m1, m2, . . ., mN number of sites. Let nj
i denote the continuous

amount of ribosomes in the ith site of the j mRNA stand and let cji denote its capacity. Let cz
denote the capacity of the pool and nz denote the amount of ribosomes in the pool. For the

sake of notational simplicity let nj0 and njmjþ1 also denote nz and similarly for the capacities. Let

the translation rate functions from the ith site the to (i + 1)th site on the jth mRNA be denoted

Fig 8. Time evolution and time derivative of Lyapunov functions obtained from various factorizations of the transition rates. (a) Time evolution

of Lyapunov functions. (b) Derivative of Lyapunov functions.

https://doi.org/10.1371/journal.pone.0288148.g008
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as Kj
iðiþ1Þ. Finally, let the detachment and attachment rates at the ith site of the jth mRNA be

denoted respectively as Kj
iz and Kj

zi. The attachment rate to the first site and the detachment

rate from the last site will be called initiation rate and production rate, respectively. Then the

dynamics of the model is given by:

_nj
i ¼ Kj

ði� 1Þiðn
j
i� 1; c

j
i � nji; tÞ � Kj

iðiþ1Þðn
j
i; c

j
iþ1 � nj

iþ1; tÞ

þKj
ziðnz; c

j
i � nji; tÞ � Kj

izðn
j
i; cz � nz; tÞ;

_nz ¼
XN

j¼1

ðKj
mjz
ðnj

mj
; cz � nz; tÞ � Kj

z1ðnz; c
j
1 � nj

1; tÞÞ

þ
XN

j¼1

Xmj

i¼1

ðKj
izðn

j
i; cz � nz; tÞ � Kj

ziðnz; c
j
i � nji; tÞÞ:

ð78Þ

Thus, indeed, simultaneous translation with a finite pool can be described by a generalized

ribosome flow. Clearly the following function defines a linear first integral

HðnÞ ¼ nz þ
XN

j¼1

Xmj

i¼1

nj
i

and is a crucial factor in the dynamical analysis of the system.

Remark 5.7. In [16] the authors consider the following special case:

• the capacity of each site is one; that is, each cji ¼ 1,

• the translation rate are time-invariant and obey the mass-action law; that is, each
Kj

iðiþ1Þðn
j
i; 1 � njiþ1; tÞ ¼ l

j
in

j
ið1 � njiþ1Þ for some l

j
i > 0,

• the initiation and attachment rates are time-invariant and are given byKj
ziðnz; 1 � nj

i; tÞ ¼
b
j
iGjðzÞð1 � njiÞ for some b

j
i � 0 and Gj(z) continuously differentiable strictly increasing func-

tion with Gj(0) = 0,

• the drop-off rates are time-invariant and are given byKj
izðn

j
i; cz � nz; tÞ ¼ a

j
in

j
i for some

a
j
i � 0.

Since the drop-off rates are donor controlled the pool does not have a predefined capacity and
the amount of ribosomes in the pool are only bounded by H(n(0)). Therefore, this special case
does not fit in our compartmental framework (although, as most of our results are a consequence
of the linear first integral combined with the cooperativity of the system they can be generalized
to include donor controlled terms as well). It is assumed that the authors consider this case to cap-
ture the fact that the capacity of the pool might be several orders higher than the actual number
of ribosomes, and thus the dependence on the available space in the pool may be negligible. How-
ever, some physical meaning is lost with this assumption and it might in fact lead to less precise
simulations.

To see this, let us consider a network with N = 10 mRNAs with m = 5 sites. For the sake of sim-
plicity let lji ¼ b

j
1
¼ a

j
5 ¼ 1 for each i and j, and assume that there are no premature drop-offs

and attachments. We consider initation rates Gj(z) = z, Gj(z) = tanh(z) and Gj(z) = z2 and set
cz = 104. Since the equilibrium is unique on the level sets of the first integral we set each nj

i ¼ 0

and we only change nz(0). Fig 9 shows the ratio of the steady state of the pool in the case of
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donor controlled and mass-action production rates as we increase the ratio nzð0Þ
cz

from 5 � 10−2 to
1. As expected, the steady state ratio is close to one for saturating rate functions and for nz(0)�

cz. However, the ratio can get higher when the total number of ribosomes have the same magni-
tude as the capacity; that is, the inaccuracy of the donor controlled kinetics increases. While this
assumption might be valid for realistic parameters of ribosome flows in other TASEP based flow
models (especially with non-saturating kinetics) it might be crucial to model these transitions
accurately.

Effect of the total number of ribosomes. In the next simulation we follow [16] and we

consider a single mRNA strand with m1 = 3 sites. The initiation rate is set to b
1

1
¼ 1 while the

attachment rates are b
1

2
¼ 0:1 and b

1

3
¼ 0. The drop-off rates and production rate are set as

a1
1
¼ 0, a1

2
¼ 0:01, a1

3
¼ 1. We assume that the translation rates obey the mass-action law

with each l
1

i ¼ 1. We set the initial values to n1
j ¼ 0 and n0(z) = cz as before. Fig 10 shows the

steady state of the system as we increase cz from 0 to 5 for various rate functions. One can see

that in each case the mRNA saturates as we increase the number of ribosomes and the rest of

the ribosomes are accumulated in the pool. Finally, the same effect as in Fig 9 can be

observed; that is, the donor controlled detachment rates shift the steady state of the pool to

higher values.

We again emphasize the versatility of generalized ribosome flows as the initiation, transla-

tion, production, attachment and detachment rate function can be different on each site. For

example let us consider a particular mRNA strand with saturating initation and attachment

Fig 9. Steady state ratio of the donor controlled and the mass-action production rate for various initiation rates as

a function of the ratio of the total number of ribosomes and the capacity of the pool.

https://doi.org/10.1371/journal.pone.0288148.g009
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Fig 10. Steady state of a single mRNA strand in a pool modeled with an RFM and a GRFM with mass-action translation rate and drop-off rates,

and attachment rate corresponding to different G1(z) functions. (a) RFM, G1(z) = z. (b) RFM, G1(z) = tanh(z). (c) RFM, G1ðzÞ ¼
tanhðzÞ

4þtanhðzÞ. (d) GRFM,

G1(z) = z. (e) GRFM, G1(z) = tanh(z). (f) GRFM, G1ðzÞ ¼
tanhðzÞ

4þtanhðzÞ.

https://doi.org/10.1371/journal.pone.0288148.g010
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rates given by K1

ziðnz; n1
i Þ ¼ b

1

i tanhðnzÞðc
1
i � n1

i Þ, with mass-action translation rates and with

production and drop-off rates given by K1

izðn
1
i ; nzÞ ¼ a

1
i �

n1
i

1þn1
i
� n3

z . Fig 11 shows evolution of

the steady states as we increase nz(0) = cz as before. As expected the steady states of the mRNA

sites are moved to lower values.

6 Conclusions

The dynamical properties of generalized ribosome flow models models with arbitrary com-

partmental graph structure and general time-varying transition rates were studied in this

paper. The analysis is based on the deterministic CRN representation of such systems which

has a transparent physical meaning by tracking the amounts (concentrations) of available

objects and free spaces, respectively, in each compartment. Our framework includes several

important models from the literature including the RFMR [13], and its generalizations like the

RFMRD [15]. As demonstrated in Example 4, our framework can describe complex phenom-

ena like competition for ribosomes in a cell through a set of tubular flow models connected

with a pool of finite capacity. The obtained model (with a slight modification due to physical

considerations) includes previously published pool models such as [16]. It was shown that the

deficiency of the obtained kinetic model form is equal to the number of chordless cycles in the

undirected reaction graph of the system. Furthermore, it was proved that time-varying gener-

alized ribosome flows are persistent under mild regularity assumptions on the transition rates,

and a wide set of reaction rates satisfying this assumption was characterized, containing well-

Fig 11. Steady state of a single mRNA strand in a pool modeled with a GRFM with mass-action translation rate,

rational fraction drop-off rates, and saturating attachment rates.

https://doi.org/10.1371/journal.pone.0288148.g011

PLOS ONE Persistence and stability of generalized ribosome flow models with time-varying transition rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0288148 July 7, 2023 30 / 33

https://doi.org/10.1371/journal.pone.0288148.g011
https://doi.org/10.1371/journal.pone.0288148


known examples such as mass-action type rates. It was shown that the studied models can be

embedded in at least two ways into the class of rate-controlled biochemical networks originally

described in [22]. This embedding allows us to prove stability with entropy-like logarithmic

Lyapunov functions known from the theory of CRNs. It was illustrated that the non-unique

factorization of the rate functions gives rise to a whole family of various possible Lyapunov

functions. Finally, periodic model behaviour was also studied, where we showed that trajecto-

ries with the same overall initial mass and periodic transition rates having the same period

(but possibly different phase) converge to a unique periodic solution. The generality of our set-

ting allows the efficient extension of the proposed results to ribosome flows open to the envi-

ronment, for example as in [44, 45]. It also allows the generalization of other qualitative results

in the literature, for example translation rate maximization [15, 46]. We emphasize that the

persistence and stability results, and even the basic logarithmic Lyapunov function candidate

in Eq (45) are independent of the potentially uncertain time varying parameters (rate coeffi-

cients) of the model. Besides the theoretical aspects, these improvements may efficiently sup-

port structural design or control of compartmental models with bounded capacities, which is

planned to be addressed in our future work.
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References
1. Haddad WM, Chellaboina V, Hui Q. Nonnegative and Compartmental Dynamical Systems. Princeton

University Press; 2010.

2. Godfrey K. Compartmental models and their application. Academic Press; 1983.

3. Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. Wiley; 2000.

4. Rantzer A, Valcher ME. A Tutorial on Positive Systems and Large Scale Control. In: 2018 IEEE Confer-

ence on Decision and Control (CDC). IEEE; 2018. p. 3686–3697.

5. Brown RF. Compartmental System Analysis: State of the Art. IEEE Transactions on Biomedical Engi-

neering. 1980; BME-27(1):1–11. https://doi.org/10.1109/TBME.1980.326685 PMID: 6987158

6. Jacquez JA, Simon CP. Qualitative theory of compartmental systems. SIAM Review. 1993; 35(1):43–

79. https://doi.org/10.1137/1035003

7. MacDonald CT, Gibbs JH, Pipkin AC. Kinetics of biopolymerization on nucleic acid templates. Biopoly-

mers. 1968; 6(1):1–25. https://doi.org/10.1002/bip.1968.360060102 PMID: 5641411

8. Heinrich R, Rapoport TA. Mathematical modelling of translation of mRNA in eucaryotes; steady states,

time-dependent processes and application to reticulocytest. Journal of Theoretical Biology. 1980; 86

(2):279–313. https://doi.org/10.1016/0022-5193(80)90008-9 PMID: 7442295

9. von der Haar T. Mathematical and computational modelling of ribosomal movement and protein synthe-

sis: an overview. Computational and Structural Biotechnology Journal. 2012; 1(1):e201204002. https://

doi.org/10.5936/csbj.201204002 PMID: 24688632

PLOS ONE Persistence and stability of generalized ribosome flow models with time-varying transition rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0288148 July 7, 2023 31 / 33

https://doi.org/10.1109/TBME.1980.326685
http://www.ncbi.nlm.nih.gov/pubmed/6987158
https://doi.org/10.1137/1035003
https://doi.org/10.1002/bip.1968.360060102
http://www.ncbi.nlm.nih.gov/pubmed/5641411
https://doi.org/10.1016/0022-5193(80)90008-9
http://www.ncbi.nlm.nih.gov/pubmed/7442295
https://doi.org/10.5936/csbj.201204002
https://doi.org/10.5936/csbj.201204002
http://www.ncbi.nlm.nih.gov/pubmed/24688632
https://doi.org/10.1371/journal.pone.0288148


10. Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T. Genome-Scale Analysis of Translation Elongation

with a Ribosome Flow Model. PLoS Computational Biology. 2011; 7(9):e1002127. https://doi.org/10.

1371/journal.pcbi.1002127 PMID: 21909250

11. Shaw LB, Zia RKP, Lee KH. Totally asymmetric exclusion process with extended objects: A model for

protein synthesis. Physical Review E. 2003; 68(2). https://doi.org/10.1103/PhysRevE.68.021910

12. Margaliot M, Tuller T. Ribosome flow model with positive feedback. Journal of The Royal Society Inter-

face. 2013; 10(85):20130267. https://doi.org/10.1098/rsif.2013.0267 PMID: 23720534

13. Raveh A, Zarai Y, Margaliot M, Tuller T. Ribosome Flow Model on a Ring. IEEE/ACM Transactions on

Computational Biology and Bioinformatics. 2015; 12(6):1429–1439. https://doi.org/10.1109/TCBB.

2015.2418782 PMID: 26671812

14. Raveh A, Margaliot M, Sontag ED, Tuller T. A model for competition for ribosomes in the cell. Journal of

The Royal Society Interface. 2016; 13(116):20151062. https://doi.org/10.1098/rsif.2015.1062 PMID:

26962028

15. Bar-Shalom E, Ovseevich A, Margaliot M. Ribosome flow model with different site sizes. SIAM Journal

on Applied Dynamical Systems. 2020; 19(1):541–576. https://doi.org/10.1137/19M1250571

16. Jain A, Margaliot M, Gupta AK. Large-scale mRNA translation and the intricate effects of competition

for the finite pool of ribosomes. Journal of The Royal Society Interface. 2022; 19(188). https://doi.org/

10.1098/rsif.2022.0033 PMID: 35259953
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