
RESEARCH ARTICLE

Genetic diversity in ex situ populations of the

endangered Leontopithecus chrysomelas and

implications for its conservation

Gabriela Guadalupe Aliaga-SamanezID
1*, Nathalia Bulhões Javarotti1, Gisele Orecife1,
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Abstract

Leontopithecus chrysomelas, the Golden-headed Lion Tamarin (GHLT), is an endangered

and endemic Neotropical primate from the Atlantic Forest of Brazil that has suffered a reduc-

tion of its habitat and population size in the wild. Ex situ populations have been established

as a relevant alternative to safeguard the species and retain its genetic diversity and evolu-

tionary potential. This study evaluated the genetic diversity and structure of the two main

Brazilian captive populations of GHLT, which have been under human care at the Primatol-

ogy Center of Rio de Janeiro (CPRJ) and the Zoological Park Foundation of São Paulo

(FPZSP). Our results revealed levels of genetic diversity overall comparable to those

observed for other Leontopithecus species and for ex situ and in situ populations of GHLT

previously studied. Bayesian and principal coordinate analyses showed a moderate differ-

entiation between CPRJ and FPZSP populations. Both populations presented observed

heterozygosity values higher than expected heterozygosity values for most of the microsat-

ellites used in this study, suggesting that the management has been efficient in avoiding an

increase in homozygosity. However, simulations point to a significant loss of genetic diver-

sity in the next 100 years, mainly in the FPZSP population. Such data are relevant for further

decision-making on the metapopulation management of L. chrysomelas in captive condi-

tions and for integrating in situ and ex situ conservation plans.

Introduction

There is no longer any doubt that ex situ conservation is an insurance policy for endangered

species worldwide. Reproducing and growing threatened organisms under human care, out-

side of their natural habitats, have been used for obtaining new individuals and restoring

depauperate wild populations [1–3]. Nevertheless, captive breeding programs have
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important challenges for the maintenance of healthy populations [4]. The loss of genetic

diversity, inbreeding and adaptation to captivity are virtually inevitable but should be mini-

mized for the genetic health of the ex situ populations [5]. These effects are difficult to pre-

dict, given the wide range of life history characteristics of species (e.g. reproductive

strategies) [5, 6]. Several primate species have captive populations included in national or

international conservation programs [7–9], however, the genetic health of these populations

is little known.

The Golden-headed Lion Tamarin (GHLT), Leontopithecus chrysomelas (Kuhl, 1820), is a

Neotropical primate endemic to the Brazilian Atlantic Forest [10] and originally distributed in

southeast Bahia and northeast of Minas Gerais states [11]. This species mainly uses lowland

seasonal Atlantic rainforest, but also occupies secondary forest and cabrucas, which are areas

destined to cacao agriforest plantations [11].

Despite the relatively high ecological plasticity of L. chrysomelas, its population size in the

wild has decreased more than 60% in the last decades, mainly due to the continuous deforesta-

tion and subsequent habitat fragmentation and loss [12–14]. In addition, illegal activities, such

as hunting, trading, and trafficking, have also negatively impacted the species [15]. Conse-

quently, nowadays, the whole population of L. chrysomelas in nature is estimated to include

approximately 2,500 mature individuals, distributed over a very restricted geographic area in

southeast Bahia [16]. Thus, the species is currently listed as Endangered by the Red List of the

International Union for Conservation of Nature [17]. A prior genetic analysis in wild L. chry-
somelas [18] already revealed population structuring, possibly resulting from habitat fragmen-

tation, and low levels of genetic diversity, which were similar to those of the other endangered

Leontopithecus species [17, 19].

Efforts for the conservation of L. chrysomelas have been employed since the 1970’s, and

include actions to protect populations in natural habitat, but also to establish viable ex situ
populations as a manner to minimize the extinction risk [5, 19]. A review on the history of the

captive program of L. chrysomelas mentions that the first ex situ colony of the species was

established at the Tijuana Biological Park in Rio de Janeiro, Brazil, being later transferred to

the Primatology Center of Rio de Janeiro [15]. In 1979 there were about 20 individuals in cap-

tivity in Brazil [20]. However, in the 1980’s some illegally exported animals were returned to

the country, and a worldwide captive breeding program, along with the Studbook for the spe-

cies, was initiated, hugely expanding the ex situ population size [21].

The GHLT captive breeding program showed a remarkable success over the years,

evidencing rapid growth from 285 individuals kept in 22 institutions in 1989 to 611 ones dis-

tributed in 99 institutions at the end of 1999 [20]. In 2017 the Studbook of the species

recorded 443 L. chrysomelas kept in 105 institutions in Europe, North America, Asia, and

Brazil, including 22 countries [22]. In May 2022 there were approximately 393 extant ex situ
GHLTs, 262 maintained overseas and 131 in 19 Brazilian institutions, of which the Zoologi-

cal Park Foundation of São Paulo (FPZSP) and the Primatology Center of Rio de Janeiro

(CPRJ) maintain the largest populations (Pissinatti A. and Monticelle C., personal commu-

nication). Currently, the species is distributed in 17 Brazilian institutions (S1 Fig), with

FPZSP and CPRJ keeping, respectively, 18 and 45 animals under human care (Marques M.

C., personal communication).

The current pedigree-based genetic diversity of the total Brazilian captive GHLT population

is high (95%), due to a relatively large founder basis (43 founders). However, the pedigree of

this population is known for only 73%, impairing an optimal genetic analysis of the breeding

program [22]. In addition, pedigree-based analyses pointed to a decrease in their genetic diver-

sity in the last 10 years [22]. Nevertheless, there is no molecular genetic information of these

Brazilian captive populations thus far. For ex situ L. chrysomelas, molecular genetic
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assessments have been performed to date only in the population under human care in Europe

[22], which showed low levels of genetic diversity, such as the Brazilian and European ex situ
groups of the congeneric species Leontopithecus chrysopygus, that also demonstrated genetic

differentiation in addition to accumulated inbreeding based on pedigree analyses [23, 24].

In this study, using a microsatellite panel previously employed for captive and wild popula-

tions of the focal species [18, 19], we characterized genetic diversity, genetic structure and

inbreeding for ex situ populations of L. chrysomelas managed by the two main institutions that

reproduce the species in Brazil for conservation proposes. Predictive analyses were also per-

formed to simulate scenarios of genetic diversity reductions over generations, considering a

retention of 90% of the current genetic diversity as a threshold for long term population viabil-

ity [6, 25].

We hypothesized that the Brazilian captive populations show low genetic diversity and

genetic differentiation among them. We also hypothesized that these populations will lose

more than 10% of their current genetic diversity over the next 100 years, despite eventual

influx of confiscated animals and exchange of individuals among institutions. We raised such

hypotheses considering (i) the difficulty in making optimal breeding recommendations, due to

the lack of genealogical information for 27% of the Brazilian captive GHLTs; and (ii) the

decrease in their genetic diversity, detected by pedigree analyses [22]. Our findings raised rele-

vant information for the Brazilian ex situ GHLT populations and for further conservation

plans that consider molecular data for management practices.

Material and methods

Legal permits

This study was conducted according all legal and ethical standards and requirements estab-

lished by the Biodiversity Authorization and Information System (SISBIO, MMA, Federal

Government, Brazil, numbers 53201–1; 63477–3), and by the Ethics Committee in Animal

Use and Experimentation (CEUA, Federal University of São Carlos, Brazil, number

7058110316). The access to genetic patrimony was registered at National Genetic Heritage

Management System (SISGEN, MMA, Federal Government, Brazil, number A411359). Sam-

ple collections were carried out following the recommendations proposed for non-human pri-

mates by the American Society of Primatologists (ASP).

Biological sampling and DNA extractions

We collected hair or blood samples from a total of 104 GHLTs, of which 55 were under human

care at the Primatology Center of Rio de Janeiro (CPRJ); and 49 at the Zoological Park Foun-

dation of São Paulo (FPZSP). This sampling included all extant adult individuals, inclusive the

related ones, maintained in both institutions in 2014, when biological samples were collected

(S1 Table). For blood collections, anesthesia procedures were first performed by induction

with 2 to 5% isoflurane with oxygen at 2 L/min, using an inhalation equipment. Then, approxi-

mately 200 μL of whole blood from the femoral vein was collected, using vacutainers with

EDTA (3.6 mg), and posteriorly kept at -20˚ C. We also manually collected tufts of hairs con-

taining cell bulbs from the back of each animal and stored them individually in plastic envelops

kept at room temperature.

After sampling, each animal was safely released in its respective enclosure. DNA extractions

from blood and hair samples were carried out using prior protocols described, respectively, by

Aljanabi & Martinez [26] and Sambrook et al. [27]. DNA quantity and quality was evaluated

using a Nanodrop spectrophotometer (NanoVue Plus, GE Healthcare, Chicago, USA).
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Microsatellite amplification and genotyping

Eleven microsatellite loci were amplified, using seven species-specific primer pairs [19], and

four heterologous primer pairs isolated for L. chrysopygus [28], as shown in Table 1. To select

these loci, we first obtained information from previous studies that had already used these

primer pairs in L. chrysomelas (18) and in congeneric species [28]. Then, we selected the loci

that presented the best amplification patterns in our sampling.

Polymerase Chain Reactions (PCRs) contained approximately 10 ng/μL of DNA obtained

from blood or hair, 1x GoTaq Promega (Madison, Wisconsin, USA), 1x Buffer, 0.46 pmol of

the reverse and M13 primers, 0.12 pmol of the forward primer, 0.30 mg/ml of BSA, 0.75 mM

of MgCl2, 0.25 mM of each dNTPs, and milliQ water to complete a total reaction volume of

10 μL. For hair DNA samples with concentration lower than 10 ng/μL, or not measurable by

spectrophotometer, we used 2 μL of the total volume of extracted DNA.

PCRs were carried out on a Thermal Cycler Eppendorf Mastercycler Gradient (Eppendorf

AG, Hamburg, Germany) under the following conditions: an initial cycle of denaturation at

94˚C for 5 min, followed by 30 cycles of 30 sec at 94˚C, 45 sec at a locus-specific annealing

temperature (Table 1) and 45 sec at 72˚C; and by 8 cycles of 30 sec at 94ºC, 45 sec at 53ºC
(M13 primer annealing temperature) and 45 sec at 72º C; with a final extension step at 72º for

10 min.

The methodology proposed by Schuelke [29] was employed for later identification of alleles

from combined multiple loci using four different fluorophores (FAM, VIC, NED and PET)

Table 1. Information on successfully amplified microsatellite loci used in this study with primer sets previously described for Leontopithecus chrysomelas and Leon-
topithecus chrysopygus.

Species Locus Primers sequence (5’-3’) Repeat Fluorophore T˚C

L.chrysomelas Lchu1 F: GCTCAGGTGTTATTTATGTCCAAA Tetra PET 58˚C

R: GTTTCTTGCAACTATCTTGCATGTTCTGC

Lchu3 F: AAGGCATGATGTATCTTGTTCTCA Tetra FAM 58˚C

R: GTTTCTTATCTTTCTGTATGTGTCTCCCTGTCT

Lchu4 F: TGACCAAAGAAAATGCAAAA Tetra VIC 55˚C

R: GTTTCTTGCACAGGGTATTTAGCAGGA

Lchu5 F: TGATGCTAAAACAGAAGCATTT Tetra NED 55˚C

R: GTTTCTTGTCCTGATGTTCACAAAACCT

Lchu6 F: GCCTTAATTAGCACCAGAACC Di PET 55˚C

R: GTTTCTTACCACTCCAAGCCTTCAGTA

Lchu8 F: CACGGCAATGTGGGAATAA Di NED 58˚C

R: GTTTCTTTTCAGTAGTTGGGACTGGGATAA

Lchu9 F: TTCATTGTAGCATTGTTGGTCAT Di VIC 58˚C

L. chrysopygus Leon2 R: GTTTCTTTTGCCTCCTCATAGTTCCTCAT

F: CTGCTTCTTGTTCCACTTCTTCTC Di FAM 56˚C

R: GTTTGGGTGGTTGCCAAG

Leon21 F: CAGTTGAGGGAACAGGAATTA Di PET 60˚C

R: CACTGCACTGACAGAGCAAG

Leon27 F: AAGCGCAGATTTATTGATAGG Di VIC 60˚C

R: TGCAGGTAAATGATGGTAATG

Leon30 F: GGACCTGATTGAAGCAGTC Di NED 60˚C

R: TTCCCTGAGAATCTAATGGAG

F: forward, R: reverse, Tetra: tetraploid, Di: diploid, T˚C: alignment temperature.

https://doi.org/10.1371/journal.pone.0288097.t001
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(Table 1). The amplified fragments were first visualized on an 1% agarose gel with 2 μL of each

sample plus 1 μL of GelRed and 1 μL of bromophenol blue, under UV using a transilluminator

(ETX-35.M, Vilmer Lourmat, Collégien France). Then, PCR products were genotyped on an

automatic Sequencer 3730XL DNA Analyzer (Applied Biosystems, Waltham, Massachusetts,

USA).

Data analysis

The electropherograms were analysed with Geneious 6.0.6 [30] for identification of alleles and

genotypes. Then, we checked stutters, allele dropout and the occurrence of null alleles using

Micro-Checker 2.2.3 [31]. The Polymorphic Information Content (PIC) was estimated

through the Cervus 3.0.3 program [32]. The number of alleles per locus (AN), number of effec-

tive alleles (AE) and expected (HE) and observed (HO) heterozygosity for each population were

estimated with GenAlEx 6.51b2 [33]. Allelic richness (AR) and the inbreeding coefficients (FIS)

were determined using the FSTAT 2.9.3 software [34]. P values for excess and deficit of hetero-

zygotes and deviations from the Hardy-Weinberg Equilibrium (HWE) were tested with Gene-

pop 4.0.10 [35].

P values for significant differences (P< 0.05) were determined based on the analysis of vari-

ance (ANOVA) and Students’s t test, after verifying sampling normality and homogeneity,

using the Shapiro-Wilk and Levene tests, respectively, in R 4.2.1 [36]. To compare the genetic

diversity parameters (HO, HE, AN) estimated for the European and the Brazilian captive popu-

lations of L. chrysomelas, we considered only the common homologous loci used in both

studies.

Population differentiation was investigated through principal coordinate analysis (PCoA)

and Bayesian clustering using GenAlEx 6.51b.2 [33] and Structure 2.1 [37], respectively. The

number of most likely genetic groups (K) was determined by Structure Harvester 0.6.94 [38].

Five replicates were considered for each run, with K values ranging from 1 to 6, and using the

admixture model with 200,000 MCMC interactions after a burn-in period of 40,000 iterations.

The fixation index (FST) [39] between populations was calculated using Arlequin 3.0 [40].

We also carried out a predictive analysis with Bottlesim 2.6 [41], to evaluate the effects on

HE, HO and AN for simulated population size reductions of 0%, 20% and 50% in the next 100

years. The analysis was implemented with 1,000 iterations and considered complete overlap-

ping of generations, dioecious reproduction, a 1:1 sex ratio, and constant population size. We

also assumed that L. chrysomelas reaches sexual maturity at 2 years of age [42, 43] and that its

lifespan is 16 years [44].

For the prediction analysis, we used the allele frequencies and the calculated effective popu-

lation sizes (Ne). Ne values were estimated using the linkage disequilibrium through the NeEs-

timator 2.0 software [45]. We determined Ne for FPZSP and CPRJ populations, separately,

and together (FPZSP-CPRJ). Ne is defined as being the size of an ideal population that under-

goes the same amount of genetic drift as the population analysed, either by assessing the allele

frequency or by the inbreeding rate [46]. Ne-based analyses are relevant, since the effective

population size is a more accurate estimate for the population status than the census size, and,

therefore, may reveal a more realist response on the heterozygosity and allele behaviour over

generations [47].

Results

Overall, we did not find differences in amplification rates between DNA from hair and blood

samples (S1 Table). The percentage of unsuccessful amplification per locus (S1 Table) ranged

from 1% (Lchu5) to 8.6% (Lchu4 and Leon27) for most loci, except for Lchu8 (27.9%). Stutters
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or allele dropout were not observed, while null alleles were indicated only for the locus

Leon30. We found significant deviation from Hardy Weinberg Equilibrium in CPRJ for the

loci Lchu5, Lchu9 and Leon30 (Table 2). However, genetic diversity (HO, HE, AN, AR, FIS;

P< 0.05) and structure estimates were not altered when we removed these loci (S3 and S6

Tables, S3 Fig), therefore, they were not excluded from the analyses.

The PIC values mostly ranged from 0.36 to 0.72 for CPRJ; and from 0.28 to 0.79 for FPZSP,

with a mean of 0.59 and 0.50, respectively (Table 2), showing that the panel of microsatellites

used herein is overall highly informative for both Brazilian captive populations of L. chrysome-
las, according to the classification proposed by Botsein et al. [48], in which PIC>0.5 is highly

informative, 0.25<PIC<0.50 reasonably informative, and PIC<0.25 is minimally informative.

The total number of alleles ranged from three to eight for CPRJ, and from two to six for

FPZSP (Table 2). The values estimated for the mean allelic richness (AR), the number of pri-

vate alleles (AP), observed heterozygosity (HO) and expected heterozygosity (HE) were higher

Table 2. Genetic diversity estimates for Leontopithecus chrysomelas captive groups from the Primatology Center of Rio de Janeiro (CPRJ, N = 55) and the Zoological

Park Foundation of São Paulo (FPZSP, N = 49).

Locus N AN AR HO HE FIS PDH PEH PHWE PIC AP

Primatology Center of Rio de Janeiro

Lchu1 51 3 3.00 0.67 0.58 -0.157 0.893 0.109 0.155 0.51 -

Lchu3 52 6 5.96 0.83 0.76 -0.091 0.685 0.317 0.149 0.72 -

Lchu4 48 5 4.39 0.50 0.40 -0.247 1.000 0.017 0.515 0.36 -

Lchu5 48 6 5.60 0.77 0.76 -0.013 0.259 0.742 0.003* 0.72 290

Lchu9 53 5 4.91 0.70 0.73 0.037 0.015 0.986 0.000* 0.68 428

Lchu8 46 8 7.23 0.67 0.62 -0.093 0.561 0.445 0.430 0.59 226/232/240

Lchu6 54 5 4.90 0.61 0.66 0.077 0.146 0.857 0.092 0.62 182/186/192

Leon2 51 4 4.00 0.77 0.67 -0.143 0.603 0.029 0.081 0.60 -

Leon21 46 4 3.95 0.46 0.58 0.211 0.033 0.969 0.184 0.49 300/304

Leon27 50 3 3.00 0.68 0.55 -0.241 0.973 0.029 0.059 0.49 216

Leon30 55 7 6.48 0.55 0.72 0.237 0.007 0.993 0.000* 0.68 260/268

Mean 4.86 0.65 0.64 -0.016 0.59

Zoological Park Foundation of São Paulo

Lchu1 47 3 3.00 0.51 0.64 0.200 0.023 0.978 0.046 0.57 -

Lchu3 46 6 6.00 0.80 0.82 0.018 0.504 0.497 0.020 0.79 -

Lchu4 46 6 5.56 0.46 0.47 0.036 0.457 0.598 0.492 0.45 412

Lchu5 46 6 6.00 0.70 0.77 0.098 0.014 0.987 0.012 0.74 274

Lchu9 46 4 3.98 0.30 0.29 -0.048 0.749 0.545 0.537 0.28 -

Lchu8 29 5 5.00 0.72 0.69 -0.047 0.084 0.917 0.060 0.63 -

Lchu6 48 2 2.00 0.42 0.50 0.165 0.176 0.935 0.257 0.38 -

Leon2 45 4 3.96 0.60 0.59 -0.023 0.601 0.447 0.960 0.50 -

Leon21 41 2 2.00 0.44 0.34 -0.281 1.000 0.090 0.165 0.28 -

Leon27 45 3 3.00 0.64 0.61 -0.064 0.715 0.286 0.035 0.54 210

Leon30 44 5 4.51 0.80 0.44 -0.087 0.762 0.329 0.651 0.39 -

Mean 4.09 0.55 0.56 0.025 0.50

N: sample number; AN: number of alleles; AR: allelic richness; HO: observed heterozygosity, HE: expected heterozygosity FIS: Inbreeding coefficient due to deviation

from Hardy-Weinberg, PDH: p-values for the deficit of heterozygotes for the inbreeding coefficient FIS; PEH: p-values for the excess of heterozygotes for the inbreeding

coefficient FIS, PHWE: p-value for the Hardy Weinberg equilibrium; PIC: Polymorphic Information Content; AP: private alleles.

*Statistically significant values;

- Absence of private alleles.

https://doi.org/10.1371/journal.pone.0288097.t002
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in CPRJ when compared to FPZSP (Table 2). The CPRJ captive group showed a negative value

of the mean inbreeding coefficient, indicating excess of heterozygotes; while the FPZSP

showed a positive value, indicating deficit of heterozygotes (Table 2).

The principal coordinate (Fig 1A) and the Bayesian (Fig 1B) analyses distinguished both

CPRJ and FPZSP populations, evidencing two main genetic groups (K = 2), confirmed by both

Ln’(K) and Delta K estimates as shown in the (S2 Table and S2 Fig). The mean value of FST cal-

culated for the CPRJ and FPZSP was 0.13182 (P = 0.000), indicating a moderate differentiation

between populations.

The predictive analysis for population reduction events, considering the effective popula-

tion sizes (Ne) for CPRJ (Ne = 26) and FPZSP (Ne = 11) (S4 and S5 Tables), showed that the

expected and observed heterozygosity, as well as the number of alleles will drop below 90% in

both captive populations over 100 years. Overall, the loss of genetic diversity in the number of

alleles was greater than in the heterozygosity. The smaller the population, the more pro-

nounced is the genetic diversity loss across generations. The decrease in allelic diversity,

Fig 1. Population differentiation analyses for 104 individuals of Leontopithecus chrysomelas from the Primatology

Center of Rio de Janeiro (CPRJ) and the Zoological Park Foundation of São Paulo (FPZSP). (A) Principal

coordinate analysis (PCoA), showing the scores on the first (PCO1) and second (PCO2) principal coordinate. (B)

Structure analysis results for CPRJ and FPZSP captive populations, considering the most probable K value (K = 2).

https://doi.org/10.1371/journal.pone.0288097.g001
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expected heterozygosity and observed heterozygosity was greater in FPZSP. When considering

a 50% population size reduction, genetic diversity will rapidly decrease in CPRJ, and it will col-

lapse in FPZSP. Considering no bottleneck events, the predictive analysis shows that both pop-

ulations will retain more than 90% of allele number in the next 10 (FPZSP) and 20–30 (CPRJ)

years. For the expected heterozygosity, more than 90% of it will be retained in the next 20–30

and 30–40 years in FPZSP and CPRJ, respectively (Fig 2, S5 Table).

When we considered the two populations together (FPZSP-CPRJ), the effective population

size was 20 (S4 Table); and the observed and expected heterozygosity showed tendency to

decrease faster than the number of alleles (Fig 3, S5 Table). Considering bottleneck events,

merely 40–60% of the current observed and expected heterozygosity will be maintained in the

next 100 years. On the other hand, if the FPZSP-CPRJ population maintains its effective size,

Fig 2. Prediction analysis for observed allele number, expected heterozygosity and observed heterozygosity reductions of

the Brazilian ex situ populations of Leontopithecus chrysomelas from the Primatology Center of Rio de Janeiro (CPRJ)

(A-C) and the Zoological Park Foundation of São Paulo (FPZSP) (D-F), for the next 100 years, using 100% of the effective

population sizes (CPRJ: Ne = 26; FPZP: Ne = 11), and botlenecks of 20% and 50%.

https://doi.org/10.1371/journal.pone.0288097.g002
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without bottleneck, more than 90% of the number of alleles and approximately 70% of the

observed and expected heterozygosity will be retained over the years (Fig 3, S5 Table).

Discussion

Overall, our findings suggest that the ex situ population of L. chrysomelas from the CPRJ

shows a better capacity to maintain genetic diversity for a longer period under possible bottle-

necks scenarios. In addition, such results highlight the importance of both FPZSP and CPRJ

groups for the ex situ metapopulation management and point to the need for further ex situ
and in situ integrated conservation programs.

The CPRJ and FPZSP populations evidenced genetic structuring among them, with moder-

ate (FST = 0.132) differentiation [39], though some individuals from CPRJ showed a higher

likelihood of belonging to the FPZSP cluster and vice versa. This later result is likely related to

the management practices of these captive populations that include the exchange of individuals

between institutions [49, 50]. Of note, CPRJ evidenced 13 private alleles, while FPZSP exhib-

ited just three (see Table 2); from this total of 16, six and two are rare alleles (<5%), respec-

tively (see S1 Table), suggesting that differences between populations may be specially related

to the loss of rare alleles.

As rare alleles contribute relatively little to the population heterozygosity [51], their loss did

not affect the heterozygosity levels much [51], as pointed below. In addition, FPZSP showed a

positive but small value for the mean inbreeding coefficient (FIS = 0.025), while CPRJ showed

a mean negative inbreeding coefficient (FIS = - 0.016), suggesting the management in the cap-

tive populations have been preventing the increase in homozygosity, which can lead to expo-

sure of deleterious recessive alleles and compromise fitness traits such as those related to

reproduction [6].

It is well known that the correlation between fitness and levels of genetic variation can be

weak or even non-existent when assessed by neutral molecular markers, mainly for disregard-

ing additive genetic diversity and the benefits caused by the purging of deleterious alleles (e.g.,

[47]). In this sense, homozygosity could be beneficial by eliminating harmful alleles from pop-

ulations and, therefore, inbred populations with low heterozygosity would have adaptive

advantages (e.g., [52, 53]). Notwithstanding, the Convention on Biological Diversity and the

International Union for Conservation of Nature (IUCN) reaffirm the importance of consider-

ing genetic diversity to evaluate the threat status of species, based on the concept that small

Fig 3. Prediction analysis for observed allele number, expected heterozygosity and observed heterozygosity reductions of the Brazilian ex situ
population of Leontopithecus chrysomelas from the Primatology Center of Rio de Janeiro (CPRJ) and the Zoological Park Foundation of São

Paulo (FPZSP), analyzed as a single population, for the next 100 years, using 100% of the effective population size (CPRJ-FPZP, Ne = 20), and

botlenecks of 20% and 50%.

https://doi.org/10.1371/journal.pone.0288097.g003
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populations with lower heterozygosity levels and higher inbreeding rates are more prone to

extinction [54]. In addition, meta-analyses compiling studies in different species have already

shown that neutral genetic diversity can be correlated with fitness [47, 55, 56]. Also, a recent

approach demonstrated that species with higher extinction risk status tend to have lower

genetic diversity assessed by whole genome, mitochondrial and microsatellite analyses [57].

Further, despite the recent advances in genomics to assess non-neutral genetic diversity,

most of the endangered and rare species have no assembled genome to perform robust analy-

ses, mainly species from countries with high biodiversity and endemism, in addition to eco-

nomic, social, and political concerns [58, 59]. Hence, the relevance of assessing heterozygosity

and inbreeding levels in small and endangered species, by the use of neutral markers, to infer

population viability is defended by the scientific community (e.g., [54, 56]). Thus, neutral

genetic diversity has been widely assessed to infer on the general population health status [60],

especially in the Neotropics (e.g., [18, 23, 24, 61–64]).

Our findings showed that genetic diversity estimates were similar between both CPRJ and

FPZSP populations, and among these Brazilian populations and the captive population of L.

chrysomelas from Europe (EUR) [19]. In addition, these estimates for L. chrysomelas were also

similar to those reported for Brazilian and European captive populations of L. chrysopygus
[23], as well as for wild populations of Leontopithecus rosalia [65], Leontopithecus caissara [66],

L. chrysopygus [23] and L. chrysomelas [18].

Some of these earlier studies have used a very similar set of microsatellite markers and over-

all found low levels of heterozygosity (Table 3). Of note, EUR was analysed with nine homolo-

gous microsatellites, of which seven were also used in the present study. Considering only the

common homologous loci employed in both studies, CPRJ and FPZSP exhibit a higher

Table 3. Comparison of mean genetic diversity values estimated for Leontopithecus spp through microsatellite analyses.

Population Microsatellite Loci N AN AR HO HE Reference

L. chrysomelas
(Brazil-Captive)

CPRJ Lchu1, Lchu3, Lchu4, Lchu5, Lchu6, Lchu8, Lchu9, Leon2, Leon21, Leon27,

Leon30

55 5.091 4.857 0.654 0.637 Present

studyFPZSP 49 4.182 4.091 0.552 0.560

L. chrysomelas
(Europe-Captive)

EUR Lchu1, Lchu2, Lchu3, Lchu4, Lchu5, Lchu6, Lchu7, Lchu8, Lchu9 29 3.670 - 0.630 0.590 [19]

L. chrysomelas (Wild) Ilheús Lchu1, Lchu3, Lchu4, Lchu5, Lchu6, Lchu8, Lchu9, Leon2, Leon21, Leon27,

Leon30

17 3.5 1.5 0.5 0.5 [18]

Teimoso 7 2.3 1.4 0.4 0.4

Araraúna 84 5.3 1.6 0.5 0.6

Barro Branco 6 3.5 1.7 0.6 0.7

L.chrysopygus
(Captive)

FPZSP Lchu1, Lchu6, Lchu7, Lchu8, Leon2, Leon15, Leon21, Leon3c75, Leon31c97,

Leon30c73, Leon35c42, Leon11c72, LrP2BH6, Lr.P5BE6, Lr.P3AF1

20 2.267 2.143 0.697 0.462 [23]

CPRJ 17 2.333 2.205 0.757 0.461

DWCT 16 2.000 1.951 0.715 0.410

L. chrysopygus (Wild) Capão Bonito 10 2.000 1.974 0.673 0.403 [23]

L.rosalia (Wild) Poço das

Antas

LrP2BH6, LrP2BA2, LrP5BG3, LrP5BE6, LrP3AF1 27 3.8 - 0.65 0.66 [65]

SJ 16 3.0 - 0.55 0.56

LB 8 2.3 - 0.34 0.53

Bauen 6 2.0 - 0.43 0.42

L. caissara (Wild) Ariri Leon2, Leon3c20, Leon15c85, Leon21c75, Leon30c73, Leon31c97, LrP2BH6,

Lchu4, Lchu7

52 2.56 2.325 0.55 0.42 [66, 67]

Superagui

Island

34 2.67 2.534 0.56 0.48

N: number of individuals analysed, AN: allele number, AR: allelic richness, HO: Observed heterozygosity, HE: expected heterozygosity. The Primatology Center of Rio de

Janeiro (CPRJ) and the Zoological Park Foundation of Sao Paulo (FPZSP).

https://doi.org/10.1371/journal.pone.0288097.t003
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number of alleles than the EUR group (Table 4). Such findings may be due to the lower num-

ber of founders of the EUR population, and subsequent genetic drift effects [20]. However, the

difference might be related to the difference in sampling numbers. Furthermore, the number

of alleles and the values of heterozygosity are not significantly different (PNa = 0.342, PHe =

0.83, PHo = 0.219) among the three captive groups.

Regarding the Brazilian captive populations of L. chrysomelas studied herein and the L.

chrysopygus ones molecularly studied by Ayala-Burbano et al. [23], both species presented val-

ues of observed heterozygosity in general higher than expected heterozygosity, and despite the

positive mean inbreeding coefficient observed in FPZSP for L. chrysomelas, the majority of the

used microsatellite loci showed negative inbreeding coefficients (see Table 2). However, Ayala-

Burbano et al. [23, 24] mention that, although the captive populations of L. chrysopygus do not

present heterozygosity deficiency, the individuals are highly related, as probably is the case of

the captive populations of L. chrysomelas here analysed. Negative FIS values are quite common

in captivity and have been also reported for other species, such as the red panda [68], the Chi-

nese water deer [69], the Arabian sand cat [70] and the bearded vulture [71].

Comparing both Brazilian captive populations with wild populations of L. chrysomelas
studied by Moraes et al. [18], the observed and expected heterozygosity showed similar values

(Table 3). However, the number of alleles is higher in both CPRJ and FPZSP than that

observed in wild populations, except for the Araraúna population. Since differences in the

number of alleles are sensitive to the number of individuals analysed [18, 72], this result may

be linked to the differences in sample sizes [56].

Indeed, allelic richness has been considered an efficient estimator to measure genetic diver-

sity [17, 55] and evaluate the long-term evolutionary potential of a population and conse-

quently its conservation status [73–76]. Within a study, in order to take into account, the

difference in sample size, allelic richness values are based on the smallest sample size [77].

However, as this size varies among studies (from 6 to 49; see Table 3) it remains hard to com-

pare allelic richness values across studies. It probably explains why the sampled wild popula-

tion from Araraúna, with a high number of analysed individuals (N = 84), showed lower allelic

richness than the captive populations studied herein.

The wild L. chrysomelas populations in general have larger population sizes [44]. How-

ever, according to a prior population viability analysis [78], Araraúna is the only population

of the species in nature that is currently found in a protected forest area (RPPN, Private

Reserve of Natural Heritage) and has the capacity to retain a high density and adequate levels

of remaining genetic diversity over time. Further, most of the wild populations of L. chry-
somelas presented higher proportions of private alleles [18] than that observed in CPRJ and

FPZSP (see Table 2). Such results may be related to the high degree of fragmentation in

nature which often difficult dispersion and gene flow among unconnected populations [18],

accentuating the genetic drift effects and consequent population differentiation [73]. On the

other hand, in captivity, the management has been including exchanges of individuals

Table 4. Comparison of mean genetic diversity parameters estimated for the ex situ populations of Leontopithecus chrysomelas from the Primatology Center of Rio

de Janeiro (CPRJ), the Zoological Park Foundation of Sao Paulo (FPZSP), and Europe (EUR), considering only seven homologous microsatellite loci.

Population Loci N AN HO HE

CPRJ Lchu1, Lchu3, Lchu4, Lchu5, Lchu6, Lchu8, Lchu9 55 5.429 0.678 0.643

FPZSP Lchu1, Lchu3, Lchu4, Lchu5, Lchu6, Lchu8, Lchu9 49 4.571 0.559 0.598

EUR Lchu1, Lchu3, Lchu4, Lchu5, Lchu6, Lchu8, Lchu9 29 4 0.62 0.61

N: number of individuals analysed, AN: number of alleles, HO: observed heterozygosity and HE: expected heterozygosity.

https://doi.org/10.1371/journal.pone.0288097.t004
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between institutions, aiming to form less or un-related mate-pairs, and thus retain genetic

diversity and avoid an increase in inbreeding rates [50, 73]. Despite this, the recommenda-

tions for establishing mate-pairs do not always result effectively in feasible reproduction in

ex situ conditions.

Captive breeding programs generally include family groups formed by selected mate-pairs

and their descendants [6]. Nevertheless, even when multiple couples are selected as potential

breeders, not all of them copulate and/or generate viable offspring. Thereby, captive offspring

often come from a few couples that in general repeatedly contribute to population growth over

time [6, 73], explaining the values of Ne found herein (see S4 Table). Thus, the genetic struc-

ture and diversity of captive populations usually is strongly related to the origin of the parents,

their kinships, and the inbreeding rates over generations. In addition, random effects of

genetic drift are generally accentuated in small and closed populations such as many ex situ
populations [73]. Also, although the introduction of individuals from nature may occur, these

wild animals can be related to each other and/or never become breeders, as such not increasing

the genetic diversity over generations [15].

According to Ballou et al. [15] and Ballou & Mace [21], the whole ex situ metapopulation

of GHLT was initially formed by 83 founders (69 in South America), and also a contribution

of 96 founders from the illegal exports of 1984 and 1985, therefore, a high number compared

to the ex situ population of L. chrysopygus [23, 24]. Despite this, our prediction analysis,

based on the effective population sizes, indicates that both CPRJ and FPZSP will not be able

to retain adequate levels of genetic diversity (90%) after the next 40 and 10 years, respec-

tively (see Fig 2). Even without bottlenecks, genetic diversity will drastically decrease in

both populations, especially in FPZSP (see S5 Table). Further, when we considered both

CPRJ and FPZSP ex situ groups of L. chrysomelas as a single population, they together will

not be able to retain 90% of the current observed and expected heterozygosity in the next

40–50 years, even without bottleneck events (see Fig 3, S5 Table). On the other hand, the

number of alleles will be maintained at a high level (80–90%). Such result may be related to

the fact that when both populations are considered as a single one, the observed heterozy-

gosity and the effective population size decrease, despite the allele richness and the fre-

quency of private alleles being higher than in each Brazilian captive population (see S5

Table).

Indeed, CPRJ and FPZSP present different private alleles, and the proportion of these alleles

and the allele richness are much higher in CPRJ than in FPZSP, which evidenced higher

homozygosity and faster loss of genetic diversity than CPRJ. Therefore, the presence of some

private alleles might contribute to maintaining the allele number over time in FPZSP-CPRJ,

since the specific alleles from each population contribute to the total allele diversity [79, 80].

Furthermore, the levels of heterozygosity will decrease faster probably due to the increase in

inbreeding because of the small population size. Thus, although populations with higher levels

of allele richness in general show a tendency to lose alleles more quickly, the loss in heterozy-

gosity may be faster than in number of alleles in inbred populations, as those from endangered

species [81].

Final considerations

The simulated scenario of population viability reductions is already a reality for the ex situ
groups of L. chrysomelas, since the captive individuals are aging and few animals have regu-

larly been reproducing [22]. In 2011, for example, FPZSP kept more than 70 GHLTs under

human care, however, its population size has been reduced by about 70%, in order to avoid

surplus animals due to a lack of available enclosures, and currently there is only one adult
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female able for reproduction, as the others are already elderly (Monticelle C., personal com-

munication). In the CPRJ, nowadays, there is only one mate-pair regularly breeding, which

recently produced five cubs as follows: one in 2018, three in 2021 and one in 2022; and the

captive individuals are old and/or closely related as well (Pissinatti A., personal

communication).

For the congeneric L. chrysopygus, a previous similar genetic study performed in ex situ
populations detected a moderate genetic differentiation between the Brazilian groups and

between the Brazilian and European captive populations [23]. However, after posterior man-

agement actions, no genetic structuring was detected, even considering all related animals and

family groups of the whole ex situ metapopulation of the species (Freitas P.D., personal com-

munication). Furthermore, the introduction of confiscated wild L. chrysopygus in captivity

allowed the formation of new mate-pairs and the generation of viable offspring after a long

period of population decline [24, 82]. More recently, translocations of animals from both Bra-

zilian captive populations to Europe also resulted in reproduction and viable offspring after

about eight years without any birth at the Jersey Zoo [82].

Therefore, for the ex situ population of L. chrysomelas we suggest new exchanges of captive

individuals, especially from the particular family groups of both CPRJ and FPZSP institutions,

and EUR as well; and, if possible, an extra effort for the formation of mate-pairs between these

and new confiscated wild individuals introduced in captivity. It is noteworthy that currently

there are smaller GHLT groups under human care in 15 other institutions in Brazil (Galbusera

P., personal communication) which continue to be included in the ex situ management. In

addition, semen analysis and cryopreservation, as tested in the FPZSP [83] an alternative tool

for contributing to the maintenance of genetic diversity in the future [6, 84].

Furthermore, in addition to the pedigree analyses, in order to estimate the genetic diversity

and inbreeding [22], mainly using the PMx software [85], we also suggest that standardized

molecular-genetic analyses of the whole ex situ population of L. chrysomelas (including the

Brazilian and European groups) be carried out from now on, aiming for a better comparison

of genetic parameters (e.g. allelic richness, see above) and their optimized use for management

purposes [24]. Likewise, it will be important to evaluate both ex situ and in situ populations in

a standardized way, to allow an integrated management of the species according to the One

Plan Approach proposed by the IUCN Species Survival Commission [86]. Therefore, in addi-

tion to using the same microsatellite loci panel, allele and genotype scorings must be per-

formed in a single-integrated approach. Further, genomic tools, based on next-generation

sequencing and large-scale data analysis, such as Genotyping by Sequencing, GBS, [87] and

double digest Restriction-site Associated DNA, ddRAD, [88], must be applied with the goal of

detecting non-neutral loci and then searching for genomic signatures of differential selection

and adaptive genetic diversity [89].
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