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Abstract

Traditional neural networks used gradient descent methods to train the network structure,

which cannot handle complex optimization problems. We proposed an improved grey wolf

optimizer (SGWO) to explore a better network structure. GWO was improved by using circle

population initialization, information interaction mechanism and adaptive position update to

enhance the search performance of the algorithm. SGWO was applied to optimize Elman

network structure, and a new prediction method (SGWO-Elman) was proposed. The con-

vergence of SGWO was analyzed by mathematical theory, and the optimization ability of

SGWO and the prediction performance of SGWO-Elman were examined using comparative

experiments. The results show: (1) the global convergence probability of SGWO was 1, and

its process was a finite homogeneous Markov chain with an absorption state; (2) SGWO not

only has better optimization performance when solving complex functions of different dimen-

sions, but also when applied to Elman for parameter optimization, SGWO can significantly

optimize the network structure and SGWO-Elman has accurate prediction performance.

1. Introduction

Elman neural network is a typical local regression network [1]. It has been widely used in the

fields of image recognition, fault detection, and big data prediction because of its strong mem-

ory capacity and high computational efficiency [2]. The performance of Elman is largely influ-

enced by its training process. Therefore, exploring a high-quality training process has become

a key problem to solve in neural network research [3].

In the early 1990s, gradient descent and stochastic methods were the two main Elman train-

ing methods [4]. However, gradient descent methods have three main drawbacks [5]: difficulty

in finding the global optimal solution, slow convergence, and high dependence on the initial

parameters. Similarly, stochastic methods can also weaken the training ability by initializing

the parameters. As a result, in the late 1990s, some studies constructed a neural network as a

nonlinear optimization model to replace the original linear model [6]. Although this approach
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avoids computing gradient information, it is not applicable when the dimension exceeds the

memory range. Accordingly, starting in 2000, some researchers considered the training net-

work structure as an optimization problem of finding the optimal parameters in a finite space

[7]. Some scholars solved this optimization problem by heuristic methods [8]. However, the

method needed to increase search space when traversing the set of parameters, which

improved the time complexity of the algorithm [9].

To explore better network structures and improve the performance of neural networks,

metaheuristic algorithms have become reliable alternatives [10]. Compared to gradient descent

methods, metaheuristic algorithms show higher efficiency in avoiding local extremum. These

algorithms shift from local search to global search, making them more suitable for global opti-

mization. Therefore, researchers have used metaheuristic algorithms in Elman as an optimiza-

tion strategy for network structures, and a series of more meaningful results have been

achieved so far. For example, Zhang et al. used an improved arithmetic optimizer (IAO) to

train the Elman network structure [11]; For the soil salinity prediction problem, the sine cosine

algorithm (SCA) was applied to adjusting the parameters of Elman [12], and the experimental

results demonstrated that SCA could improve the prediction efficiency of Elman; Some

researchers used the particle swarm optimization (PSO) algorithm to optimize Elman parame-

ters and PSO-Elman based on load prediction model [13], compaction density evaluation

model [14] and parameter evaluation model were constructed [15]; Metaheuristic algorithms

were combined for adjusting the weights and thresholds of Elman. For example, the ant colony

algorithm (ACO) and genetic algorithm (GA) were combined to form AGA-Elman [16]; SUN

et al. developed an Elman prediction model based on a whale optimization algorithm (WOA)

[17]. The experimental results proved that WOA-Elman has good engineering utility the

porosity prediction. In addition, WOA-Elman also played an important role in weather pre-

diction [18] and landslide probability prediction [19].

Although various metaheuristic algorithms have been deployed and studied to train Elman,

local extremum still exists. The grey wolf optimizer [20] (GWO) is a recently proposed meta-

heuristic algorithm. GWO is inspired by the wolves hierarchy and the hunting process. GWO

has three leaders who are responsible for guiding the wolves to attack, delivering attack infor-

mation and leading the pack to encircle [21]. During the iterative, the three wolves continu-

ously update their positions and thus search for the global optimum. Due to its few

parameters, easy implementation and strong convergence, GWO has shown excellent perfor-

mance in solving high-dimensional optimization problems [22]. However, the global search

capability of GWO is still poor, and it is easy to fall into local extremes. However, the well-

known No Free Lunch Theorem [23] states that there is no universal metaheuristic algorithm

that can solve all optimization problems. Therefore, our research aims to focus on two points.

First, to propose a more efficient improved grey wolf optimizer based on the algorithm charac-

teristics. Second, to explore a better method for training network structures based on the

improved grey wolf optimizer.

Therefore, we propose an Elman training method based on the improved grey wolf opti-

mizer (SGWO). SGWO introduces three strategies into the wolf hunting process: circle chaotic

mapping, information interaction mechanism and the adaptive position update strategy. We

use circle chaotic mapping to increase the population diversity; In the information interaction

machine, the head wolf position is perturbed by the Cauchy variation to jump out of the local

optimum, and the information transfer between wolves is enhanced by the golden sine algo-

rithm, thus accelerating the convergence of SGWO; Meanwhile, the adaptive position update

strategy is used to adjust the search range autonomously, enabling SGWO to balance the global

and local searches. In addition, we innovatively introduce the Markov process and probabilis-

tic analysis to demonstrate the convergence performance of SGWO. Ablation experiments
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based on three strategies are also conducted and SGWO is compared with seven optimization

algorithms to analyze the optimization performance of the improved grey wolf optimizer.

Based on this, we incorporate SGWO into the Elman training process and construct an

SGWO-Elman prediction model. The SGWO-Elman is also compared with three types of

algorithms, including Elman neural network based on other optimization algorithms, other

neural networks and other neural networks based on SGWO to verify the prediction ability of

SGWO-Elman model for complex problems.

The rest of the paper is organized as follows. Metaheuristic algorithms classification and

variants of GWO are mentioned in Section 2. Section 3 gives a brief description of the grey

wolf optimizer. The improved grey wolf optimizer (SGWO) is introduced and proved in Sec-

tion 4. Section 5 proposes and describes an Elman training method based on SGWO. Experi-

ments and results are discussed in Section 6. Finally, we conclude with a summary of the

current work and future research efforts.

2. Related work

Compared with traditional optimization algorithms, optimization techniques that mimic natu-

ral phenomena have dominated the field of optimization. These are also known as metaheuris-

tic algorithms. Metaheuristic algorithms are mainly divided into three categories: evolutionary

algorithms (EA), physics-based algorithms, and swarm intelligence (SI) based algorithms [24].

EA mimics the rules of nature evolves. The genetic algorithm (GA) [25] is very popular in

EA. In GA, the initial solution is randomly generated and continuously updated through cross-

over and mutation operations. GA will find the optimal solution by iteration finally. Under the

evolution of GA algorithms, many studies have proposed new algorithms, such as differential

evolution (DE) [26], covariance matrix adaptation evolution strategy (CMAES) [27], evolu-

tionary programming (EP) [28], etc.

Physics based algorithms are inspired by the physical world, such as gravity, explosions,

and so on. Among them, gravitational local search (GLS) [29], multi-verse optimization algo-

rithm (MVO) [30], sine cosine optimization algorithm (SCA) [12], and atom search optimiza-

tion algorithm (ASO) [31] are classic physics based on algorithms. In GLS, the searched

individuals are viewed as objects moving in space, attracting each other through gravitational

interaction. Gravity forces individuals to move towards the individual with the greatest mass,

gradually approaching the optimal solution.

SI is inspired by the collective behavior and nature rules of bees or herds. SI includes moth-

flame optimization algorithm (MFO) [32,33], white shark optimizer (WSO) [34], whale opti-

mization algorithm (WOA) [17], sparrow search optimization algorithm (SSA) [35], and oth-

ers. In SI, the particle swarm optimization (PSO) [13] is the most popular algorithm, which

updates the location of birds to find the most food.

Grey Wolf Optimizer [20] is a recently proposed metaheuristic algorithm. GWO is widely

used to solve optimization problems due to its advantages such as fewer parameters and fast

convergence speed. However, GWO still has poor global search ability and is easy to fall into

local extremes. Recently, there have been many studies to improve the GWO algorithm in dif-

ferent ways. Some studies have proposed population diversity strategies to balance initial pop-

ulation distribution. Some works have focused on adjusting the parameters of GWO, i.e., A
and C. The other works have adjusted the location update strategies to improve GWO perfor-

mance. Another aspect of related studies to this work was combining GWO algorithm with

other existing metaheuristic algorithms. Although SGWO algorithm is fundamentally different

from previous methods, we still need to discuss the classification of metaheuristic algorithms

in detail.
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Modifications the random position of the initial population can balance spatial distribution

of the population. Chaotic mapping strategy and opposition learning strategy were widely

used in initial population. In the chaotic mapping strategy, Luo et al. [21] have proposed tent-

line coupled chaotic mapping to initialize the population, which ensured that the GWO algo-

rithm generated diverse populations; Another improved GWO algorithm used a two-dimen-

sional chaotic map to initialize the population [22]; Zhao et al. have generated GWO initial

population through Chebyshev chaotic mapping, ensuring the diversity of the initial popula-

tion and enhancing global search ability of GWO [36]; In addition, some studies have inte-

grated chaotic maps; Xu et al. have applied integrated mapping systems (CLS) to GWO to

increase its population diversity and accelerate the convergence of the algorithm [37]. Besides

chaotic mapping, the pseudo-antithesis number generation method based on opposition learn-

ing strategy was used to improve the distribution of population [38]; Another

improved GWO also generate its opposition wolf by lens imaging learning strategy [39].

These population diversity strategies are successful in balancing initial population distribution

and improving algorithm’s performance.

Some algorithms have improved GWO performance by modifying and adjusting parame-

ters. Song et al. [40] proposed IGWO, which enhanced exploration by modifying linear con-

vergence factor to nonlinear; The improved grey wolf optimizer also adjusted a nonlinear

parameter of GWO based on polynomials [41], and showed accurate measurement results in

the optimization of seepage parameters; However, these nonlinear strategies have only suc-

ceeded in improving the performance of GWO in some aspects. For example, improved GWO

[42] was beneficial to improve the convergence performance of unimodal functions, but has a

poor effect on multimodal functions. Besides parameter update equations, fuzzy method [43]

was used for the adaptive adjustment of the control parameters. The exploration-enhanced

grey wolf optimizer (IEE-GWO) [44] used a nonlinear control parameter strategy, which has

been proven that IEE-GWO has a fast convergence rate when solving unimodal functions.

There are many excellent parameter adjustment strategies to improve GWO, but this method

makes the algorithm perform well only on specific problems.

Some improved GWO introduced the location update strategy, making GWO suitable for a

variety of optimization problems. A new search strategy named dimension learning-based

hunting (DLH) [45] was introduced in IGWO, which inherited from the individual hunting

behavior of wolves and shared neighboring information; An improved GWO variant used two

strategies, neighbor gaze cue learning (NGCL) and random gaze cue learning [46]. These two

strategies can update the location of wolves and achieve a balance between exploration and

exploitation; Besides, multi-stage grey wolf optimizer (MGWO) [47] can update wolves at

three stages and maintain convergence speed.

In fact, some other variants hybridize GWO with other search strategies or metaheuristic

algorithms to improve its performance. Then a hybrid of genetic algorithm (GA) and GWO

were combined to reduce the dimension of the obtained feature vector [48]. In another similar

work, a novel improved GWO called collaboration-based hybrid GWO-SCA optimizer was

developed [49]. Experimental results indicated that it was a high-performing algorithm in

global optimization. With the same goal, a recently developed metaheuristic optimization algo-

rithm called hybrid PSO-GWO [50] has been proposed to improve exploitation and explora-

tion ability.

3. Grey wolf optimizer

Grey Wolf Optimizer [20] is a swarm intelligence optimization algorithm. Compared to other

optimization algorithms based on population, GWO has significant differences in hunting
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mechanisms and mathematical models. In hunting mechanisms, GWO simulates uniquely the

predation behavior according to the hierarchy of nature. The grey wolves are divided into four

grades, including alpha (α), beta (β), delta (δ) and omega (ω). In groups, each of level grey

wolves has a different responsibility. As a leader, α wolf has a powerful effect on the group and

determines the hunting direction of the wolves; β wolf is in the second level of wolves, which

helps α wolf in decision-making and dictates instructions to wolves in the lower hierarchy; δ
wolf considered in third level of hierarchy, which can be following the arrangement in α and β;

ω is at the bottom of the hierarchy. GWO hunting is abstracted as searching for optimal values.

Specifically, it can be described as the following mathematical model.

3.1. Mathematical model for encircling the prey

The first process of hunting is encircling the prey. Eq (2) updates the position of grey wolf by

calculating the distance between the grey wolf and the prey.

D ¼ jC � XpðtÞ � XðtÞj ð1Þ

Xðt þ 1Þ ¼ XpðtÞ � A� D ð2Þ

where Xp denotes the prey position, X(t) refers to a grey wolf position, X(t+1) represents the

location of a grey wolf in the next iteration, D represents the distance between the grey wolf

and its prey. C is the oscillation factor, A is the convergence factor. When |A|>1, wolves will

conduct a large-scale search on the global scope. When |A|<1, wolves will conduct a fine

search for local areas. It can be expressed by the following formula:

A ¼ 2ar2 � a ð3Þ

C ¼ 2r1 ð4Þ

a ¼ 2 � 2� ðt=TÞ ð5Þ

where r1,r22[0,1] is the random variable, a represents the distance control parameter that

decreases linearly from 2 to 0, t is the current number of iterations and T is the maximum

number of iterations.

3.2. Mathematical model for hunting mechanism

When the grey wolf tracks the prey’s position, α wolf will lead β wolf and δ wolf to surround

the prey in nature. However, in a simulated search space we do not know the prey location. In

order to build the hunting model, the optimal, sub-optimal, and third-optimal solutions are

used as α, β and δ wolf positions. We suppose that three solutions guide other wolves to attack

the prey. The position of the first three wolves will change.

Da ¼ jC1 � XaðtÞ � XðtÞj

Db ¼ jC2 � XbðtÞ � XðtÞj

Dd ¼ jC3 � XdðtÞ � XðtÞj

ð6Þ

8
><

>:

X1 ¼ Xa � A1 � Da

X2 ¼ Xb � A2 � Db

X3 ¼ Xd � A3 � Dd

ð7Þ

8
><

>:
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where Xα, Xβ, Xδ represent the current position of α, β and δ. Dα, Dβ, Dδ represent the distance

between the three wolves and the prey. X1, X2, X3 represent the updated position of α, β and δ
wolf. A1, A2, A3 are defined in Eq (3), which represent respectively the convergence factor of α,

β and δ. At this time, three wolves are the closest prey in the wolves. Therefore, individual posi-

tions are updated according to α, β and δ wolf position:

Xðt þ 1Þ ¼
X1 þ X2 þ X3

3
ð8Þ

The wolves continuously search for the optimal solution according to the above process.

After hunting, determine Xα is the location of the prey.

Compared to other population-based optimization algorithms, the grey wolf optimizer has

some advantages. For example, the grey wolf optimizer has a simple structure with few param-

eters; Grey wolf optimizer can find the optimal results quickly due to its unique hierarchy; In

addition, the low time complexity of the grey wolf optimizer allows it to play an important role

in practical optimization problems. However, there are still some disadvantages. For example,

the grey wolf optimizer is prone to fall into local extremes. Therefore, proposing an effective

improved grey wolf optimizer is one of our research objectives.

4. Improved grey wolf optimizer (SGWO)

To improve the optimization performance of the GWO algorithm, we proposed SGWO based

on the adaptive information interaction mechanism. The SGWO algorithm was described in

terms of implementation method and algorithm steps.

4.1. Circle population initialization (cGWO)

In GWO, the optimal value was greatly constrained by the initial position. Compared with a

random search, the map was widely applied to generate the initial population because of its

randomness. However, different chaotic maps have different effects. To find the optimal value

quickly, we analyzed and compared Sobol, Logistic, Iterative, and Circle maps [21,22] in Fig 1.

Fig 1 gave the distribution of 200 populations at 30 iterations, respectively. For better dis-

play, the problem dimension was set to 2 dimensions. The two axis labels represented the two

dimensions respectively. The search interval of the variables was set to [0, 1]. According to

Fig 1, Four mapping distributions are all uniform, and the grey wolf group using Tent map-

ping is more evenly distributed in space than other maps. However, some individuals on the

map are at the boundary, which will affect the overall efficiency of the algorithm. Compared

with the four mappings, the circle map has more boundary individuals. To enhance the algo-

rithm to deal with extreme value problems and consider experimental results, the paper still

chose a circle map finally. The circle map [51] model is as follows:

Xtþ1 ¼ modðXt þ 0:2 � ð
0:5

2p
Þ � sinð2pXtÞ; 1Þ ð9Þ

where Xt represents the population individuals at the t-th iteration. The circle map is used only

once in the initialization step to generate an initial population [20]. In the iteration, GWO

only uses this initial population once for position updates. The circle map can balance popula-

tion distribution and reverse inhibition. When the algorithm falls into a local extreme, a uni-

form population distribution can help wolves move to the next location. Therefore, population

initialization plays a role in improving the exploration ability of SGWO.
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4.2. Information interaction mechanism (iGWO)

In the information interaction mechanism, the hunting process was simulated as the informa-

tion interaction process among wolves. Where, the hunting path as the channel, α position as

the source point, β position as the transmission station, and subordinate wolves as the signal

receiving point. Cauchy variation was used to change the position of source point. Golden

Sine algorithm has optimized the information transmission process, and enhanced informa-

tion exchange between wolves. Mathematically, the information interaction mechanism can

be constructed in two steps. Every step can be explained as follows.

(1) disturbing source point

In GWO, α wolf position belongs to the source point, which determines the attack direction

for wolves. If the leader’s position deviates, it will prolong the search time and reduce the

Fig 1. Location distribution of the four initial populations.

https://doi.org/10.1371/journal.pone.0288071.g001
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search accuracy. Thus, the Cauchy variant [52] with excellent local exploration ability was

used to optimize the head wolf. The α wolf can jump out of the local extreme value, and avoid

premature convergence. The standard Cauchy distribution function is as follows.

f ðx; 0; 1Þ ¼
1

pð1þ x2Þ
ð10Þ

The standard Cauchy distribution function is delayed from a flat peak to both ends. A lon-

ger trailing tail can increase the perturbation probability and make the head wolf jump out of

the local extremum quickly; a flat peak can reduce its search time in the adjacent area and

enhance the ability to search for the global optimal solution. The standard Cauchy operator

was used to randomly disturb the α wolf’s position. The position update formula for α wolf is

as follows:

X0
1
¼ X1 þ X1 � Cauchyð0; 1Þ ð11Þ

X1 is defined in Eq (7), which represents the final positions under the leadership of α in

GWO. And X1 is calculated according to Xα. In Eq (11), X1 is used as the initial position of α.

X0
1

is the new location of α wolf, which represents final position of α in SGWO. A Cauchy vari-

ant is helpful for α wolf to pass the best hunting position to wolves. Wolves can quickly close

to the prey, to speed up the search speed.

(2) optimize information transmission process

In GWO, β wolf location belongs to the transmission station in the communication chan-

nel. However, the suboptimal value cannot determine the distance from β wolf to α wolf and δ
wolf. Therefore, the information will be biased when β wolf transmits α wolf position to the

subordinate wolves. When the algorithm is solving highly complex optimization problems, it

is difficult to fully explore the solution space, which affects the search accuracy.

The golden sine algorithm (Golden-SA) [53] is a new meta-heuristic optimization algo-

rithm. All points on the sine function are scanned by the unit circle and solution space is fully

traversed. Thus, the optimal solution will be searched in Golden-SA. Updating the solution

process is the core of the Golden Sine algorithm.

Xiþ1

i ¼ Xt
i � jsinðR1Þj þ R2 � sinðR1Þ � jx1 � Pti � x2 � Xt

i j ð12Þ

where Xt
i refers to a current individual position. Pti refers to a current optimal position. R1 is

[0,2π] random variable and R2 is [0,π] random variable. They control the distance and direc-

tion of movement respectively. The golden ratio τ is ð
ffiffiffi
5
p
� 1Þ=2. x1 and x2 is obtained by τ,

these two coefficients narrowing the space by spiral search and keep approaching towards the

optimal solution.

x1 ¼ � pþ ð1 � tÞ � 2p ð13Þ

x2 ¼ � pþ t� 2p ð14Þ

Inspired by the golden section, the golden sine algorithm was incorporated into the GWO

algorithm to change the movement of β wolf. The position update formula of the β wolf is as

follows:

D0
b
¼ jx1 � C2 � XbðtÞ � x2 � XðtÞj

X0
2
¼ jsinðR1Þj � Xb þ R2 � jsinðR1Þj � A2 � D0

b

ð15Þ

(
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where D0
b

represents the new distance between the β wolf and the prey. X0
2

represents the new

position for β wolf in SGWO. X(t) is defined in Eq (1), which represents to a grey wolf posi-

tion. R1 and R2 are defined in Eq (12), which represent random variables in [0,2π] and [0,π].

Eq (15) is updated based on Eq (7), which A2 still represents the convergence factor of β.

An analysis based on Fig 2 and Eq (15) shows that: R1, R2 can constantly adjust the moving

direction and moving distance of β wolf, so that β can fully understand the information differ-

ence between α and δ wolf. More specifically, β wolf is ensured at the golden division between

α and δ wolf (as in Fig 2A). This method enhances information exchange in GWO. In addi-

tion, SGWO can scan all points on the unit circle and continuously enclose the wolves into the

sine function (as in Fig 2B). Thus, wolves gradually approach the prey position (the global opti-

mal solution), improving search speed and efficiency.

This paper transplanted the Cauchy mutation and Golden Sine algorithm as the informa-

tion interaction mechanism between wolves into GWO algorithm, which can promote the

information exchange between α, β and superior and subordinate wolves. The α, β wolf can

release the decision results to subordinate wolves in the best transmission position. The

improved SGWO can improve the shortcomings of the traditional GWO algorithm, and guide

wolves to accelerate their approach to prey.

4.3. Adaptive position update (aGWO)

The individual position update is a key process in hunting. However, GWO always refers to

the three wolf locations, making it difficult to balance global and local exploitation capability.

GWO always maintains a constant update mechanism. We were inspired by the decay of the

learning rate in machine learning [54], and adaptive weight ω was introduced at the location

update. We define the ω in Eq (17). The updated position formula is as follows.

Xðt þ 1Þ
0

¼ o�
X0

1
þ X0

2
þ X3

3
ð16Þ

oðtÞ ¼ ðaþ l� tÞ� p; l ¼ 0:99; p ¼ 0:25 ð17Þ

where a is the distance control parameter and is defined in Eq (5). X3 represents the position

of δ in GWO. X0
1

represents the updated position of α by Cauchy distribution, and X ';
2

represents the updated position of β by golden sine algorithm. X(t+1)’ represents the next iter-

ation position for a wolf, which is also the final position for a wolf in SGWO.

Fig 2. Improved the GWO principle of the golden sine algorithm.

https://doi.org/10.1371/journal.pone.0288071.g002
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Due to the traditional inertia weights being artificially set, they cannot conform to the

wolves hunting process. The adaptive weight factor proposed incorporated the distance con-

trol parameter so that the algorithm will adjust the search range autonomously in different

periods. In the early stage of iteration, the algorithm searched the solution space globally with

a large step, and in the later stage of iteration, the algorithm searched the region finely. Setting

p to 0.25 was to avoid losing the optimal solution and reducing the accuracy of the algorithm.

Form Fig 3, in the early iteration, ω is large for jumping out of the local extremes; in the late

iteration, ω is smaller for improving the local search capability. Integrating adaptive weight

into traditional GWO can balance global exploitation ability and local exploration ability, and

find the global optimal solution quickly.

The adaptive location update mechanism is suitable for other optimization algorithms

based on population, such as whale optimization algorithm (WOA) and white shark optimizer

(WSO), etc. In these algorithms, this mechanism is applied to improve the formula for location

update. In practice, this mechanism automatically adjusts the search step of populations by

changing the parameter values, which ensures that the algorithm has global exploitation ability

and local exploration ability.

4.4. Complexity and convergence analysis of SGWO

4.4.1. Complexity analysis. The time complexity of the comparative experimental algo-

rithm was as follows:

OðSCAÞ ¼ T � n� Dim;

Fig 3. ω curve of 1000 iterations.

https://doi.org/10.1371/journal.pone.0288071.g003
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OðMVOÞ ¼ Tðn2 þ n� Dim� lognÞ;

OðMFOÞ ¼ Tðn2 þ n� DimÞ;

OðWOAÞ ¼ T � n� Dim;

OðGWOÞ ¼ T � n� Dim;

OðSSAÞ ¼ T � n� Dim;

OðASOÞ ¼ T � n� Dim;

From pseudo-code, all improved strategies are included in GWO cycle optimization pro-

cess. Thus, SGWO and GWO have the same time complexity. O(SGWO) = T×n×Dim. Where,

T is the maximum number of iterations, n is the number of populations, and Dim is the

dimension. SGWO has few parameters, the final order is: GWO� SGWO�WOA� SCA�

SSA� ASO< MFO < MVO.

4.4.2. Exploitation and exploration analysis. In the exploitation phase, GWO completed

the hunting task by reducing the value of a. a was decreased from 2 to 0 over the course of iter-

ations. When |A|>1, the wolves deviated from its prey; When |A|<1, the wolves attacked their

prey. However, this approach led to longer exploitation times and the inability to accurately

locate prey. In SGWO, we introduce an information interaction mechanism, where β wolf can

accurately convey the position of α wolf to its subordinate wolves at the golden section. The

wolves can quickly approach their prey through the information interaction mechanism. It is

worth mentioning here that the golden sine algorithm can scan all points on a unit circle and

continuously surround wolves into a sine function. Therefore, the information interaction

mechanism can shorten the exploitation time of wolves. At the same time, we introduce an

adaptive weight ω into SGWO, which can adjust the search range independently at different

stages. As the p increases, ω will decrease rapidly, allowing SGWO to globally search in the

solution space in larger steps. Therefore, both the information interaction mechanism and

adaptive weight can improve the exploitation ability and ensure that the algorithm quickly

converges to the optimal value.

In the exploration phase, GWO is prone to stagnation in local solutions. We introduce the

Circle mapping and Cauchy distribution function to solve this problem. In the initial stage, cir-

cle mapping can increase population diversity, which facilitates individuals caught in extremes

to find neighbors quickly. When the algorithm stalls, α wolf will change position by the Cauchy

mutation. α wolf will once again lead the pack out of the stagnant region. In addition, adaptive

weight ω also takes effect during the exploration phase. At the end of the iteration, the ampli-

tude of ω decreases as the value of λ increases. The algorithm will search more accurately

within this interval. Therefore, the adaptive weight can effectively balance the exploration and

exploitation stages. SGWO also emphasizes exploitation and exploration, so as to improve the

convergence speed of GWO and efficiency.

4.4.3. Convergence analysis with Markov process and probability 1. Previous research

has indicated that the performance of metaheuristic algorithms was improved. To date, no

broad study has been performed on the theoretical analysis of metaheuristic algorithms. In this

case, we have introduced innovatively Markov process and probability analysis to prove con-

vergence performance of SGWO.
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(1) convergence analysis with Markov process

Definition 1. Set X = {X|X2Y} be gray wolf state space, which x1,. . .. . .,xi2X. Y refers to

solution space and xi refers to with wolf space. Set φ ¼ ðX1;X2; . . . . . . :;XiÞ; ði ¼ 1; 2;NφÞ be

wolve state. Set X1;X2; . . . . . . :;Xi 2 X, which Xi refers to with wolve state set. Set � ¼

fφ ¼ ðX1;X2; . . . :;XiÞjXi 2 X; ði ¼ 1; 2; . . . ;XφÞg be wolves state space, which is constituted

by wolve state.

Theorem 1. In the SGWO algorithm, Let the wolves state sequence be a finite homoge-

neous Markov chain and the corresponding Markov process with absorbing states.

Proof. (1) finite homogeneous Markov chain

Considering wolf’s state shift probabilities in the reference [55], it is known that

PðTφðφðt � 1ÞÞ ¼ φðtÞÞ is determined by l wolf state shift probabilities. State shift probabilities

are PðTφðXðt � 1ÞÞ ¼ XðtÞÞ. According to Eq (15), PðTφðXðt � 1ÞÞ ¼ XðtÞÞ is related only to

the state X(t−1) at the previous moment. The vector coefficients are Ci. The Dα, Dβ and Dδ

between the first three wolves and their prey. Thus, according to the definition of the Markov

chain, {φ(t):t>0} has Markov property.

Due to search space for any optimization being finite, each xi is finite. State space X is also

finite. Because φ is composed of Nφ and X is a countable set, φ is finite. Similarly, the wolves’

state-space set ϕ is also finite. Therefore, {φ(t):t>0} is a finite Markov chain.

According to Eq (16), it is clear that X(t) is only related to the state X(t−1) at the previous

moment, not the number of iterations. Thus, {φ(t):t>0} is a finite homogeneous Markov chain.

Proof. (2) Markov process with absorbing states

During each iteration, the algorithm records the current optimal top three wolf positions,

so SGWO still uses an elite retention strategy. Thus, the corresponding Markov process with

absorbing states.

(2) convergence analysis with probability 1

Theorem 2. SGWO algorithm is global convergence with probability 1.

Proof. To prove Theorem 2, we need to divide it into two steps. The first step is to prove

that SGWO is global convergent, and then prove that the probability of convergence is 1.

From the literature [56], it is clear that the conventional GWO algorithm is convergent, so that

X(t+1)!Xg(t) when t!1. To prove the convergence of the SGWO algorithm, it is only neces-

sary to prove that X(t+1)’!Xg(t)’ when t!1. That is, o�
X
0

1
þX
0

2
þX3

3
! 0 when t!1.

From Eq (5), a!0 when t!1.

That is, in Eq (17), ω!0 when t!1.

Thus, o�
X
0

1
þX
0

2
þX3

3
! 0 when t!1.

Therefore, SGWO is convergent.

Then SGWO satisfies the necessary and sufficient condition of global convergence in refer-

ence [55].

Thus, SGWO is the globally convergent algorithm.

Assume that at one time t, X(t) enters the global optimal state solution set G. Then at time t
−1, X(t−1) must fall into G. That is PfXðt þ 1Þ 2 GjXðtÞ 2 Gg ¼ 1, then

PfXðt þ 1Þ 2 Gg ¼ PfXðtÞ=2Gg � PfXðt þ 1Þ 2 GjXðtÞ=2Gg

þ PfXðtÞ 2 Gg � PfXðt þ 1Þ 2 GjXðtÞ 2 Gg

¼ ½1 � PfXðtÞ 2 Gg� � PfXðt þ 1Þ 2 GjXðtÞ=2Gg

þ PfXðtÞ 2 Gg
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Let PfXðt þ 1Þ 2 GjXðtÞ=2Gg � vðtÞ � 0 and lim
t!1

Yn

t¼1

ð1 � vðtÞÞ ¼ 0, where v(t) is the prob-

ability measure, then:

1 � PfXðt þ 1Þ 2 Gg � ½1 � vðtÞ� � ½1 � PfXðkÞ 2 Gg�

) 1 � PfXðt þ 1Þ 2 Gg � ½1 � PfXðkÞ 2 Gg� �
Yi

t¼1

½1 � vðiÞ�

) lim
t!1

PfXðt þ 1Þ 2 Gg � 1

Due to PfXðt þ 1Þ 2 Gg � 1, lim
t!1

PfXðt þ 1Þ 2 Gg ¼ 1. Thus, lim
t!1

PfXðtÞ 2 Gg ¼ 1.

We finally prove that the SGWO algorithm is a globally convergent algorithm with a probabil-

ity of 1.

5. SGWO-Elman model construction

5.1. Elman neural network

Elman neural network is divided into four layers: input layer, hidden layer, undertake layer,

and output layer [1]. The connection of input layer, hidden layer and output layer is similar to

a feedforward network. The input layer units only serve as signal transmission, while the out-

put layer units serve as weighting. There are two types of excitation functions for hidden layer

elements: linear and nonlinear. Generally, the excitation function is taken as the Sigmoid non-

linear function [2]. The receiving layer is used to remember the output value of the hidden

layer unit at the previous moment, which can be considered as a delay operator with one step

delay. The output of the hidden layer is used to the input of the hidden layer through the delay

and storage of the undertake layer [3]. This connection method makes it sensitive to historical

data. The internal feedback network improves the ability of processing dynamic information,

thereby achieving dynamic modeling. The structural Elman is shown in Fig 4.

yðkÞ ¼ gðo3xðkÞ þ b2Þ

xðkÞ ¼ f ðo1xcðkÞ þ o2ðuðk � 1ÞÞ þ b1Þ

xcðkÞ ¼ xðk � 1Þ

ð18Þ

8
><

>:

The Elman model can be described as Eq (18). Where, y is the node vector of the output

layer; x is the node vector of the middle layer; u is the input vector; xc is the feedback state vec-

tor; ω1 is connection weight from hidden layer to undertake layer. ω2 is connection weight

from input layer to hidden layer. ω3 is connection weight from hidden layer to output layer. b1

and b2 are the thresholds for the input layer and the hidden layer.

5.2. SGWO-Elman model

When Elman performs the prediction task, it first randomly selects the initial values of the

parameters, then continuously updates the sample space through network training, and finally

determines the best combination of parameters that fits the characteristics of the sample set.

Due to the blind selection of initial parameters during the training process, the prediction

effect of the network predictor is reduced and the training process is prone to fall into local

extremes. Therefore, it is necessary to find the best parameters at the initial time. to train a bet-

ter network structure. The optimal network parameters can better train the network structure

in the iterative process. This can not only enhance the adaptability of the predictor to the
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dataset, but also improve the prediction accuracy. We introduced SGWO into the parameter

optimization of the Elman neural network and proposed a new Elman prediction model

(SGWO-Elman). This is another novel point about this paper.

The principle of the SGWO-Elman model was to replace the Elman network training prob-

lem with the weight optimization problem. Set the neural network structure is Net{ω1,ω2,ω3,b1,

b2}. Set X2[x1,x2,. . ...,xn] and Ŷ 2 ½ŷ1; ŷ2; . . . .. ; ŷn� are input and output prediction

sample space. Set Y2[y1,y2,. . ...,ym] is the sample space to be measured. Then the search opti-

mization objective of this paper is as follows:

min Netfo1;o2;o3; b1; b2g

s:t:

o1 2 ½o1min;o1max�

o2 2 ½o2min;o2max�

o3 2 ½o3min;o3max�

b1 2 ½b1min; b1max�

b2 2 ½b2min; b2max�

ð19Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

This paper takes the parameter combination of the Elman neural network as training goal,

the initial predictor was generated after Eq (19). The predictor was used as the gray wolf indi-

vidual, to obtain the initial population. Then, the minimum mean square error (MSE) was

used as the fitness function:

fitness ¼ minðMSEÞ ¼ minð
1

m

Xm

i¼1

ðY � Ŷ Þ2Þ ð20Þ

Fig 4. Elman neural network structure.

https://doi.org/10.1371/journal.pone.0288071.g004
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SGWO continuously trained the network structure through iteration. Until the optimal

parameter combination was determined. Finally, the optimal network predictor can be

obtained. Elman and SGWO-Elman optimization process in space is depicted in Fig 5.

In Fig 5A, Elman uses the single point search method to find the optimization route by the

gradient descent, which is easy to fall into the local extremum. In Fig 5B, SGWO-Elman com-

pletes neural evolution by using the optimization algorithm, which realizes multi-point search

in space. Compared with single point optimization, SGWO can find the global optimal solu-

tion. As a result of the optimization algorithm training, the network search and parameter cal-

culation abilities have improved.

The SGWO-Elman prediction model is specified as pseudo code and Fig 6.

SGWO-Elman Prediction Algorithm
input: datasets, network parameters, SGWO parameters
output: prediction results
1: Building the Elman network
2: for i = 1 to epochs do
3: Training network
4: end
5: Get initial Net{ω1,ω2,ω3,b1,b2}
6: Initialization of the gray wolf population using a circle map
7: while (t<tmax) do
8: for i = 1 to N do
9: for j = 1 to dim do
10: Calculate parameters A and C using Eqs (3) and (4)
11: Calculate α and β locations using Eqs (11) and (15)
12: Update individual position using Eq (16)
13: end for
14: end for
15:Calculate individual fitness values using Eq (20)
16: Update Xα,Xβ,Xδ locations
17: end for
18: Get the optimal Net{ω1,ω2,ω3,b1,b2}
19: SGWO-Elman prediction
20: Get prediction results

Fig 5. Elman and SGWO-Elman optimization process.

https://doi.org/10.1371/journal.pone.0288071.g005
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6. Results and discussion

6.1. SGWO comparative experiment

6.1.1. Experimental information. (1) comparison methods

To ensure the experimental objective fairness, SGWO was compared with SCA, MFO, WOA,

GWO, the latest variant of GWO (mGWO) [57], white shark optimizer (WSO) [34] and

covariance matrix adaptation evolution strategy (CMAES) [27]. The performance of every

Fig 6. Parameter optimization of Elman neural network with SGWO for prediction.

https://doi.org/10.1371/journal.pone.0288071.g006
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algorithm was investigated on the 8 benchmark functions. Table 1 shows the details of 8

benchmark functions.

(2) evaluation criteria

The initialization parameter of all algorithms was same, where the population size is 50 and

maximum the number of iterations is 1000. For performance testing, 30 runs have been per-

formed in 50 dim, 100 dim and 500 dim, respectively. And experimental results were presented

in terms of:

• Best of 30 runs

• Worst of 30 runs

• Mean of 30 runs

• Standard deviation of 30 runs

• Non-parametrical statistical tests

• Wilcoxon test and ranking.

6.1.2. Exploitation analysis. Tables 2–4 show the results for SCA, MFO, WOA, GWO,

mGWO [57], WSO [34], CMAES and SGWO in 50 dim, 100 dim, and 500 dim, respectively.

From Tables 2–4, there are several conclusions can be obtained.

Table 1. Benchmark functions.

f Function Type Range fmin

f 1 f1ðxÞ ¼
Xn

i¼1

x2

i

Unimodal [–100,100] 0

f 2 f2ðxÞ ¼
Xn

i¼1

jxij þ
Yn

i¼1

jxij
Unimodal [–10,10] 0

f 3
f3ðxÞ ¼

Xn

i¼1

ð
Xi

j� 1

xjÞ
2

Unimodal [–100,100] 0

f 4 f4ðxÞ ¼ maxifjxij; 1 � i � ng Unimodal [–100,100] 0

f 5

f5ðxÞ ¼
p

n

(

f10sinðpy1Þ þ
Xn� 1

i¼1

ðy1 � 1Þ
2
½1þ 10sin2ðpyiþ1Þ�g

þ
p

n
ðyn � 1Þ

2
þ
Xn

i¼1

uðxi; 10; 100; 4Þ

yi ¼ 1þ
xi þ 1

4
uðxi; a; k;mÞ ¼

( kðxi � aÞm xi > a

0 � a < xi < a

kð� xi � aÞm xi < � a

Multimodal [–50,50] 0

f 6
f6ðxÞ ¼

Xn� 1

i¼1

½x2

i � 10cosð2pxiÞ þ 10�
Multimodal [-5.12,5.12] 0

f 7

f7ðxÞ ¼ � 20expð� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

x2

i

s

Þ � expð1n
Xn

i¼1

cosð2pxiÞÞ þ 20þ e
Multimodal [–32,32] 0

f 8 f8ðxÞ ¼ 1

4000

Xn

i¼1

x2

i �
Yn

i¼1

cosð
xiffiffi
i
p Þ þ 1

Multimodal [–600,600] 0

https://doi.org/10.1371/journal.pone.0288071.t001
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1. It may be noted that the unimodal functions are suitable for testing the exploitation perfor-

mance of algorithms. In unimodal functions (f 1—f 4), all results of SGWO reach the theo-

retical optimum in all dimensions. At the same time, the optimization results of SGWO in

three dimensions are higher than other comparison algorithms. This indicates that the

SGWO has better global exploitation capability in the unimodal function. Therefore,

SGWO has better stability than the other 7 algorithms.

2. From comparison algorithms, the accuracy of SGWO, GWO, mGWO and WOA is higher

than other algorithms. In particular, the results of MFO in single-peak function obviously

deviate from the theoretical optimal value. Although WOA has a good comprehensive effect

on most functions, the optimization effect of f 3 also deviates. Although mGWO and

SGWO have similar search results on some functions, there is still a gap in the f 3 and f 4

functions. In addition, advanced WSO performs poorly on 7 functions in different dimen-

sions. Compared to advanced metaheuristic algorithms, SGWO still outperforms WSO in

Table 2. Comparison of experimental results in 50 dim.

f Index SCA MFO WOA GWO mGWO CMAES WSO SGWO

f 1 mean 0.32e+02 6.67e+03 9.59e-170 9.87e-52 4.03e-65 4.06e-01 0.20e+02 0

max 2.38e+02 4.00e+04 2.84e-168 3.60e-51 7.78e-65 7.18e-01 0.24e+02 0

min 1.24e-01 5.86e+01 7.23e-186 1.88e-53 2.87e-66 2.34e-01 0.16e+02 0

std 0.62e+02 9.58e+03 0 1.03e-51 5.29e-65 1.11e-01 0.57e+01 0

f 2 mean 6.60e-03 0.62e+02 4.54e-108 1.45e-30 1.49e-38 0.46e+01 0.17e+01 0

max 6.81e-02 1.20e+02 1.21e-106 8.21e-30 2.52e-38 0.58e+01 0.19e+01 0

min 5.70e-05 0.10e+02 7.56e-118 3.33e-31 4.74e-39 0.32e+01 0.15e+01 0

std 1.42e-02 0.26e+02 2.21e-107 1.41e-30 1.44e-38 6.20e-01 3.05e-01 0

f 3 mean 2.47e+04 5.29e+04 8.56e+04 1.15e-08 1.07e-10 1.89e-03 1.18e+03 0

max 5.28e+04 1.23e+05 1.42e+05 3.04e-07 2.15e-10 1.33e-02 1.38e+03 0

min 5.01e+03 1.17e+04 2.00e+04 5.44e-13 1.71e-15 5.82e-07 9.75e+02 0

std 1.17e+04 3.18e+04 2.14e+04 5.56e-08 1.53e-10 3.32e-02 2.92e+02 0

f 4 mean 0.55e+02 0.80e+02 0.57e+02 3.73e-11 3.47e-15 6.30e-01 0.89e+01 0

max 0.67e+02 0.88e+02 0.92e+02 2.97e-10 5.86e-15 8.99e-01 0.91e+01 0

min 0.28e+02 0.75e+02 9.30e-03 7.92e-13 1.07e-15 4.38e-01 0.88e+01 0

std 0.91e+01 0.38e+01 0.30e+02 5.76e-11 3.38e-15 1.13e-01 2.67e+01 0

f 5 mean 9.73e-04 1.46e-03 1.27e-03 1.03e-02 3.07e-04 8.98e-01 3.07e-04 2.23e-04

max 1.23e-03 1.55e-03 1.32e-03 2.03e-02 3.23e-04 9.12e-01 3.20e-04 2.34e-04

min 6.80e-04 1.48e-03 1.22e-03 3.03e-03 3.12e-04 8.24e-01 3.12e-04 2.09e-04

std 4.23e-04 3.06e-04 6.75e-04 5.42e-02 5.34e-02 1.93e-02 3.21e-04 2.01e-04

f 6 mean 0.63e+02 2.89e+02 0 1.55e-01 0 1.74e-01 0.25e+02 0

max 2.10e+02 3.64e+02 0 0.46e-01 0 2.63e-01 0.27e+02 0

min 1.43e-02 2.25e+02 0 0 0 1.13e-01 0.23e+02 0

std 0.51e+02 0.39e+02 0 8.52e-01 0 3.99e-02 0.30e+01 0

f7 mean 0.17e+02 0.18e+02 3.73e-15 2.66e-14 1.33e-14 1.84e-01 0.39e+01 8.88e-16

max 0.20e+02 0.19e+02 7.99e-15 3.29e-14 1.50e-14 2.29e-01 0.43e+01 8.88e-16

min 9.05e-02 6.41e-01 8.88e-16 2.22e-14 1.15e-14 1.28e-01 0.35e+01 8.88e-16

std 0.65e+01 0.44e+01 2.70e-15 3.58e-15 2.51e-15 2.96e-02 5.74e+01 0

f 8 mean 0.11e+01 0.82e+02 0 2.20e-03 0 2.07e-01 0.11e+01 0

max 0.22e+01 3.61e+02 0 2.10e-02 0 3.01e-01 0.12e+01 0

min 9.15e-02 4.85e-01 0 0 0 1.19e-01 0.11e+01 0

std 3.89e-01 0.98e+02 0 5.80e-03 0 4.87e-02 2.40e+02 0

https://doi.org/10.1371/journal.pone.0288071.t002
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all functions and dimensions. Therefore, SGWO has more advantages in exploitation

ability.

3. SGWO achieves the best results in all experiments in different dimensions. Compared to

other algorithms, their results show a significant decrease with the increase in dimensional-

ity. However, SGWO is not susceptible to increased dimensions. In 500 dim, SGWO still

converges to the theoretical optimal value on f 1—f 4, f 6 and f8. On f 5, the results of SGWO

at 500 dimensions are better than those at 50 and 100 dimensions. On f 7, the results of

SGWO are the same in the three dimensions. That proves that SGWO not only has promi-

nent advantages in low dimensions, but also exhibits the best experimental results in 500

dimensions. Thus, SGWO is more suitable for solving high-dimensional problems and has

a high dimensional extension.

Table 3. Comparison of experimental results in 100 dim.

f Index SCA MFO WOA GWO mGWO CMAES WSO SGWO

f 1 mean 3.56e+03 2.65e+04 1.51e-169 2.04e-34 2.78e-42 0.57e+01 4.21e+02 0

max 8.03e+03 5.33e+04 3.00e-168 6.37e-34 3.19e-42 0.79e+01 4.25e+04 0

min 6.21e+02 3.63e+03 1.22e-185 2.27e-35 2.37e-42 0.39e+01 4.16e+04 0

std 2.21e+03 1.16e+04 0 1.79e-34 5.76e-43 9.07e-01 0.64e-01 0

f 2 mean 0.91e+02 1.76e+02 1.49e-106 7.02e-21 2.73e-26 0.21e+02 0.11e+02 0

max 0.47e+01 2.93e+02 4.00e-105 1.57e-20 4.21e-26 0.25e+02 0.11e+02 0

min 2.51e+02 1.03e+02 3.68e-116 2.37e-21 1.25e-26 0.18e+02 0.94e+01 0

std 0.11e+01 0.54e+02 7.31e-106 3.01e-21 2.09e-26 0.17e+02 0.15e+01 0

f 3 mean 1.83e+05 1.65e+05 6.80e+05 0.16e-01 2.00e-02 9.31e+04 4.96e+03 0

max 2.96e+05 3.05e+05 8.90e+05 0.40e-02 3.99e-02 9.66e+03 5.63e+03 0

min 1.09e+05 7.62e+04 4.64e+05 2.88e-05 1.82e-04 4.04e+10 4.29e+03 0

std 4.54e+04 5.94e+04 1.10e+05 0.74e-01 2.81e-02 1.82e+03 9.48e+02 0

f 4 mean 0.84e+02 0.92e+02 0.70e+02 1.08e-04 5.24e-06 0.12e+01 0.13e+02 0

max 0.91e+02 0.95e+02 0.95e+02 5.47e-04 9.20e-06 0.16e+01 0.14e+02 0

min 0.77e+02 0.89e+02 0.12e+02 9.99e-07 1.27e-06 0.11e+01 0.13e+02 0

std 0.37e+01 0.17e+01 0.23e+02 1.56e-04 5.61e-06 1.33e+01 8.51e+01 0

f 5 mean 6.82e-04 7.08e-04 7.71e-04 1.03e-02 1.03e-02 9.53e-01 5.07e-04 4.83e-04

max 7.09e-04 7.10e-04 6.22e-03 2.03e-02 2.03e-02 9.70e-01 5.07e-04 5.32e-04

min 6.56e-04 7.05e-04 5.13e-04 5.07e-04 5.07e-04 9.36e-01 5.03e-04 4.34e-04

std 3.75e-05 4.17e-05 6.48e-04 1.41e-02 1.41e-02 2.37e-02 3.03e-04 2.91e-05

f 6 mean 1.75e+02 7.06e+02 0 5.32e-01 0 9.41e-01 1.31e+02 0

max 4.33e+02 8.94e+02 0 0.50e+01 0 9.77e-01 1.49e+02 0

min 0.21e+02 5.84e+02 0 0 0 8.54e-01 1.12e+02 0

std 1.09e+02 0.61e+02 0 0.14e-01 0 3.02e-02 0.25e+02 0

f7 mean 0.18e+02 0.19e+02 3.85e-15 6.87e-14 3.10e-14 9.45e-01 0.58e+01 8.88e-16

max 0.21e+02 0.19e+02 7.99e-15 7.90e-14 3.99e-14 9.86e-01 0.59e+01 8.88e-16

min 0.63e+01 0.18e+02 8.88e-16 5.77e-14 2.22e-14 8.80e-01 0.56e+01 8.88e-16

std 0.51e+01 2.97e-01 1.89e-15 5.05e-15 1.25e-14 2.90e-02 1.89e+01 0

f 8 mean 0.30e+02 2.20e+02 0 1.10e-03 0 9.47e-01 0.47e+01 0

max 1.04e+02 5.50e+02 0 1.51e-02 0 9.81e-01 0.48e+01 0

min 0.19e+01 0.36e-02 0 0 0 8.79e-01 0.46e+01 0

std 0.27e+02 1.07e+02 0 3.50e-03 0 2.62e-02 1.54e+01 0

https://doi.org/10.1371/journal.pone.0288071.t003
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To better compare the convergence speed of different algorithms, the convergence curves

of two unimodal functions (f 1, f 2) and two multimodal functions (f 6, f 8) were analyzed in

Fig 7.

1. From unimodal functions, SGWO needs 300 iterations in f 1 function to converge to the

theoretical optimal value, and 500 iterations in f 2 function. GWO has not reached the theo-

retical optimal value after 1000 iterations. The optimization results of other algorithms,

including mGWO and WSO, did not change significantly. This further demonstrates that

SGWO can improve global exploitation capabilities.

2. With the increase of dimension, other algorithms change obviously, while SGWO ensures

better convergence speed and accuracy. Thus, SGWO has significant advantages in global

exploitation ability.

Table 4. Comparison of experimental results in 500 dim.

f Index SCA MFO WOA GWO mGWO CMAES WSO SGWO

f 1 mean 1.46e+05 9.19e+05 7.9e-167 5.46e-14 2.84e-17 9.40e+01 1.46e+04 0

max 1.86e+05 9.51e+05 1.5e-166 7.35e-14 4.47e-17 9.58e+01 1.56e+04 0

min 1.06e+05 8.88e+05 1.7e-168 3.57e-14 1.20e-17 9.21e+01 1.36e+04 0

std 5.62e+04 4.46e+04 0 2.67e-14 2.31e-17 2.54e+02 1.44e+03 0

f 2 mean 0.55e+02 2.21e+04 2.9e-102 6.79e-09 6.72e-11 8.93e+01 1.96e+02 0

max 0.65e+02 2.22e+04 5.8e-102 7.05e-09 7.63e-11 9.51e+01 2.01e+02 0

min 0.45e+02 2.20e+04 2.5e-112 6.53e-09 5.82e-11 8.34e+01 1.93e+02 0

std 0.13e+02 0.13e+02 4.1e-102 3.67e-10 1.27e-11 8.26e+02 0.54e+01 0

f 3 mean 3.78e+06 3.59e+06 2.26e+07 1.29e+05 5.01e+04 9.59e+01 1.46e+05 0

max 3.80e+06 4.63e+06 2.28e+07 1.84e+05 6.64e+04 9.75e+01 1.53e+05 0

min 3.76e+06 2.55e+06 2.23e+07 7.46e+05 3.38e+04 9.42e+01 1.39e+05 0

std 3.01e+04 1.47e+06 4.16e+05 7.75e+04 2.30e+04 2.31e+02 0.97e+04 0

f 4 mean 0.98e+02 0.98e+02 0.75e+02 0.48e+02 0.57e+02 9.50e+01 0.21e+02 0

max 0.99e+02 0.98e+02 0.95e+02 0.53e+02 0.59e+02 9.53e+01 0.22e+02 0

min 0.98e+02 0.98e+02 0.55e+02 0.42e+02 0.55e+02 9.47e+01 0.21e+02 0

std 6.87e-01 2.27e-01 0.28e+02 0.72e+01 0.26e+01 4.18e+03 9.41e+01 0

f 5 mean 9.72e-04 7.52e-04 5.32e-04 3.07e-04 3.05e-04 9.55e-01 3.17e-04 2.13e-04

max 1.22e-03 7.82e-04 7.57e-04 3.07e-04 3.06e-04 9.69e-01 3.53e-04 2.56e-04

min 7.19e-04 7.22e-04 3.07e-04 3.07e-04 3.05e-04 9.41e-01 3.47e-04 2.24e-04

std 3.57e-04 4.24e-05 3.17e-04 2.44e-08 1.09e-08 1.96e-02 5.42e-02 9.61e-05

f 6 mean 0.84e+03 6.11e+03 0 0.12e-01 5.00e-12 9.36e+01 2.24e+03 0

max 1.15e+03 6.28e+03 0 0.24e-01 5.45e-12 9.65e+01 2.26e+03 0

min 0.53e+03 5.93e+03 0 0.31e-01 4.54e-12 9.06e+01 2.22e+03 0

std 0.44e+03 0.24e+03 0 0.17e-01 6.43e-13 4.19e-02 0.28e+02 0

f7 mean 0.21e+02 20.1755 8.88e-16 9.74e-09 2.91e-10 9.40e+01 0.81e+01 8.88e-16

max 0.21e+02 0.21e+02 8.88e-16 1.11e-08 3.79e-10 9.51e+01 0.83e+01 8.88e-16

min 0.21e+02 0.21e+02 8.88e-16 8.29e-09 2.03e-10 9.29e+01 0.77e+01 8.88e-16

std 0.96e-02 0.61e-01 0 2.03e-09 1.24e-10 1.51e+02 3.68e+01 0

f 8 mean 1.78e+03 8.17e+03 0 1.05e-14 3.88e-16 9.58e+02 1.47e+02 0

max 1.88e+03 8.25e+03 0 1.52e-14 4.44e-16 9.64e+02 1.55e+02 0

min 1.67e+03 8.08e+03 0 5.88e-15 3.33e-16 9.52e+02 1.39e+02 0

std 0.14e+03 0.11e+03 0 6.59e-15 7.85e-17 0.89e+02 0.11e+02 0

https://doi.org/10.1371/journal.pone.0288071.t004
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Fig 7. The comparison of the convergence curves.

https://doi.org/10.1371/journal.pone.0288071.g007
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6.1.3. Exploration analysis. Compared to unimodal functions, multimodal functions

have many local optimizations, which makes them more suitable for testing the exploration

capabilities of algorithms.

1. For f 6 and f 8, SGWO still converges to the optimal value in different dimensions. For other

algorithms such as WSO and SCA, they perform poorly on these two functions. With

dimensions increasing, the results of other algorithms gradually decrease. Thus, SGWO is

able to provide very competitive results on f 6 and f 8. This indicates that SGWO has a strong

advantage in jumping out of the local extreme value and SGWO has better local exploration

capability.

2. For f 7, neither GWO nor SGWO undergoes significant progress than other algorithms. It

shows that most meta heuristic algorithms are not applicable to the optimization on f 7.

SGWO experimental results are still slightly higher than other algorithms on f 7. Therefore,

the own defects of GWO limit the effect of SGWO. This indicates that SGWO still exhibits

excellent performance than other algorithms.

3. For f 5, the results of all algorithms are not significantly different under the same dimension.

However, SGWO still has advantages. This indicates that SGWO still exhibits excellent per-

formance in complex functions. With dimensions increase, SGWO has the best results on

500 dimensions. This indicates that SGWO still has advantages in dealing with high-dimen-

sional problems.

4. From Fig 7, the SGWO algorithm has a faster search speed in the same dimension com-

pared to state-of-the-art WSO and mGWO. SGWO curve has fewer turning points, while

other algorithms fall into local extreme points many times. Because the SGWO algorithm

incorporated a hybrid strategy optimization leadership mechanism, the head wolf was pre-

vented from falling in the local extremum through random disturbance. Therefore, SGWO

has local exploration capability.

5. From multimodal functions, the convergence effect of SGWO, mGWO and WOA func-

tions is obviously faster than other algorithms. At the end of iteration, the optimization

results of other algorithms are not affected by the increase in iteration times. SGWO has an

outstanding advantage over single-peaked functions, but the optimization performance and

convergence speed still need to be improved.

6.1.4. Non-parametrical statistical tests. A full statistical analysis of the optimizer com-

parison must be presented based on significant non-parametric tests. As the non-parametric

test, Friedman test [58] was used to examine the overall performance of all algorithms. The

null assumption in this test was that all algorithms would perform equally. The alternative

hypothesis consists in the difference between more algorithms. We used Friedman test to ana-

lyze the results of Tables 2–4. Table 5 shows the results of the Friedman test.

From Table 5, the p-values for all 3 dimensions are smaller than 0.05. Therefore, the null

hypothesis is rejected. This indicates that all algorithms are significantly different. In this case,

we will use the "Nemenyi post-hoc test" [59] for adjusting the results for pairwise comparisons.

Table 5. Friedman test for the results obtained at 50, 100 and 500 dimensions.

Dim 50 100 500

p-value 1.50e-06 8.89e-06 1.86e-06

https://doi.org/10.1371/journal.pone.0288071.t005
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The Nemenyi test requires to calculate the critical value.

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r

qa ¼ 3:301

ð21Þ

where, k represents the number of algorithms. N represents the number of functions. After cal-

culation, CD = 4.0429. To calculate the statistic, we rank the algorithm performance for each

problem and compute the mean of each algorithm. Table 6 shows the results of mean ranks.

Table 7 shows the mean ranks difference between each algorithm and SGWO.

If the difference between the mean ranks exceeds CD, the hypothesis that the two algo-

rithms have the same performance is rejected. From Table 7, SCA, MFO and CMAES are

higher than CD at all dimensions. This indicates that SCA, MFO and CMAES all differed sig-

nificantly from SGWO. There is no significant difference between other algorithms and

SGWO.

6.1.5. Wilcoxon test and ranking. The Friedman + Nemenyi test can express the overall

performance and individual differences of SGWO. However, it is still necessary to evaluate the

comparative results of each algorithm on different functions. We used the Wilcoxon rank sum

test [60]. Table 8 shows the p values of SGWO and other algorithms, which are at p = 0.05 sig-

nificance level.

It can be seen from Table 8 that SGWO is more statistically significant than all other algo-

rithms except mGWO and WOA. In 50 and 100 dim, the results between mGWO and WOA

are not applicable on f 6 and f 8. These prove that their significance with SGWO is lower. In

500 dim, the results of WOA and GWO on f 6 and f 8 are higher than 50 and 100 dimensions,

indicating that there is a significant difference between SGWO and these two algorithms.

Therefore, the SGWO algorithm is not affected by dimensions and can be extended to high

dimensions. SCA, MFO, WSO and CMAES have the same result on different functions. This

indicates SGWO is significantly different from SCA, MFO, WSO. However, CMAES differs

less from SGWO in the overall comparison Table 7. All the above analyses are consistent with

the results in Table 7. Meanwhile, all results are the same on f 1—f 4, but the result of f 5 is

higher than other functions. This shows that each algorithm has a lower optimization effect on

f 5. With the increase of dimensions, the results have little difference in different dimensions.

In conclusion, SGWO is superior to other comparison algorithms. SGWO has significantly

better optimization performance and comprehensive strength. In addition, we used MAE to

Table 6. Mean ranks of each algorithm in different dimensions.

Dim SCA MFO WOA GWO mGWO CMAES WSO SGWO

50 Dim 6.0625 7.6250 3.7500 4.1250 2.4375 5.3750 5.3750 1.2500

100 Dim 6.5000 7.2500 3.6250 3.9375 3.0625 5.3750 5 1.2500

500 Dim 6.6875 7.1875 3.3125 3.7500 3 5.7500 5.1250 5.1250

https://doi.org/10.1371/journal.pone.0288071.t006

Table 7. Mean ranks difference between each algorithm and SGWO.

Dim SCA MFO WOA GWO mGWO CMAES WSO

50 Dim 4.8125 6.3750 2.5000 2.8750 1.1875 4.1250 4.1250

100 Dim 5.2500 6.0000 2.3750 2.6875 1.8125 4.1250 3.7500

500 Dim 5.4375 5.9375 2.0625 2.5000 1.7500 4.5000 3.8750

https://doi.org/10.1371/journal.pone.0288071.t007
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Table 8. Wilcoxon rank sum test p-value of benchmark function.

F SCA MFO WOA GWO mGWO CMAES WSO

Dim = 30

f 1 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ N/A =

f 2 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ N/A =

f 3 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ N/A =

f 4 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ N/A =

f 5 3.02e-11+ 3.02e-11+ 3.02e-11+ 6.70e-11+ 3.02e-11+ 3.02e-11+ 3.02e-11+

f 6 1.21e-12+ 1.21e-12+ 1.21e-12+ 0.33370+ 0.08140+ 1.21e-12+ N/A =

f 7 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 6.29e-13+ 1.21e-12+ N/A =

f 8 1.21e-12+ 1.21e-12+ 1.21e-12+ 0.16080+ 0.04190+ 1.21e-12+ N/A =

+/ = /- 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 1/7/0

Dim = 50

f 1 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 2 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 3 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 4 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 5 3.02e-11+ 3.02e-11+ 1.21e-10+ 3.02e-11+ 3.02e-11+ 3.02e-11+ 3.02e-11+

f 6 1.21e-12+ 1.21e-12+ N/A = 0.04190+ N/A = 1.21e-12+ 1.21e-12+

f 7 1.21e-12+ 1.21e-12+ 7.46e-07+ 5.68e-13+ 4.42e-13+ 1.21e-12+ 1.21e-12+

f 8 1.21e-12+ 1.21e-12+ N/A = 0.04190+ N/A = 1.21e-12+ 1.21e-12+

+/ = /- 8/0/0 8/0/0 6/2/0 8/0/0 6/2/0 8/0/0 8/0/0

Dim = 100

f 1 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 2 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 3 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 4 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 5 3.02e-11+ 3.02e-11+ 6.07e-11+ 3.02e-11+ 3.02e-11+ 3.02e-11+ 3.02e-11+

f 6 1.21e-12+ 1.21e-12+ N/A = 1.06e-07+ N/A = 1.21e-12+ 1.21e-12+

f 7 1.21e-12+ 1.21e-12+ 2.09e-09+ 8.52e-13+ 7.39e-13+ 1.21e-12+ 1.21e-12+

f 8 1.21e-12+ 1.21e-12+ N/A = 0.08150+ N/A = 1.21e-12+ 1.21e-12+

+/ = /- 8/0/0 8/0/0 6/2/0 8/0/0 6/2/0 8/0/0 8/0/0

Dim = 500

f 1 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 2 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 3 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 4 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+ 1.21e-12+

f 5 3.02e-11+ 3.02e-11+ 5.62e-10+ 3.02e-11+ 3.02e-11+ 3.02e-11+ 3.02e-11+

f 6 1.21e-12+ 1.21e-12+ N/A = 1.16e-06+ 1.16e-09+ 1.21e-12+ 1.21e-12+

f 7 1.21e-12+ 1.21e-12+ 3.12e-08+ 6.23e-13+ 7.94e-13+ 1.21e-12+ 1.21e-12+

f 8 1.21e-12+ 1.21e-12+ N/A = 0.1145+ 0.3409+ 1.21e-12+ 1.21e-12+

+/ = /- 8/0/0 8/0/0 6/2/0 8/0/0 8/0/0 8/0/0 8/0/0

*Note: "+", "-", " = " indicate that SGWO advanced, worsened, and is equivalent to the comparison algorithm, and N/A indicates "not applicable".

https://doi.org/10.1371/journal.pone.0288071.t008
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sort the all algorithms [61]. MAE expression is as follows:

MAE ¼

XNf

i¼1

jMeani � oij

Nf
ð22Þ

where, Meani is the mean value of the algorithm. oi is the theoretical optimal value of the

benchmark function. Nf is the number of benchmark functions. Table 9 shows MAE under dif-

ferent dimensions. Table 10 shows the sum of MAE in each algorithm. MAE = (MAE50+-

MAE100+MAE500)/3.

From Table 9, all algorithms rank differently in each dim. With the increase of dim, the

MAE values change significantly for other algorithms, but SGWO can maintain the optimal

level. This indicates that SGWO has strong stability and is not easily affected by dim changes.

In 50 and 100 dimensions, the ranking of the eight algorithms is the same, SGWO > mGWO

> GWO > CMAES > WSO > SCA > MFO >WOA respectively. CMAES ranks higher than

GWO and mGWO in the 500 dimensions, which shows that the performance effect of each

algorithm is different in the three dimensions. GWO is lower than SGWO in every three

dimensions. This proves that the comprehensive performance of GWO is better than other

comparison algorithms, and the improved strategy proposed in this paper significantly

improves the optimization effect of GWO. The sorting results in Table 10 are

SGWO > CMAES > mGWO> GWO > WSO > SCA> MFO > WOA, respectively.

Fig 8 shows the box convergence diagram of two benchmark functions in different dimen-

sions. The two benchmark functions are a unimodal function f 4 and multimodal functions f 6

respectively.

Table 9. Algorithm ranking under different dimensions.

50 Dim 100 Dim 500 Dim

Name MAE Rank Name MAE Rank Name MAE Rank

SGWO 1.02e-05 1 SGWO 8.75e-06 1 SGWO 2.66e-05 1

mGWO 3.84e-05 2 mGWO 3.80e-03 2 CMAES 1.90e+02 2

GWO 1.98e-02 3 GWO 2.71e-01 3 mGWO 6.27e+03 3

CMAES 8.41e-01 4 CMAES 4.25060 4 GWO 1.61e+04 4

WSO 1.55e+02 5 WSO 6.93e+02 5 WSO 2.04e+04 5

SCA 0.31e+04 6 SCA 0.23e+05 6 SCA 4.91e+05 6

MFO 0.75e+04 7 MFO 0.24e+05 7 MFO 5.68e+05 7

WOA 0.11e+05 8 WOA 0.85e+05 8 WOA 2.82e+06 8

https://doi.org/10.1371/journal.pone.0288071.t009

Table 10. Total ranking of algorithms in different dimensions.

Name MAE Dim Rank Total ranking

SGWO 8.87e-06 50/100/500 1/1/1 1

CMAES 0.65e+02 50/100/500 4/4/2 2

mGWO 2.09e+03 50/100/500 2/2/3 3

GWO 5.37e+03 50/100/500 3/3/4 4

WSO 7.08e+03 50/100/500 5/5/5 5

SCA 1.72e+05 50/100/500 6/6/6 6

MFO 1.99e+05 50/100/500 7/7/7 7

WOA 9.72e+05 50/100/500 8/8/8 8

https://doi.org/10.1371/journal.pone.0288071.t010
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From Fig 8, The fitness values of SGWO are lower than other comparison algorithms, even

close to zero. It shows that the improved strategy based on an adaptive information interaction

mechanism is effective for traditional GWO. The median of SGWO is lower than other algo-

rithms whether in different dim or peaks. This shows that SGWO can get a better optimization

effect after multiple iterations. At the same time, the interquartile spacing of SGWO is short

than other algorithms, which indicates that the optimization effect of SGWO is more concen-

trated under each function and dimension.

6.2. Three strategies comparative experiment

6.2.1. Experimental information. In order to analyze the impact of different strategies on

the SGWO algorithm, we conducted comparative experiments on four algorithms. cGWO is

the first strategy “Circle population initialization”; iGWO is the second strategy “Information

interaction mechanism”; aGWO is the third strategy “Adaptive position update”; aWOA is the

application of the third strategy to WOA.

To ensure the experimental objective fairness, The initialization parameter of all algorithms

was same, where the population size is 50 and maximum the number of iterations is 1000. For

performance testing, 30 runs have been performed in 50 dim, 100 dim and 500 dim, respec-

tively. And experimental results are presented in terms of:

• Best of 30 runs

• Standard deviation of 30 runs.

Fig 8. Boxplot of fitness in various algorithms.

https://doi.org/10.1371/journal.pone.0288071.g008
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6.2.2. cGWO analysis. Table 11 shows the results for GWO, cGWO, iGWO, aGWO,

aWOA and SGWO in 50 dim, 100 dim, and 500 dim, respectively. Fig 9 shows the convergence

curves of different algorithms in unimodal functions f 2 and multimodal functions f 7.

From Table 11, compared to GWO, the results of cGWO have improved slightly in all func-

tions of different dimensions. This indicates that the circle population initialization strategy

can improve the optimization ability of GWO. However, the improvement effect of cGWO is

Table 11. Experimental results of three strategies in 50, 100 and 500 dims.

No. Index f 1 f 2 f 3 f 4 f 5 f 6 f7 f 8

50Dim

GWO mean 9.87e-52 1.45e-30 1.15e-08 3.73e-11 1.03e-02 1.55e-01 2.66e-14 2.20e-03

std 5.29e-65 8.21e-30 5.56e-08 5.76e-11 5.42e-02 8.52e-01 3.58e-15 5.80e-03

cGWO mean 9.46e-55 2.66e-34 1.07e-10 1.47e-14 4.42e-03 5.68e-15 2.82e-14 1.29e-05

std 1.11e-71 2.59e-33 2.38e-10 1.14e-13 8.40e-03 1.79e-14 2.39e-15 1.49e-05

iGWO mean 7.74e-150 7.09e-84 3.31e-80 8.74e-54 3.09e-04 0 5.86e-15 0

std 1.49e-149 9.45e-84 4.73e-80 1.69e-53 1.03e-06 0 1.83e-15 0

aGWO mean 0 0 0 0 6.36e-04 0 2.30e-15 0

std 0 0 0 0 1.50e-04 0 1.83e-15 0

aWOA mean 4.42e-16 4.39e-107 4.97e+08 0.87e-02 3.86e+04 0.67e-01 8.88e-16 5.59e-03

std 4.86e-16 6.21e-107 3.14e+08 0.54e-01 2.70e+04 0.94e-01 2.00e-14 7.98e-03

SGWO mean 0 0 0 0 2.23e-04 0 8.88e-16 0

std 0 0 0 0 0 0 0 0

100Dim

GWO mean 2.04e-34 7.02e-21 0.16e-01 1.08e-04 1.03e-02 5.32e-01 3.10e-14 1.10e-03

std 1.79e-34 3.01e-21 0.74e-01 1.56e-04 1.41e-02 0.14e-01 1.25e-14 3.50e-03

cGWO mean 3.23e-35 1.06e-26 1.27e-03 3.41e-05 2.31e-03 2.32e-15 7.05e-15 1.01e-03

std 3.03e-35 7.90e-26 1.34e-03 3.32e-05 6.34e-03 0.10e-15 7.14e-15 3.21e-03

iGWO mean 1.72e-119 2.88e-67 2.72e-59 6.11e-38 4.95e-04 0 7.28e-15 0

std 4.19e-119 2.02e-67 8.62e-59 1.64e-37 3.91e-04 0 1.49e-15 0

aGWO mean 0 0 0 0 7.98e-04 0 3.73e-15 0

std 0 0 0 0 3.24e-04 0 1.49e-15 0

aWOA mean 1.61e-16 9.94e-111 2.11e+09 8.49e+01 1.66e+04 5.13e-03 2.66e-15 1.49e+00

std 2.28e-16 1.30e-110 2.91e+08 0.38e+01 9.53e+03 7.12e-02 6.76e-15 2.11e+00

SGWO mean 0 0 0 0 4.83e-04 0 8.88e-16 0

std 0 0 0 0 2.91e-05 0 0 0

500Dim

GWO mean 5.46e-14 6.79e-09 1.29e+05 0.48e+02 3.07e-04 0.12e-01 9.74e-09 1.05e-14

std 7.35e-14 3.67e-10 7.75e+04 0.72e+01 2.44e-04 0.17e-01 2.03e-09 6.59e-15

cGWO mean 2.60e-16 5.16e-13 1.03e+05 0.23e+01 6.73e-04 0.13e-12 8.14e-11 1.02e-16

std 8.32e-17 1.28e-13 5.27e+04 0.37e+01 5.01e-04 0.29e-12 2.80e-11 3.90e-16

iGWO mean 1.00e-86 1.06e-48 3.74e-42 3.14e-13 4.93e-04 0 7.99e-15 0

std 1.83e-86 1.88e-49 5.98e-42 1.97e-13 4.10e-04 0 0 0

aGWO mean 0 0 0 0 6.15e-04 0 4.44e-15 0

std 0 0 0 0 1.11e-04 0 0 0

aWOA mean 2.29e-14 5.35e-108 4.81e+07 5.42e+01 2.66e+17 1.68e-03 2.66e-15 6.17e-03

std 3.22e-14 7.57e-108 2.66e+07 3.63e+01 5.18e+18 2.34e-03 2.65e-15 8.72e-03

SGWO mean 0 0 0 0 2.13e-04 0 8.88e-16 0

std 0 0 0 0 9.61e-05 0 0 0

https://doi.org/10.1371/journal.pone.0288071.t011
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weaker than iGWO, aGWO and SGWO. Specifically, circle population initialization was used

only once in the initialization step, which weakened the effect of cGWO.

From Fig 9, in unimodal functions f 2, although the convergence speed of cGWO algorithm

is slightly higher than GWO, it is still not as good as other strategies. In multimodal functions f
7, the convergence speed of cGWO is better than GWO and iGWO. At the same time, the num-

ber of transitions in cGWO should be less than aGWO, aWOA and SGWO. This indicates that

circle population initialization can help cGWO jump out of local extremum. Therefore, cGWO

can not only improve the exploration ability of GWO, but also contribute to improving SGWO.

6.2.3. iGWO analysis. From Table 11, compared to GWO, the results of iGWO have

improved significantly in all functions of different dimensions. In unimodal functions f 1—f 4,

iGWO can be improved dozens of times. In f 6 and f 8, iGWO can reach the theoretical optimal

value. This indicates that the information interaction mechanism can improve the conver-

gence ability.

From Fig 9, in unimodal functions f 2, the convergence speed of iGWO is higher than

GWO and cGWO. In multimodal functions f 7, the convergence speed of iGWO is lower than

GWO, cGWO and aWOA at the beginning of the iteration. However, the convergence speed

of iGWO is higher than GWO, cGWO and aWOA at the end of the iteration. Therefore, the

information interaction mechanism will contribute to generally the efficiency of SGWO.

6.2.4. aGWO analysis. From Table 11, aGWO can reach the theoretical optimal value in f
1—f 4, f 6 and f 8. The results of aGWO are not significantly different from SGWO. This indi-

cates that adaptive position update strategy can improve optimization performance of GWO

and play an important role in SGWO. Meanwhile, information interaction mechanism is the

best strategy compared to the other two strategies. From Fig 9, the convergence speed of

aGWO is the same as SGWO. And they can quickly converge to the optimal value.

Fig 9. Convergence curves for different strategies.

https://doi.org/10.1371/journal.pone.0288071.g009
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On the meanwhile, we incorporate adaptive position update strategy into WOA. Although

the convergence performance of aWOA is not as good as that of aGWO, it is still superior to

GWO. From Table 10, it can be seen that GWO performs better than WOA. Therefore,

aGWO> aWOA > GWO>WOA. The information interaction mechanism can also improve

the optimization performance of WOA. This further proves that the information interaction

mechanism is an effective strategy.

6.3. Sensitivity analysis of parameters

The sensitivity analysis of two control parameters of Eq (17) is investigated in this section.

These two parameters are λ and p, which together control the change of ω in the iteration. On

the meanwhile, ω plays an important role in balancing exploration and exploitation. Therefore,

it is necessary to conduct sensitivity analysis on λ and p.

Table 12 represents ω mean by 1000 iterations under various parameter combinations.

As shown in Table 12, when p is constant, the mean value of ω gradually decreases as λ
increases. When λ is constant, as p increases, the mean value of ω gradually decreases and

decays faster. In the seventh experiment, when λ and p reached the maximum, the mean

value of ω was the minimum. The results can be interpreted as saying that λ and p are nega-

tively correlated with ω.

Fig 10 represents ω curves of 1000 iterations under various parameter combinations. When

λ is constant, with the increase of p, the value of ω decreases rapidly in the early stage of the

iteration. That proves that p can exploitation time and quickly find the optimal value range for

SGWO. At the end of the iteration, as the value of λ increases, ω will quickly transition to the

exploration phase. With the increase of the iterations, the amplitude of the ω is decreased,

which proves that SGWO will refine the search solution. Therefore, we set λ to the maximum

to improve the SGWO’s exploration performance. Although increasing the p will accelerate

the decrease in ω, considering that SGWO needs to balance exploration and exploitation, we

set p to 0.25.

6.4. SGWO for practical applications

6.4.1. SGWO for tension/compression spring design problem. The objective of this

problem is to minimize the weight of a tension/compression spring [62]. This problem can be

abstracted into the following mathematical model. In the model, x1 is wire diameter, x2 is

Table 12. Sensitivity analysis of λ and p.

Number Value of parameters Mean(ω)

λ p
1 0.2 0.1 0.6501

2 0.4 0.1 0.6080

3 0.6 0.1 0.5844

4 0.2 0.25 0.3465

5 0.4 0.25 0.2937

6 0.6 0.25 0.2662

7 0.99 0.25 0.2356

https://doi.org/10.1371/journal.pone.0288071.t012
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mean coil diameter, and x3 is the number of active coils.

consider x!¼ ½x1; x2; x3�

min f ð x!Þ ¼ ðx3 þ 2Þx2x2
1

s:t: g1ð x
!Þ ¼ 1 �

x3
2
x3

71785x4
1

� 0
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4x2
2
� x1x2

12566ðx2x3
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1
Þ
þ

1

5108x2
1

� 0
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!Þ ¼ 1 �

140:45x1

x2
2
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� 0

g4ð x
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x1 þ x2

1:5
� 1 � 0

variable range 0:05 � x1 � 2:00; 0:25 � x2 � 1:30; 2:00 � x3 � 15:0

ð23Þ

Table 13 shows the comparison of results of the tension/compression spring design prob-

lem. Table 13 suggests that SGWO finds a design with the minimum weight for this problem.

This further proves that SGWO can be applied to practical problems and exhibits better

performance.

6.4.2. SGWO for a large-scale optimization problem. To prove the scalability of SGWO

in large-scale optimization problems [63], we conducted a comparative experiment under

1000 dimensions. The experimental information is the same as that in section 6.1.1. Table 14

shows the results of 8 algorithms in f 1, f 2, f 6 and f 8.

Fig 10. ω curve with different parameters.

https://doi.org/10.1371/journal.pone.0288071.g010
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From Table 14, SGWO can still find theoretical optimal values in large-scale optimization

problems. Compared to other algorithms, SCA and MFO failed on f 2 and the results of WSO

are also very poor on four functions. Therefore, SGWO is suitable for solving large-scale opti-

mization problems and has strong stability.

6.5. SGWO-Elman comparative experiment

6.5.1. Experimental information. (1) datasets information

To verify the performance of SGWO-Elman, we selected six benchmark datasets from the UCI

(http://archive.ics.uci.edu/ml) database and did two groups of experiments. Because there are

a few null values and characteristic indexes irrelevant to the study, the collected datasets were

preprocessed. The processed data information was shown in Table 15. To eliminate the prob-

lem of dimensional inconsistency, normalization was carried out before the data was input

into the prediction model. Table 16 shows the number of hidden layers for different datasets.

(2) evaluation criteria

For performance testing, 10 runs have been performed in three comparative experiments.

And experimental results are evaluated in terms of:

Table 13. Tension/Compression spring design problem results in other algorithms.

Algorithm mean max min std

SCA 1.30e-02 1.31e-02 1.28e-02 1.10e-0

MFO 1.31e-02 1.35e-02 1.27e-02 3.11e-04

WOA 1.32e-02 1.36e-02 1.31e-02 1.89e-02

GWO 1.27e-02 1.27e-02 1.26e-02 2.67e-05

mGWO 1.27e-02 1.27e-02 1.26e-02 2.77e-05

CMAES 9.48e-01 9.69e-01 8.79e-01 3.89e-02

WSO 1.26e-02 1.26e-02 1.26e-02 9.92e-07

SGWO 1.88e-03 2.32e-03 1.32e-03 3.76e-03

https://doi.org/10.1371/journal.pone.0288071.t013

Table 14. Large-scale optimization results in 1000 dimensions.

f Index SCA MFO WOA GWO mGWO CMAES WSO SGWO

f 1 mean 2.92e+05 2.37e+06 5.70e-164 8.97e-10 2.73e-12 0.93675 4.08e+04 0

max 4.64e+05 2.39e+06 1.71e-163 1.32e-09 3.52e-12 0.96727 4.36e+04 0

min 7.53e+04 2.35e+06 1.19e-174 6.66e-10 1.46e-12 0.87738 3.61e+04 0

std 1.98e+05 2.24e+04 0 3.73e-10 1.10e-12 0.05142 4.12e+03 0

f 2 mean Inf Inf 6.74e-108 2.30e-05 3.98e-06 0.94723 5.18e+02 0

max Inf Inf 1.99e-107 4.32e-05 6.66e-06 0.98153 5.23e+02 0

min Inf Inf 1.25e-109 7.47e-06 3.53e-07 0.92390 5.15e+02 0

std NaN NaN 1.14e-107 1.83e-05 3.25e-06 0.03034 4.11e+00 0

f 6 mean 1.43e+03 1.43e+04 0 2.12e+01 1.10e-10 0.94289 5.79e+03 0

max 2.34e+03 1.45e+04 0 2.67e+01 1.60e-10 0.96681 6.13e+03 0

min 4.40e+02 1.39e+04 0 1.66e+01 7.45e-11 0.92584 5.57e+03 0

std 9.55e+02 2.97e+02 0 5.04e+00 4.44e-11 0.02132 2.98e+02 0

f 8 mean 4.08e+03 2.20e+04 0 3.02e-11 9.98e-03 0.92945 4.11e+02 0

max 4.84e+03 2.24e+04 0 3.33e-11 2.99e-02 0.95888 4.44e+02 0

min 3.16e+03 2.19e+04 0 2.79e-11 1.31e-13 0.90148 3.93e+02 0

std 8.53e+02 2.77e+02 0 2.76e-12 1.72e-02 0.02873 2.88e+01 0

https://doi.org/10.1371/journal.pone.0288071.t014
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• Best of 10 MSEs of runs

• Worst of 10 MSEs of runs

• Mean of 10 MSEs of runs

• Standard deviation of 10 MSEs of runs

MSE is the minimum mean square error. MSE can evaluate the predictive performance of

neural networks by comparing prediction errors. MSE metric was defined in Eq (20). The

comparison methods of three experiments are as follows.

(3) comparison methods

For the first comparative experiment: we selected the SCA, MFO, sparrow search optimiza-

tion algorithm (SSA) [35] and atom search optimization algorithm (ASO) [31] algorithms.

They were fused into the Elman neural network to form SSA-Elman, MFO-Elman, ASO-El-

man and SCA-Elman. These four optimization algorithms will be compared with SGWO-El-

man. The parameters of all optimization algorithms were set to the same value.

For the second comparative experiment: we selected the traditional Elman neural network,

standard back propagation neural network (BP), radial basis function neural network (RBF)

[70], and generalized regression neural network (GRNN) [71]. The prediction effect of

SGWO-Elman was determined by Elman. These four neural networks will be compared with

SGWO-Elman.

For the third comparative experiment: we selected long short-term memory neural network

(LSTM) [72] and RBF. They were fused into SGWO form SGWO-LSTM and SGWO-RBF.

These two neural networks will be compared with SGWO-Elman. The parameters of all neural

networks were set to the same value.

6.5.2. Comparison experiments based on optimization strategy. Under the influence of

SGWO performance, SGWO-Elman has better parameter optimization ability. To fairly ana-

lyze the optimization effect of SGWO on neural networks, Table 17 shows the comparison

results of SGWO-Elman, SSA-Elman, MFO-Elman, ASO-Elman and SCA-Elman on six data-

sets. In Table 17, MSE metric can evaluate the predictive performance of neural networks by

comparing prediction errors. MSE metric is the minimum mean square error, which was

defined in Eq (20). Table 18 shows the prediction rankings of each algorithm on six datasets.

Table 15. Basic information about the six datasets.

No. Name Original sets New sets Output variables Training set length Testing set length Reference

Input variables

D1 Air quality 15 14 1 6549 2808 [64]

D2 Wine quality white 12 11 1 3918 980 [65]

D3 QSAR aquatic toxicity 9 8 1 382 164 [66]

D4 QSAR fish toxicity 7 6 1 726 182 [67]

D5 Airfoil self-noise 5 5 1 1052 451 [68]

D6 Real estate valuation 7 5 1 290 124 [69]

https://doi.org/10.1371/journal.pone.0288071.t015

Table 16. The number of hidden layers corresponding to different data sets.

Dataset D1 D2 D3 D4 D5 D6

Hidden layers 15 6 10 12 10 10

https://doi.org/10.1371/journal.pone.0288071.t016
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(1) prediction performance analysis

From Table 17, all results of SGWO-Elman are optimal except the std of D4 and D6, and sig-

nificantly lower than other algorithms. This indicates that SGWO can reduce the Elman’s pre-

diction error and improve the Elman prediction accuracy. Compared with other evolutionary

strategies, SGWO algorithm based on an adaptive information interaction mechanism is an

effective parameter optimization method. On D1, D5 and D6 datasets, SSA-Elman, MFO-El-

man, ASO-Elman, and SCA-Elman have large errors. Through data analysis, it can be seen

that D1 has a large amount of data and many data features, and the data features of D5 and D6

have weak correlations. Therefore, it is more complex to predict the three kinds of datasets.

However, SGWO-Elman has a lower error on these three datasets, which indicates that

SGWO-Elman is suitable for weakly correlated datasets and can show better prediction ability,

stronger stability and higher robustness than other algorithms.

Table 17. Comparison of experimental results of the first group on MSE metric.

No. Algorithm Evaluating indicator

Mean Std Min Max

D1 SSA-Elman 2.963500 6.244200 0.059000 19.76970

MFO-Elman 39.34160 54.60130 0.081800 127.8225

ASO-Elman 24.44260 31.86260 0.088300 73.22960

SCA-Elman 0.088320 0.033895 0.039900 0.133800

SGWO-Elman 0.056700 0.017846 0.015800 0.073400

D2 SSA-Elman 0.521780 0.018147 0.497400 0.553900

MFO-Elman 0.514100 0.018646 0.493900 0.553800

ASO-Elman 0.504390 0.019351 0.483800 0.543200

SCA-Elman 0.505270 0.012983 0.484100 0.525600

SGWO-Elman 0.500940 0.010293 0.475300 0.509800

D3 SSA-Elman 1.625600 0.070205 1.526600 1.699100

MFO-Elman 1.586100 0.067165 1.511400 1.699300

ASO-Elman 1.616300 0.086119 1.516600 1.792000

SCA-Elman 1.535400 0.050547 1.454100 1.603300

SGWO-Elman 1.469900 0.029117 1.411700 1.514400

D4 SSA-Elman 0.688310 0.017660 0.657660 0.716000

MFO -Elman 0.700530 0.012998 0.679770 0.724840

ASO-Elman 0.694010 0.019742 0.671500 0.731500

SCA-Elman 0.681500 0.018423 0.657300 0.722300

SGWO-Elman 0.665920 0.014590 0.647380 0.692090

D5 SSA-Elman 32.11200 3.293500 27.59640 36.62690

MFO-Elman 31.03900 3.521600 27.75950 36.61040

ASO-Elman 34.23630 6.551500 28.39370 45.85870

SCA-Elman 28.88810 0.511490 28.04700 29.52820

SGWO-Elman 28.08570 0.477400 27.21390 29.13130

D6 SSA-Elman 59.39180 2.240000 56.76840 63.48430

MFO -Elman 57.10980 1.895700 54.10270 60.24140

ASO-Elman 59.09030 2.573700 55.81940 64.62990

SCA-Elman 57.93060 2.291600 55.56780 62.63620

SGWO-Elman 56.29050 2.423300 53.60270 60.58750

https://doi.org/10.1371/journal.pone.0288071.t017
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From Table 18, SGWO-Elman always ranks first on all datasets in prediction performance.

SGWO-Elman > SCA-Elman > MFO-Elman > ASO-Elman > SSA-Elman. Therefore, for

the prediction problem, SGWO has accurate prediction performance. And for the parameter

optimization problem, SGWO has a better optimization effect.

From Fig 11, the error of SGWO-Elman is lower than other algorithms on all datasets. On

the D1, the errors of SGWO-Elman, SCA-Elman are close to zero, but ASO-Elman and

MFO-Elman are very high, followed by SSA-Elman. On the D2—D4 datasets, the overall pre-

diction error is low. Due to the limitations of D5 and D6, the MSE value of each algorithm is

higher than other datasets. But the error distribution of SGWO-Elman is concentrated in D5.

These show that SGWO-Elman has higher prediction performance and prediction accuracy

and is suitable for most data. In practical engineering problems, using SGWO-Elman to pre-

dict can bring the greatest economic benefits to the project.

Table 18. The prediction rankings of each algorithm on six datasets.

Algorithm D1 D2 D3 D4 D5 D6 rate_sum rank

SSA-Elman 3 5 5 3 4 5 25 5

MFO -Elman 5 4 3 5 3 2 22 3

ASO-Elman 4 2 4 4 5 4 23 4

SCA-Elman 2 3 2 2 2 3 14 2

SGWO-Elman 1 1 1 1 1 1 6 1

https://doi.org/10.1371/journal.pone.0288071.t018

Fig 11. MSE of various datasets.

https://doi.org/10.1371/journal.pone.0288071.g011
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The result of the statistical analyses is presented on boxplots in Fig 12. From Fig 12, Com-

pare with other algorithms SGWO-Elman has a lower median, and its lower quartile is close to

the upper quartile in 6 kinds of datasets. There are almost no outliers in SGWO-Elman. Other

algorithms have more outliers on D1, D2, D4 and D5. The results show that SGWO-Elman has

higher prediction performance and stability than other algorithms. This fully verifies the good

applicability of SGWO in Elman parameter optimization.

(3) training time analysis

To verify the running speed of SGWO-Elman, we tested five algorithms on six datasets.

Table 19 records the average training time of each algorithm in 10 tests, and Fig 13 displays the

histogram of Table 19.

From Table 19 and Fig 13, it can be seen that ASO-Elman outperforms other algorithms in

the average training on six datasets. SSA-Elman has the longest average training time. The

Fig 12. Boxplot of MSE in various datasets.

https://doi.org/10.1371/journal.pone.0288071.g012

Table 19. The mean training time(s) of each algorithm on six datasets.

Algorithm D1 D2 D3 D4 D5 D6

SSA-Elman 83664 45348 32950 38093 35835 32148

MFO -Elman 40742 23015 15827 17076 18096 17008

ASO-Elman 6661 4997 3279 3537 3481 3378

SCA-Elman 40463 24099 15172 16840 17926 16329

SGWO-Elman 39876 23380 15578 17719 19859 17431

https://doi.org/10.1371/journal.pone.0288071.t019
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average runtime of SGWO-Elman is not significantly different between SCA-Elman and

MFO-Elman. Overall, the average training time of SGWO-Elman is at a medium level.

6.5.3. Comparison experiments based on neural network. The prediction effect of

SGWO-Elman was determined by Elman. To fairly analyze the prediction advantages of

SGWO-Elman on various neural networks, it was compared with the traditional Elman neural

network, standard BP neural network, the radial basis function neural network neural network

(RBF) [70], and generalized regression neural network (GRNN) [71]. The experimental results

are shown in Table 20.

Comparing the prediction results of Elman with BP, RBF, and GRNN in Table 20. On the

mean, Elman only has advantages in D3 and D4, it is inferior to BP and RBF in D2 and D5

respectively, and has a large error in D1 and D6. This indicates that the overall prediction per-

formance of Elman needs to be improved. Std results demonstrate that Elman reaches the low-

est error in the dataset more frequently than other algorithms, proving that Elman has a better

stability. Elman and BP have the lowest error on three datasets in the min respectively. Elman

has the lowest error in only three datasets in the max. Those indicate that Elman is prone to a

large bias in predicting a certain sample point, and the prediction effect and robustness of

Elman still need to be improved. According to the overall analysis, the comprehensive perfor-

mance of Elman is slightly better than BP, RBF, and GRNN.

Comparing the prediction results of SGWO-Elman with other algorithms in Table 20. In

terms of mean and max, SGWO-Elman maintains the lowest error in all datasets and ranks

first. Std results show that SGWO-Elman has the lowest error in four datasets, indicating that

SGWO significantly improves the prediction ability and robustness of Elman. In min, SGWO

Elman performs best in D2 and D6, it ranks first in D1, second in D3 and D5, and third in D4,

and values of SGWO Elman in D5 are far better than other algorithms by several orders of

Fig 13. Mean training time of different algorithms.

https://doi.org/10.1371/journal.pone.0288071.g013
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magnitude. Those indicate that SGWO-Elman can also produce better prediction ability for

less relevant data sets.

Comprehensive analysis shows that SGWO-Elman has higher accuracy than other algo-

rithms in general, which obviously improves the stability and predictive ability of Elman, mak-

ing Elman demonstrate stronger memory function in neural networks. The neural evolution

method based on SGWO is effective, and the neural network based on SGWO-Elman has

higher prediction accuracy. SGWO-Elman plays a greater role in solving practical engineering

problems with high complexity, ensuring the minimum misjudgment rate as far as possible to

reduce the economic loss of engineering production.

Figs 14 and 15 show MSE results and box diagrams respectively. From Fig 14, SGWO-El-

man has a lower prediction error than other neural networks on all datasets. On D1, D5 and

D6, although the error of other algorithms is very large, SGWO-Elman is still close to zero.

This shows that neither evolutionary strategy nor the neural network applies to these datasets,

but SGWO-Elman shows better prediction performance. On the D2—D4 datasets, SGWO-El-

man still maintains better prediction accuracy. The overall analysis shows that the new neural

Table 20. Comparison of experimental results of the second group.

No. Algorithm Evaluating indicator

Mean Std Min Max

D1 BP 0.057070 0.0206790 0.015200 0.083400

RBF 152.0866 14.967100 121.3891 167.2933

GRNN 0.351810 0.1049400 0.204700 0.522800

Elman 236.0867 223.98950 0.121400 665.4481

SGWO-Elman 0.056700 0.0178460 0.015800 0.073400

D2 BP 0.525810 0.0090536 0.513600 0.545200

RBF 0.546570 0.0105410 0.534300 0.564800

GRNN 0.544650 0.0068516 0.534600 0.553400

Elman 0.541710 0.0321310 0.490900 0.596200

SGWO-Elman 0.500940 0.0102930 0.475300 0.509800

D3 BP 1.702800 0.2092400 1.467900 2.098000

RBF 1.783200 0.0987620 1.638900 1.937500

GRNN 1.957600 0.1797000 1.736000 2.298000

Elman 1.522800 0.0717990 1.408300 1.622700

SGWO-Elman 1.469900 0.0291170 1.411700 1.514400

D4 BP 0.762680 0.0727920 0.584100 0.849500

RBF 0.772400 0.0523640 0.713200 0.827400

GRNN 0.796070 0.0554430 0.701300 0.902900

Elman 0.707660 0.0317400 0.646400 0.758600

SGWO-Elman 0.665920 0.0145900 0.647380 0.692090

D5 BP 1147511 1954899.8 0 5354800

RBF 301046 41305.584 2413500 358050

GRNN 4075800 643986.16 302700 4783000

Elman 4875110 1607992.9 1324300 6100300

SGWO-Elman 28.08570 0.4774000 27.21390 29.13130

D6 BP 69.35730 14.546500 58.42460 107.9498

RBF 58.42240 3.3258000 55.92840 67.18220

GRNN 86.50280 5.5744000 75.29420 94.79750

Elman 61.16360 1.6401000 58.96500 63.72170

SGWO-Elman 56.29050 2.4233000 53.60270 60.58750

https://doi.org/10.1371/journal.pone.0288071.t020
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network evolution strategy proposed in this paper can improve the shortcomings of traditional

neural networks in parameter optimization. Elman based on SGWO is obviously superior to

other neural networks and shows excellent prediction ability on most datasets. From Fig 15,

the prediction errors of SGWO-Elman are lower than other neural networks, which indicates

that the parameter optimization of the Elman neural network based on SGWO is effective.

Compared with other algorithms, SGWO-Elman has no outliers on all datasets. In addition,

SGWO-Elman centers the box graph on six datasets, which shows that parameters after multi-

ple iterations can obtain a stable prediction effect relatively.

6.5.4. SGWO for other neural networks. SGWO can extend to other types of neural net-

works, such as Long Short-Term Memory neural network (LSTM) and RBF. We incorporated

SGWO into LSTM and RBF. The implementation steps for SGWO-LSTM and SGWO-RBF

are shown in Fig 16. To verify the advantages of SGWO-Elman in prediction and optimization

capabilities, we compared SGWO-Elman, SGWO-LSTM and SGWO-RBF.

Table 21 shows the experimental errors of the three algorithms on six datasets.

From Table 21, it can be seen that the prediction error mean of SGWO-Elman on the six

datasets is lower than SGWO-LSTM and SGWO-RBF. SGWO-LSTM has better prediction

performance than SGWO-RBF. This not only indicates that SGWO as an optimization algo-

rithm can significantly improve Elman’s prediction performance, but also SGWO-Elman’s

prediction performance is higher than other neural networks. Meanwhile, SGWO-Elman has

Fig 14. MSE of various datasets.

https://doi.org/10.1371/journal.pone.0288071.g014

PLOS ONE Improved GWO and its application

PLOS ONE | https://doi.org/10.1371/journal.pone.0288071 July 7, 2023 38 / 44

https://doi.org/10.1371/journal.pone.0288071.g014
https://doi.org/10.1371/journal.pone.0288071


the lowest std value on the four datasets, which proves that SGWO-Elman has predictive

stability.

7. Conclusion

In this study, the improved grey wolf optimizer was proposed and applied to the parameter

optimization of the Elman neural network as an evolutionary strategy. Through theoretical

analysis and numerical experiments, the optimization-seeking performance and prediction

performance of the model was explored, and the following conclusions were obtained:

1. SGWO with an adaptive information interaction mechanism was proposed. This method

used circle mapping to initialize the population, strengthened the information exchange

among wolves in the channel through the Cauchy variant and the Golden-Sine algorithm,

and updated the position of wolves with adaptive distance control weight.

2. Theoretical analysis proved that the global convergence probability of SGWO was 1, and

that the experimental process of SGWO was a finite homogeneous Markov chain with

absorbing states. Numerical experiments with 8 benchmark functions showed that SGWO

can effectively improve convergence accuracy and optimization efficiency than other 6

algorithms.

3. The prediction performance of SGWO-Elman model was explored through comparative

experiments. The results showed that SGWO-Elman model has good prediction accuracy,

Fig 15. Boxplot of MSE in various datasets.

https://doi.org/10.1371/journal.pone.0288071.g015
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Fig 16. The implementation process of SGWO-RBF and SGWO-LSTM.

https://doi.org/10.1371/journal.pone.0288071.g016

Table 21. The experimental errors of the three algorithms on six datasets.

No. Algorithm Evaluating indicator

Mean Std Min Max

D1 SGWO-RBF 102.2839 1.9374610 20.30283 138.3902

SGWO-LSTM 0.918010 0.0109371 0.372819 1.738190

SGWO-Elman 0.056700 0.0178460 0.015800 0.073400

D2 SGWO-RBF 0.523921 0.0118980 0.509010 0.533840

SGWO-LSTM 0.518103 0.0023905 0.492389 0.522803

SGWO-Elman 0.500940 0.0102930 0.475300 0.509800

D3 SGWO-RBF 1.627490 0.0729174 1.429840 1.739483

SGWO-LSTM 1.582891 0.0836184 1.429402 1.728204

SGWO-Elman 1.469900 0.0291170 1.411700 1.514400

D4 SGWO-RBF 0.672784 0.0523640 0.312931 0.738914

SGWO-LSTM 0.728921 0.0258159 0.528494 0.928471

SGWO-Elman 0.665920 0.0145900 0.647380 0.692090

D5 SGWO-RBF 214566 3598.584 1456530 251045

SGWO-LSTM 73.28191 3.429384 59.17382 109.2820

SGWO-Elman 28.08570 0.4774000 27.21390 29.13130

D6 SGWO-RBF 50.3890 2.8291037 45.39729 57.93740

SGWO-LSTM 53.2812 0.9811907 52.49104 55.02971

SGWO-Elman 56.29050 2.4233000 53.60270 60.58750

https://doi.org/10.1371/journal.pone.0288071.t021
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robustness and generalization performance. The index value in six datasets was better than

the other evolutionary strategies and neural networks.

Although both the SGWO and SGWO-Elman proposed in this paper have better perfor-

mance than the original algorithm, they still have some limitations. For example:

1. SGWO has no significant effect in solving practical optimization problems.

2. The training time of SGWO-Elman was higher than the other Elman based on

optimization.

3. Due to the structural characteristics of the metaheuristic algorithm, the optimized neural

network will have a dimensional disaster in complexity, which makes SGWO-Elman chal-

lenging in big data prediction and image recognition.

To address the above issues, we will conduct further research in the future, as follows.

1. In the future, we plan to improve the encircling mode of SGWO. We hope that this

improved strategy is closer to the predatory behavior of wolves in nature. Meanwhile, we

also plan to build a practical problem integrator, which will ensure that improved SGWO

can be tested in integrator and improve the optimization ability in practical problems.

2. In the future, we plan to reduce the time complexity of SGWO-Elman. Since SGWO-Elman

is the fusion of SGWO and Elman, and is influenced by SGWO algorithm, its time com-

plexity is much higher than that of neural networks. Therefore, follow-up research will try

to simplify the optimization processes in SGWO to reduce time and spatial complexity of

the SGWO, thereby reducing the training and testing time of the SGWO-Elman.

3. In the future, we plan to build a preprocessing system based on SGWO-Elman. We hope

that the system can extract early important features of big datasets and images. The system

will reduce the complexity of the data entered into SGWO-Elman. Further, SGWO-Elman

will be applied to predicate big data and recognize complex images by process system.
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