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Abstract

The SARS-CoV-2 3CLpro protein is one of the key therapeutic targets of interest for COVID-

19 due to its critical role in viral replication, various high-quality protein crystal structures, and

as a basis for computationally screening for compounds with improved inhibitory activity, bio-

availability, and ADMETox properties. The ChEMBL and PubChem database contains

experimental data from screening small molecules against SARS-CoV-2 3CLpro, which

expands the opportunity to learn the pattern and design a computational model that can pre-

dict the potency of any drug compound against coronavirus before in-vitro and in-vivo testing.

In this study, Utilizing several descriptors, we evaluated 27 machine learning classifiers. We

also developed a neural network model that can correctly identify bioactive and inactive

chemicals with 91% accuracy, on CheMBL data and 93% accuracy on combined data on

both CheMBL and Pubchem. The F1-score for inactive and active compounds was 93% and

94%, respectively. SHAP (SHapley Additive exPlanations) on XGB classifier to find important

fingerprints from the PaDEL descriptors for this task. The results indicated that the PaDEL

descriptors were effective in predicting bioactivity, the proposed neural network design was

efficient, and the Explanatory factor through SHAP correctly identified the important finger-

tips. In addition, we validated the effectiveness of our proposed model using a large dataset

encompassing over 100,000 molecules. This research employed various molecular descrip-

tors to discover the optimal one for this task. To evaluate the effectiveness of these possible

medications against SARS-CoV-2, more in-vitro and in-vivo research is required.

1 Introduction

Recent epidemic outbreaks have emphasized the importance of establishing affordable cost

treatments. Discovering new tiny molecules known as ligands along with substantial bioactive
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components against target proteins, also known as receptors, is an important step in early

drug design. A substance’s bioactivity, which reflects its potency and ability to have a biological

effect, is critical to its pharmacological effects.

Classically, promising compounds are screened using low or high throughput experimental

bioassays; however, these approaches are costly and time-consuming, rendering them unsus-

tainable for large molecules like proteins. Computational approaches have made significant

strides in accurately and efficiently predicting the biological activity of both small and large

molecules to overcome these challenges. This has resulted in the development of competitive

inhibitors, which are considered to be bioactive small molecules with a specific binding affinity

but can also be subsequently experimentally evaluated.

The COVID-19 pandemic has increased the demand for new antiviral medications or thera-

pies. One of the most significant challenges is the time required to finalize the chemicals for vac-

cine formulation, which can stymie vaccine development and have serious consequences.

Although several trials for many pharmaceutical companies have been successful, using artifi-

cial intelligence to predict potential chemicals for vaccine formulation could significantly speed

up the process and save lives. Studies have been undertaken in this arena to employ the neural

network for vaccine formulation. However, the majority of these face accuracy challenges [1–

3]. Traditional HTS campaigns are often limited to 1–2 million compounds owing to the high

costs and operational bottlenecks that limit the chance for lead identification [1, 2]. High costs

and low hit rates limit the identification of anti-SARS-CoV-2 compounds through traditional

high-throughput screening (HTS) assays which is pointed out in Xu’s work [3]. The Virtual

screening methods like QSAR [4] depend on the availability of chemical structure information

to infer predictions, limiting the power to discover new chemical scaffolds and applicability of

such methods to querying only in the close structural vicinity of already known ligand struc-

tures and drug targets [3–5]. Consequently, biological activity predictions made on chemicals

with structure types not included in the training set are often unreliable, rendering to applica-

bility domain (AD) issue [4, 5]. The extent of application of such a cross-validated, predictive

model to discovering fundamental new drugs is still hypothetical. The lack of clarity in situa-

tional benefit or hindrance in transfer and multitask learning and uncertainty about the vari-

ables that govern how semi-supervised learning affects model prediction performance exists

[5]. Additional limitations relate to the distribution of data and the type of data used in drug

discovery as pointed out in opinion voiced out in Baskin’s work [6]. Several research work has

shown promise of utilizing machine learning and neural networks for bioinformatics research,

including drug discovery [7] where, as some others voiced concerns over representation of data

across the chemical space accurately [6]. Substantial challenges on data interpretation was

pointed out in [8] as well as some implications on data and phenomena understanding became

cruical factors which are discussed in Polishchuk and colleagues work [9].

The bulk of vaccine composition in research and development is typically undertaken in

clinical setting, while alternative medication formulations are evaluated to discover the best

optimal option. This is an ideal opportunity to consider implementing artificial intelligence

(AI) to produce more rapid and efficient outcomes. AI algorithms can analyze massive

amounts of data and predict the efficacy of various drug combinations, reducing the time and

resources required for clinical trials and increasing the likelihood of developing a successful

vaccine.

In this study we investigated a variety of ensembles and classical machine learning tech-

niques to determine the biocompatibility of compounds against the SARS-CoV-2 3CLpro pro-

tein. It has also been explored the impact of several molecule representations on prediction.

The study presented an efficient neural network-based design and utilized it to identify a few

promising molecules.
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We obtained 93% accuracy in our result and a f-1 score of 0.94 through experimentation,

which indicates that the proposed neural network design is efficient, after tweaking through

more than 25 traditional and ensemble classifiers with two descriptors, namely PaDEL and

Lipinski. Furthermore, we have also reported important fingerprints with their bit position,

substructures as well as effects followed by Shapley values based explanation to imrprove the

interpretability and explainability of our predictions. To verify the findings, we also looked at

several molecular description methods in order to determine which one performed better in

the classification activity and compared the findings to the standard ones.

The following is a breakdown of the paper’s structure. The application of machine learning

techniques in predicting bioactivity is discussed in Section 2 and the methods used for data

collection, curation, and implementation are described in Section 3. All of the experimental

results that are addressed in Section 5 are shown in Section 4. By using our approach to com-

pare a collection of compounds against the SARS coronavirus, Section 6 finds additional can-

didate compounds, and Section 7 closes the paper.

2 Machine learning in predicting bioactivity

Machine learning techniques have emerged as powerful tools for predicting the bioactivity of

existing drugs based on their molecular structure and properties. This methodology facilitates

the identification of novel drug candidates, repurposing of existing drugs, and optimization of

drug design. Different molecular representations, such as fingerprints, descriptors, graphs, and

SMILES strings, capture the structural features essential for analysis. These features are then

utilized as inputs for diverse machine learning models, including deep neural networks, sup-

port vector machines, random forests, and decision trees, which effectively learn the intricate

relationship between drug structure and activity. Several studies have reported significant find-

ings in this area, using machine learning techniques to predict the bioactivity of existing drugs.

Mongia et al. [10] developed an interpretable machine learning approach to identify novel

antibiotics with diverse mechanisms of action, leading to the discovery of bioactive molecules

with potential antibacterial activity and novel binding modes. These studies highlight the effi-

cacy of machine learning in predicting bioactivity and its potential in drug discovery.

In recent years, machine learning (ML) approaches have been effectively employed to fore-

cast the biological actions of substances. In order to demonstrate the promise and efficacy of

these methods in the early stages of drug discovery, Lane’s team [11] conducted a thorough

evaluation of various ML algorithm and Santana and his colleagues [12] on 5000 datasets from

ChEMBL. With the help of bioactivity information on human Carbonic anhydrase (hCA II,

hCA IX, and hCA XII) found on ChEMBL, a number of machine learning classifiers were

developed [13]. In this experiment, each molecule was represented by one of 92 molecular

descriptors, and the Extra Tree classifier was determined to be the most effective. To decrease

misclassification, a likelihood score for each class was computed and applied. Baassi and col-

leagues discusses the in-silico design of a potential new HIV-1 protease inhibitor [14] where

the authors reiterated the use of in-silico methods for drug design, which can potentially speed

up the drug development process.

For quantitative activity prediction, predictions were made using deep learning techniques

like Graph CNN [15]. Only two-dimensional structural feature data from 127 target proteins

were used in this investigation. For the ChEMBL datasets, GCN outperformed CNN, RF, and

FNN in terms of performance. Preprocessing is a crucial step in ML implementation, and this

study followed prior studies by using the maximum value when many values were discovered

for the same compound-target pairings [16, 17].
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A neural network imputation method that can learn from incomplete bioactivity data has

been proposed. The correlation between molecular descriptors and bioactivity, as well as

between different bioassays, was used by the authors [16]. This model can also calculate the

confidence of the prediction. This is a better model for difficult datasets where the compounds

are poorly represented. Galushka and colleagues [18] presented a work inspired by variational

autoencoder in which they predicted the fingerprint of bioactive compounds. Using 1024

latent vectors and ChEMBL data, the model was able to regenerate 90% of the compounds’

SMILES. Although such errors in regeneration are not accepted, their contribution to locating

the SMILE representation’s latent space can increase efficiency in classification and regression

tasks. CSConv2d, which has a convolutional block attention module (CBAM), was proposed

for drug-target interaction (DTI) prediction [19]. A deep learning framework that requires no

extra computation was proposed to compute a valid and efficient confidence interval [20]. It

has the potential to expand the use of deep learning in early-stage drug discovery with

reliability.

Machine Learning technologies have significant opportunities and potential to combat

COVID-19 through their use in predicting compounds for drugs and vaccines [21, 22]. It is

possible to find the required drug using a drug and an open chemical database as inputs. Jha

and team [23] proposed a deep learning approach based on Logistic Regression, SVM, and

Random Forest after QSAR modeling. Deep learning was used to learn from the OPLRAreg

algorithm’s molecular descriptors. Another study conducted by [24] compared two generative

models—JT-VAE and DQN—in order to identify small candidate molecules against SARS--

CoV-2. They discovered that DQN performed better in terms of score, and that JT-VAE pro-

duced molecules that were structurally similar to those in the database. Potential candidates

were identified in another study by [25] via RDOCK virtual screening of the ChEMBL dataset,

and potential drugs were listed in their paper. Another paper by [26] used Random Forest

combined with Recursive Feature Elimination and Cross-Validation to build SVM classifiers.

Using this method, they achieved an accuracy of 88% on PostEra COVID-19 Moonshoot pub-

lic activity data. Santana and his colleagues [12] used ULMFit to train chemical models and

design a classifier for bioactivity prediction. For the classification task, they used transfer learn-

ing and obtained more than 90% valid, novel, and diverse candidates. In the work by [27],

QSAR and molecular docking were used to identify novel inhibitors against SARS-CoV-2

3CLpro. They proposed five candidate components for further in-vitro and in-vivo coronavi-

rus research. Another study to find SARS-CoV-2 3CLpro inhibitors by [28] combined virtual

screening, molecular dynamics, machine learning, and in vitro analysis.

3 Materials and methods

3.1 Data collection and curation

We have collected data for bioactivity prediction from two different database. First one is

ChEMBL by [29] database where a number of experimental results are stored against SARS--

CoV-2. The second one is BioAssay data from PubChem database [30, 31] that contains

around 300,000 compounds activity against SARS-Cov-2 3CLpro.

Experimental data from ChEMBL targeting coronavirus (https://www.ebi.ac.uk/chembl/g/

#search_results/targets/query=coronavirus), single protein was used in this study. The number

of bioactive and inactive compounds used in these trials is displayed in Table 1. The activities

were measured using a variety of standards, principally inhibition (%), IC50 (nM), and Ki

(nM). Which molecules can be treated with lower dosages depends on the half maximum

inhibitory concentration (IC50), which measures the amount of medication required to inhibit

a target by 50%. Therefore, we have used the estimated data of the IC50 standard.
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It is essential to keep in mind that the IC50 values reported in various research can change

according on the experimental setup. For instance, several studies have documented the IC50

values for the FDA-approved medication remdesivir, which is effective against SARS-CoV-2.

Remdesivir had an IC50 of 0.77 μM in Vero E6 cells infected with SARS-CoV-2 [32]. Remdesi-

vir’s IC50 was found to be 0.16 μM in another investigation [33] in human airway epithelial

cells infected with SARS-CoV-2. Therefore, the values for this candidate is in the range of

0.16–0.77 μM Based on the IC50 values against SARS-CoV-3CLpro protein, we categorized

the data in our curated dataset as active, intermediate, or inactive using the following criteria

—Active : IC50 value < 1000nM, Intermediate : 1000� IC50 value< 10, 000nM, Inactive :

IC50 value > 10, 000nM. Since powerful inhibitors had IC50 values less than 1000 nM, these

threshold values were chosen since models created using them outperformed those discovered

through [34]. Additionally, the activity levels as inhibitors are no longer assessed by [35] if the

IC50 value hits 1000 nM. As a result, we classified the data as Intermediate and Inactive as the

value climbed. If the IC50 value is lower, then less of the chemical is needed to cause inhibi-

tion. The intermediate active substances were excluded from our analysis. We used informa-

tion from both active and inactive chemicals for our models.

We then searched the Pubchem database for additional experimental data and discovered a

few tests against SARS-CoV-2 3clpro. For machine learning, we gathered all the datasets asso-

ciated with the works by [30, 31] and combined them. We have collected approximately

300,000 molecular bioactivity records from this data repository. However, the number of

active molecules is significantly lower than the number of inactive molecules, causing the data-

set to be unbalanced. The specifics of these gathered datasets are displayed in Table 2.

Table 1. Bioactivity datasets from ChEMBL.

ChEMBL Dataset Active Compound Inactive Compound Total Compounds

CHEMBL3927 15 104 119

CHEMBL4523582 5 156 161

CHEMBL5118 79 34 113

https://doi.org/10.1371/journal.pone.0288053.t001

Table 2. Bioactivity datasets from Pubchem.

PubChem AID Active Compound Inactive Compound Total Tested Compounds

AID1706 405 290,321 290,726

AID1879 136 244 380

AID1890 44 57 101

AID1944 19 82 101

AID435015 0 1 1

AID488877 0 1 1

AID488958 9 5 14

AID488967 15 17 32

AID488984 10 93 103

AID488999 3 1 4

AID493245 3 3 6

AID588771 5 5 10

AID588772 14 14 28

AID588786 3 7 10

AID602486 0 1 1

AID602487 0 5 5

https://doi.org/10.1371/journal.pone.0288053.t002

PLOS ONE Bioactivity prediction of SARS-Cov-2-Targeting drug compounds using machine learning approaches

PLOS ONE | https://doi.org/10.1371/journal.pone.0288053 September 5, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0288053.t001
https://doi.org/10.1371/journal.pone.0288053.t002
https://doi.org/10.1371/journal.pone.0288053


3.2 Molecular descriptors calculation

The 3D chemical structures must be converted into a mathematical form that the computer

can understand. Molecular descriptors are traits of molecules that are determined by an algo-

rithm. In order to predict biological activity, chemical substances are given molecular descrip-

tors. These descriptors are then used to build a quantitative structure-activity relationship

(QSAR) model. The descriptor values are employed for a range of tasks, such as drug design

and similarity searches, and they indicate the physical and chemical characteristics of the mol-

ecule. In this work, two descriptors—“Lipinski” proposed by [36, 37]—have been used. Fig 1

depicts the study’s workflow.

It is crucial to carefully evaluate the selection of descriptor in order to create a representa-

tion that works for a deep learning framework. The physical and chemical characteristics of a

molecule, such as its solubility, lipophilicity, and molecular weight, are described by physio-

chemical descriptors. For the design and improvement of drugs, these characteristics may be

crucial. On the other hand, molecular descriptors provide a more thorough description of a

molecule’s structure by taking into account its atom connections and molecular geometry. It is

crucial to thoroughly consider the advantages and disadvantages of each approach before

selecting the one that is best suited for what we are trying to accomplish.

Among the software tools commonly used for molecular description and computational

chemistry, PaDEL stands out as an excellent choice for high-throughput QSAR modeling.

PaDEL’s focus on efficient generation of a wide range of molecular descriptors, including 1D,

Fig 1. Workflow of the study.

https://doi.org/10.1371/journal.pone.0288053.g001
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2D, and 3D descriptors, makes it particularly advantageous for our experimentation. Its ability

to swiftly calculate descriptors for large chemical databases enables rapid screening and analy-

sis, while its user-friendly interface ensures accessibility for researchers of varying expertise.

With PaDEL, we can efficiently explore the intricate relationships between molecular struc-

tures and activities, advancing our understanding of drug design and discovery.

3.2.1 Lipinski descriptors. Lipinski’s general rule of thumb describes the drugability of a

specific molecule. It is based on pharmacological properties known as pharmacokinetics and

aids in determining whether a molecule has the necessary chemical and physical properties to

be orally accessible. The conditions are listed here, and if two or more are broken, the molecule

is unlikely to be consumed.

• Molecular mass not greater than 500 Dalton

• Octanol-water partition coefficient (LogP) not greater than 5

• Hydrogen bond donors not greater than 5

• Hydrogen bond acceptors not greater than 10

3.2.2 PaDEL descriptors. PaDEL is a program that calculates molecular descriptors and

fingerprints developed by [37]. The chemical development kit is used to generate ten different

types of fingerprints, 663 one- and two-dimensional descriptors, 134 three-dimensional

descriptors, and other descriptors. This free and open-source software generates less descrip-

tors and fingerprints such as atom type electrotopological state, molecule linear free energy

relation, ring counts, and chemical substructure count.

3.3 Classification models for QSAR

From curated and preprocessed datasets, QSAR models were used to predict the bioactivity of

substances using ensemble classifiers, conventional machine learning, and traditional machine

learning, as well as neural network-based classifiers. We employed 26 conventional machine

learning and ensemble classifiers, as well as the Scikit-learn [38], to semi-automate the

machine learning activities. The classifiers were utilized using their default settings. However,

these classifiers’ performance might be enhanced by adjusting their hyperparameters. We were

interested in learning which classifiers work best with their default settings.

The majority of traditional classification models are linear, identifying a linear relationship

between the predicted and independent features. A linear relationship between a dependent

variable y and independent variables x1, x2, . . ., xn can be represented by the following formula

(Eq 1), where w1, w2, . . ., wn are feature coefficients and w0 is the line’s intercept.

y ¼ w0 þ w1∗ x1 þ w2∗ x2 þ . . .þ wn∗ xn ð1Þ

In this investigation, we employed linear logistic regression, Ridge, SGD, and passive-

aggressive classifiers.

Support vector machines (SVMs) can be used for regression, classification, and outlier

detection. When there are fewer samples than features in the dataset, these models perform

well in higher-dimensional domains. We employed SVC, LinearSVC, and NuSVC classifiers

in our study.

In addition to applying the Bayes theorem, naive Bayes classifiers make the incorrect

assumption that each pair of characteristics is conditionally independent. We used Gaussian

NB and Bernoulli NB in our investigation. The K-Neighbors Classifier and Nearest Centroid

neighbor-based classifiers compute the class of the points using majority voting techniques.
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Other classifiers were also applied on our dataset, including Decision Trees, Label Spreading,

Label Propagation, and Dummy Classifiers.

By aggregating the predictions of several base estimators, ensemble techniques compute the

final prediction. The predictions of various independent estimators are averaged in some

ensemble approaches. By reducing the bias of the combined estimator, other ensemble

approaches perform better. In this study, we employed a range of ensemble classifiers, includ-

ing Random Forest, Bagging, Extra Tree, LGBM, XGB, and AdaBoost.

Finally, we developed a deep learning-based categorization model with plenty of dense lay-

ers. Neural networks provide a variety of benefits over traditional categorization techniques

because of their ability to carefully evaluate and calculate all the features. Researchers can use

hyperparameter tweaking to fine-tune model performance for the best outcomes. This is a fun-

damental aspect of machine learning, and selecting optimal hyperparameter values is critical

for success. We investigated and experimented with many parameters, including the number

of layers, the dropout ratio, and the number of nodes in each layer, and eventually developed

an optimum design. Our proposed neural network for bioactivity prediction utilizing PaDEL

features consists of eight hidden layers. In Table 3, the model’s layers and their shapes are

shown. Around 15M trainable parameters are available for this model. To address the over-fit-

ting issue and improve the model, we added the dropout layers, which greatly improved per-

formance. When creating the model, we modified the Adam optimizer to enhance the weights.

The formula to update the weights by adding the Adam optimizer is shown in Eqs 2 and 3.

wtþ1 ¼ wt � amt ð2Þ

mt ¼ bmt� 1 þ ð1 � bÞ
dL
dwt

� �

ð3Þ

Here,

mi : Aggregate of gradients at time i

wi : Weights at time i

α : Learning rate

β : Moving average

Table 3. Neural network model architecture.

Layer (type) Output Shape Param #

input_1 (InputLayer) (None, 881) 0

dense (Dense) (None, 2048) 1806336

dropout (Dropout) (None, 2048) 0

dense_1 (Dense) (None, 4096) 8392704

dropout_1 (Dropout) (None, 4096) 0

dense_2 (Dense) (None, 1024) 4195328

dense_3 (Dense) (None, 512) 524800

dense_4 (Dense) (None, 256) 131328

dense_5 (Dense) (None, 128) 32896

dense_6 (Dense) (None, 2) 258

======================================

Total params: 15,083,650

Trainable params: 15,083,650

Non-trainable params: 0

https://doi.org/10.1371/journal.pone.0288053.t003
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δL : Derivative of Loss function

δwt : Derivative of weights at time t

4 Results

In this study, we looked at how well ensemble classifiers and conventional machine learning

performed in predicting the bioactivity of several drugs that target coronavirus. To find the

descriptor that is most appropriate for the task, we developed two different molecular descrip-

tors for this experiment: Lipinski and PaDEL. There were two phases to the experiment. First,

we used 26 conventional and ensemble classifiers independently to each of the two descriptors.

From this experiments we will understand which descriptors are more suited for this task.

After that, we created and put to the test a neural network architecture for this classification

job using the more suitable chemical descriptors.

4.1 Lipinski Vs PaDEL descriptor

The results of traditional and ensemble machine learning classifiers on ChEMBL Dataset are

displayed in Table 4. We calculated the accuracy, ROC-AUC, and F1 score for each classifier

using both types of descriptors. SVC is found to be the most accurate classifier for Lipinski

Table 4. Performance of traditional and ensemble classifiers on dataset collected from ChEMBL.

PaDEL Desc. Lipinski Desc.

Model Acc. AUC F1 Acc. AUC F1

LogisticRegression 0.87 0.87 0.87 0.65 0.65 0.65

RidgeClassifier 0.8 0.8 0.8 0.63 0.63 0.63

RidgeClassifierCV 0.78 0.78 0.78 0.63 0.63 0.63

SGDClassifier 0.8 0.8 0.8 0.44 0.42 0.39

PassiveAggressiveClassifier 0.83 0.83 0.83 0.68 0.67 0.68

SVC 0.85 0.85 0.85 0.76 0.76 0.76

LinearSVC 0.78 0.78 0.78 0.65 0.65 0.65

NuSVC 0.87 0.87 0.87 0.69 0.7 0.69

GaussianNB 0.76 0.76 0.76 0.74 0.73 0.74

BernoulliNB 0.57 0.57 0.56 0.61 0.62 0.61

KNeighborsClassifier 0.7 0.7 0.69 0.66 0.66 0.66

NearestCentroid 0.57 0.57 0.56 0.68 0.68 0.67

DecisionTreeClassifier 0.83 0.83 0.83 0.66 0.66 0.66

LabelSpreading 0.52 0.52 0.41 0.73 0.72 0.72

LabelPropagation 0.52 0.52 0.41 0.71 0.7 0.71

DummyClassifier 0.46 0.46 0.45 0.34 0.33 0.33

CalibratedClassifierCV 0.8 0.8 0.8 0.63 0.63 0.63

LinearDiscriminantAnalysis 0.7 0.7 0.7 0.65 0.65 0.65

QuadraticDiscriminantAnalysis 0.7 0.7 0.7 0.76 0.75 0.76

RandomForestClassifier 0.8 0.8 0.8 0.73 0.72 0.73

BaggingClassifier 0.8 0.8 0.8 0.71 0.7 0.71

ExtraTreeClassifier 0.76 0.76 0.76 0.71 0.71 0.71

ExtraTreesClassifier 0.8 0.8 0.8 0.74 0.74 0.74

LGBMClassifier 0.8 0.8 0.8 0.71 0.71 0.71

XGBClassifier 0.8 0.8 0.8 0.69 0.69 0.69

AdaBoostClassifier 0.8 0.8 0.8 0.61 0.61 0.61

Perceptron 0.76 0.76 0.76 0.71 0.71 0.71

https://doi.org/10.1371/journal.pone.0288053.t004
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descriptors, with an accuracy rate of 76%. While ensemble techniques had an accuracy rate of

roughly 70%, linear classifiers did not perform effectively. However, when using PaDEL

descriptors, we found that the NuSVC model had an accuracy of 87%. With PaDEL descrip-

tors, nearly all classifiers performed better than Lipinski. About 80% of ensemble techniques

were accurate. In both cases, support vector-based classifiers perform best when employed

with their default parameters.

We discovered that PaDEL descriptors, as opposed to Lipinski, are more suitable for classi-

fication from the evaluation metrics. Since PaDEL generates many more molecular features

than Lipinski, it does the categorization task better.

4.2 Deep learning model performance

The present study describes the development of a neural network based on PaDEL descriptors.

The architecture of the implemented model is depicted in Table 3. The TensorFlow framework

was employed for the implementation and conduct of trials. Initial training and assessment of

the model was performed using a proprietary dataset for 200 iterations. The presence of a

dropout layer prevented overfitting during the training phase. Furthermore, the validation

accuracy of the model, with a maximum accuracy of 91%, indicates its efficacy on test data.

The performance of the proposed neural network model on the ChEMBL Dataset was eval-

uated and the results are presented in Table 5. The F1-score for inactive and active compounds

was 91% and 92%, respectively. Class-wise analysis revealed that the Positive Predictive Value

(PPV) of the model was 95%, indicating a high level of confidence in the prediction of bioac-

tive compounds. The model was able to identify 87% of active compounds and 96% of inactive

compounds, with an accuracy of 88% for inactive compounds. In conclusion, the classification

report of the model highlights its exceptional ability to identify active compounds and the high

accuracy of its predictions.

The initial training of the model was performed on a small dataset to demonstrate its proof

of concept and establish a baseline performance. However, as the goal of the model was to

accurately classify compounds in a large-scale dataset, it was deemed necessary to further train

the model on a significantly larger dataset. This additional training allowed the model to

improve its generalization capabilities, and to better capture the underlying patterns in the

data. Moreover, a larger dataset helps the model to avoid overfitting and increase its

robustness.

On the large Pubchem dataset, we trained the proposed model. This dataset, however, is

extremely unbalanced. This poses an issue for the model because it may learn to make biased

predictions in favor of the majority class. Synthetic Minority Over-sampling Technique

(SMOTE) was used to generate synthetic samples for the minority class in order to address

this issue [39]. Rather than simply duplicating existing instances, SMOTE generates synthetic

samples by interpolating between existing minority class instances. This helped to balance the

dataset and mitigate the class imbalance problem, resulting in a more accurate and robust

model. The use of SMOTE was critical in ensuring that the model was unbiased and performed

well on both minority and majority classes.

Table 5. Performance of neural network on ChEMBL data.

Precision Recall f1-score Support

0 (Inactive) 0.88 0.96 0.92 23

1 (Active) 0.95 0.87 0.91 23

Accuracy 0.91 46

https://doi.org/10.1371/journal.pone.0288053.t005
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The results of the large-scale training revealed significant improvement in the model’s per-

formance, providing evidence for the importance of training deep learning models on a large,

diverse dataset for optimal results. Fig 2 depicts the learning progression of the training and

validation phases. Table 6 displays the classification performance. The test set included

Fig 2. Learning curve for training and validation data.

https://doi.org/10.1371/journal.pone.0288053.g002

Table 6. Performance of neural network on Pubchem data.

Precision Recall f1-score Support

0 (Inactive) 1.00 1.00 1.00 39855

1 (Active) 1.00 1.00 1.00 39854

Accuracy 1.00 79709

https://doi.org/10.1371/journal.pone.0288053.t006
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approximately 80,000 samples, and the model demonstrated remarkable accuracy in class pre-

dictions. Fig 3 shows the confusion matrix for the trained model.

To demonstrate the robustness and generalization capabilities of the pre-trained model

(trained from Pubchem and synthetic data), we used a combined dataset from two different

data repositories (ChEMBL, Pubchem). By testing the model on a merged dataset, we can clar-

ify its consistency and reliability, as well as its performance in a real-world scenario. The vali-

dation results on the merged dataset confirmed the effectiveness of the pre-trained model as

well as its suitability for use in a variety of real-world applications. Table 7 shows the evaluation

metrics and Fig 4 depicts the confusion matrix in prediction on test set. The results indicated

that the pre-trained model displayed a high level of accuracy, with a 93% prediction rate for

bioactivity.

4.3 Important fingerprints

It is important to identify specific features from PaDEL descriptors because it can lead to a bet-

ter understanding of the molecular properties. These characteristics are critical in determining

bioactivity, improving model performance and efficiency, and providing insights into the

underlying biology and chemical mechanisms. Therefore, we have used SHAP (SHapley Addi-

tive exPlanations) on XGB classifier to find important fingerprints from the PaDEL descriptors

for this task [40]. Compared to more conventional approaches like feature importance scores,

this offers a more thorough and understandable representation of the feature importances.

The interaction between features is taken into account by SHAP values, enabling a more in-

depth knowledge of how each feature affects the model’s prediction. Fig 5 demonstrates the

Fig 3. Confusion matrix of neural network on pubchem data.

https://doi.org/10.1371/journal.pone.0288053.g003

Table 7. Classification performance of trained model on combined data.

Precision Recall f1-score Support

0 (Inactive) 0.88 1.00 0.94 751

1 (Active) 1.00 0.87 0.93 751

Accuracy 0.93 1502

https://doi.org/10.1371/journal.pone.0288053.t007
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top 20 fingerprints in a molecule’s PaDEL descriptors that are necessary for it to be bioactive

against SARS-CoV-2. The figure shows that the bioactivity against SARS-CoV-2 has an inverse

relationship with FP671, FP391, FP643, FP33, and FP368. Their widespread presence has a det-

rimental impact on bioactivity. However, FP341, FP20, FP180, FP143, and FP393 have a posi-

tive effect on bioactivity. Table 8 shows the corresponding substructure of these fingerprints.

5 Discussion

The present study utilized classification and ensemble methods on a carefully curated dataset.

The results indicated that the PaDEL descriptors were effective in predicting bioactivity, and

the proposed neural network design was efficient. Additionally, support vector-based classifi-

ers, due to their advantage in handling high-dimensional data and limited number of samples,

demonstrated good performance. The neural network models were able to identify the key fea-

tures contributing to classification through in-depth learning, resulting in high accuracy in

predicting the bioactivity class. To prevent overfitting, the neural network architecture was

equipped with a dropout layer and synthetic data was used in training.

Recently, machine learning techniques have been utilized to find potential drugs against

SARS-CoV-2. Besides generating effective molecular descriptors for coronaviruses, ML is also

used to predict the bioactivity of existing drugs. The use of ML algorithms has been limited to

in-vitro and in-vivo experiments in a few studies. A study by [26] showed that the SVM classi-

fication algorithm had an accuracy of 88%. However, our method performed better, with a

93% accuracy rate. Additionally, we investigated multiple molecular description methods and

identified important molecular substructure that impacts the bioactivity.

Finding a suitable classification system to forecast the bioactivity of compounds against the

SARS coronavirus was the aim of this research. We also wanted to learn the best method for

describing molecules during this process. After careful curation and processing we have used

experimental data from two database—ChEMBL and Pubchem, and trained a neural network

model that can identify bioactivity of molecular compounds against SARS-Cov-2 with 93%

accuracy. We also identified the important substructure of the molecules that impacts the bio-

activity positively and negatively. However, in-vitro and in-vivo experiments can establish our

findings with a probable drug structure.

Fig 4. Confusion matrix of pre-trained model.

https://doi.org/10.1371/journal.pone.0288053.g004
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6 Finding drug candidate

We compared our results with DrugCentral REDIAL 2020 by [41], an activity estimation por-

tal against coronavirus, to evaluate our neural network model using a list of different small

molecules targeting SARS-CoV-2 3CLpro used by [28]. There are approximately 700 inactive

compounds and 486 SARS-CoV-2 3CLPro inhibitors in this list. With a threshold class proba-

bility of 99.9%, our model correctly classified 456 chemicals as active. We created several

Fig 5. Important features and relation to bioactivity.

https://doi.org/10.1371/journal.pone.0288053.g005
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activities of the same compound from REDIAL 2020 to further validate the active compounds

we have discovered from our model, giving us a notion that these compounds can be consid-

ered as drug candidates against SARS-Cov-2 3CLPro. The activities derived from REDIAL are

the following:

• SARS-CoV-2 cytopathic effect (CPE)

• SARS-CoV-2 cytopathic effect (host tox Counter) / Cytotoxicity

• ACE2 enzymatic activity

• 3CL enzymatic activity

• SARS-CoV pseudotyped particle entry (CoV-PPE)

Table 8. Important fingerprints for bioactivity prediction against SARS-CoV-2.

FP Bit position Substructure Effect on Bioactivity

FP671 O = C-C = C-C Negative

FP391 N(*C)(*C)(*C) Negative

FP643 [#1]-C-C-N-[#1] Negative

FP33 >= 1 S Negative

FP368 C(*H)(*S) Negative

FP341 C(*C)(*C)(*O) Positive

FP20 >= 4 O Positive

FP180 >= 1 saturated or aromatic nitrogen-containing ring size 6 Positive

FP143 >= 1 any ring size 5 Positive

FP393 N(*C)(*H) Positive

https://doi.org/10.1371/journal.pone.0288053.t008

Table 9. Activities of the candidate compounds from REDIAL 2020, where, Active = A, Inactive = I, Cytotoxicity= Cyt, CoV-PPE=Cp, MERS-PPE= Mp, CoV--

PPE_cs=Cpcs, MERS-PPE_cs= Mpcs.

PubChem CID CPE Cyt ACE2 3CL Cp Mp Cpcs Mpcs hCYTOX

49778034 A A A A A A A A A

59218137 A A A I A A I A A

68986845 A A A I A A A A A

57555613 A I A I A A A A A

9932218 I A A A A A A A A

58923182 A I I I A I I A A

15980574 A A A A A A A A A

44363685 I I A A I I A A A

59218103 A A A I A A A A A

68985847 A A A I A A A A A

59218156 A A A I A A A A A

59218176 A I A I A A I A A

24851823 A A A I A A I I A

68985777 A A A I A A A A A

68988817 A A A I A A A A A

68983302 A A A I A A A A A

68986364 A A A I A A A A A

11840037 A A A A A A A A A

21898262 A I A A A A A A A

68984823 A A A I A A A A A

https://doi.org/10.1371/journal.pone.0288053.t009
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• MERS-CoV pseudotyped particle entry (MERS-PPE)

• SARS-CoV pseudotyped particle entry counter screen (CoV-PPE_cs)

• MERS-CoV pseudotyped particle entry counter screen (MERS-PPE_cs)

• Human fibroblast toxicity (hCYTOX)

In Table 9, we present 20 active chemicals identified by our model together with their level

of activity. It is obvious that our model’s active chemicals are supported by these actions to be

candidates for new drug development. All of the discovered active compounds’ SMILES repre-

sentations are accessible in the Github repository—https://github.com/fbabd/bioactivity-

against-SARS-CoV-2.

7 Conclusion

It is evident that the drug development is a costly and time-consuming process. Through using

the proper molecular descriptors and the capabilities of machine learning techniques this pro-

cess could well be expedited efficiently. The bioactivity of a drug against the SARS-CoV-2

3CLpro protein was determined in this study using classic machine learning and ensemble

approaches. The study examined the Lipinski and PaDEL molecular descriptors to determine

whether one is more appropriate for such classification activity. Subsequently, this study also

present an efficient neural network model which surpassed the competition with just predic-

tion performance of 93%. Our model was trained on a large dataset that was carefully curated

and collected from two different data sources. The proposed model was trained in a large data-

set that has been vetted and assembled from two distinct data sources. In addition, the trained

model was then applied to a list of 1186 candidate compounds of which 486 identified active

inhibitors. The model identified 456 compounds as active, which were then evaluated for fur-

ther activities against SARS-CoV-2 using REDIAL. Therefore, it is demonstrated in our

approach can effectively determine the undiscovered active substance. To determine which

molecular structure will be the greatest option for drug creation, more in-vitro and in-vivo

study is necessary. In addition, the study identified a significant substructure of molecules that

impacts the bioactivity against SARS-Cov-2. Biologists benefit from bioactivity prediction in

drug design because it allows for in silico screening of potential drug candidates prior to con-

ducting costly and time-consuming experiments. By reducing the number of unsuccessful

compounds that must be tested, this helps to save resources and increase efficiency in the drug

discovery process. This work will eliminate the laborious search for potential molecules against

the deadly SARS-CoV-2 reasonably.
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