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Abstract

The SARS-CoV-2 3CLpro protein is one of the key therapeutic targets of interest for COVID-
19 due to its critical role in viral replication, various high-quality protein crystal structures, and
as a basis for computationally screening for compounds with improved inhibitory activity, bio-
availability, and ADMETox properties. The ChEMBL and PubChem database contains
experimental data from screening small molecules against SARS-CoV-2 3CLpro, which
expands the opportunity to learn the pattern and design a computational model that can pre-
dict the potency of any drug compound against coronavirus before in-vitro and in-vivo testing.
In this study, Utilizing several descriptors, we evaluated 27 machine learning classifiers. We
also developed a neural network model that can correctly identify bioactive and inactive
chemicals with 91% accuracy, on CheMBL data and 93% accuracy on combined data on
both CheMBL and Pubchem. The F1-score for inactive and active compounds was 93% and
94%, respectively. SHAP (SHapley Additive exPlanations) on XGB classifier to find important
fingerprints from the PaDEL descriptors for this task. The results indicated that the PaDEL
descriptors were effective in predicting bioactivity, the proposed neural network design was
efficient, and the Explanatory factor through SHAP correctly identified the important finger-
tips. In addition, we validated the effectiveness of our proposed model using a large dataset
encompassing over 100,000 molecules. This research employed various molecular descrip-
tors to discover the optimal one for this task. To evaluate the effectiveness of these possible
medications against SARS-CoV-2, more in-vitro and in-vivo research is required.

1 Introduction

Recent epidemic outbreaks have emphasized the importance of establishing affordable cost
treatments. Discovering new tiny molecules known as ligands along with substantial bioactive
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components against target proteins, also known as receptors, is an important step in early
drug design. A substance’s bioactivity, which reflects its potency and ability to have a biological
effect, is critical to its pharmacological effects.

Classically, promising compounds are screened using low or high throughput experimental
bioassays; however, these approaches are costly and time-consuming, rendering them unsus-
tainable for large molecules like proteins. Computational approaches have made significant
strides in accurately and efficiently predicting the biological activity of both small and large
molecules to overcome these challenges. This has resulted in the development of competitive
inhibitors, which are considered to be bioactive small molecules with a specific binding affinity
but can also be subsequently experimentally evaluated.

The COVID-19 pandemic has increased the demand for new antiviral medications or thera-
pies. One of the most significant challenges is the time required to finalize the chemicals for vac-
cine formulation, which can stymie vaccine development and have serious consequences.
Although several trials for many pharmaceutical companies have been successful, using artifi-
cial intelligence to predict potential chemicals for vaccine formulation could significantly speed
up the process and save lives. Studies have been undertaken in this arena to employ the neural
network for vaccine formulation. However, the majority of these face accuracy challenges [1-
3]. Traditional HTS campaigns are often limited to 1-2 million compounds owing to the high
costs and operational bottlenecks that limit the chance for lead identification [1, 2]. High costs
and low hit rates limit the identification of anti-SARS-CoV-2 compounds through traditional
high-throughput screening (HTS) assays which is pointed out in Xu’s work [3]. The Virtual
screening methods like QSAR [4] depend on the availability of chemical structure information
to infer predictions, limiting the power to discover new chemical scaffolds and applicability of
such methods to querying only in the close structural vicinity of already known ligand struc-
tures and drug targets [3-5]. Consequently, biological activity predictions made on chemicals
with structure types not included in the training set are often unreliable, rendering to applica-
bility domain (AD) issue [4, 5]. The extent of application of such a cross-validated, predictive
model to discovering fundamental new drugs is still hypothetical. The lack of clarity in situa-
tional benefit or hindrance in transfer and multitask learning and uncertainty about the vari-
ables that govern how semi-supervised learning affects model prediction performance exists
[5]. Additional limitations relate to the distribution of data and the type of data used in drug
discovery as pointed out in opinion voiced out in Baskin’s work [6]. Several research work has
shown promise of utilizing machine learning and neural networks for bioinformatics research,
including drug discovery [7] where, as some others voiced concerns over representation of data
across the chemical space accurately [6]. Substantial challenges on data interpretation was
pointed out in [8] as well as some implications on data and phenomena understanding became
cruical factors which are discussed in Polishchuk and colleagues work [9].

The bulk of vaccine composition in research and development is typically undertaken in
clinical setting, while alternative medication formulations are evaluated to discover the best
optimal option. This is an ideal opportunity to consider implementing artificial intelligence
(AI) to produce more rapid and efficient outcomes. Al algorithms can analyze massive
amounts of data and predict the efficacy of various drug combinations, reducing the time and
resources required for clinical trials and increasing the likelihood of developing a successful
vaccine.

In this study we investigated a variety of ensembles and classical machine learning tech-
niques to determine the biocompatibility of compounds against the SARS-CoV-2 3CLpro pro-
tein. It has also been explored the impact of several molecule representations on prediction.
The study presented an efficient neural network-based design and utilized it to identify a few
promising molecules.
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We obtained 93% accuracy in our result and a f-1 score of 0.94 through experimentation,
which indicates that the proposed neural network design is efficient, after tweaking through
more than 25 traditional and ensemble classifiers with two descriptors, namely PaDEL and
Lipinski. Furthermore, we have also reported important fingerprints with their bit position,
substructures as well as effects followed by Shapley values based explanation to imrprove the
interpretability and explainability of our predictions. To verify the findings, we also looked at
several molecular description methods in order to determine which one performed better in
the classification activity and compared the findings to the standard ones.

The following is a breakdown of the paper’s structure. The application of machine learning
techniques in predicting bioactivity is discussed in Section 2 and the methods used for data
collection, curation, and implementation are described in Section 3. All of the experimental
results that are addressed in Section 5 are shown in Section 4. By using our approach to com-
pare a collection of compounds against the SARS coronavirus, Section 6 finds additional can-
didate compounds, and Section 7 closes the paper.

2 Machine learning in predicting bioactivity

Machine learning techniques have emerged as powerful tools for predicting the bioactivity of
existing drugs based on their molecular structure and properties. This methodology facilitates
the identification of novel drug candidates, repurposing of existing drugs, and optimization of
drug design. Different molecular representations, such as fingerprints, descriptors, graphs, and
SMILES strings, capture the structural features essential for analysis. These features are then
utilized as inputs for diverse machine learning models, including deep neural networks, sup-
port vector machines, random forests, and decision trees, which effectively learn the intricate
relationship between drug structure and activity. Several studies have reported significant find-
ings in this area, using machine learning techniques to predict the bioactivity of existing drugs.
Mongia et al. [10] developed an interpretable machine learning approach to identify novel
antibiotics with diverse mechanisms of action, leading to the discovery of bioactive molecules
with potential antibacterial activity and novel binding modes. These studies highlight the effi-
cacy of machine learning in predicting bioactivity and its potential in drug discovery.

In recent years, machine learning (ML) approaches have been effectively employed to fore-
cast the biological actions of substances. In order to demonstrate the promise and efficacy of
these methods in the early stages of drug discovery, Lane’s team [11] conducted a thorough
evaluation of various ML algorithm and Santana and his colleagues [12] on 5000 datasets from
ChEMBL. With the help of bioactivity information on human Carbonic anhydrase (hCA II,
hCA IX, and hCA XII) found on ChEMBL, a number of machine learning classifiers were
developed [13]. In this experiment, each molecule was represented by one of 92 molecular
descriptors, and the Extra Tree classifier was determined to be the most effective. To decrease
misclassification, a likelihood score for each class was computed and applied. Baassi and col-
leagues discusses the in-silico design of a potential new HIV-1 protease inhibitor [14] where
the authors reiterated the use of in-silico methods for drug design, which can potentially speed
up the drug development process.

For quantitative activity prediction, predictions were made using deep learning techniques
like Graph CNN [15]. Only two-dimensional structural feature data from 127 target proteins
were used in this investigation. For the ChEMBL datasets, GCN outperformed CNN, RF, and
FNN in terms of performance. Preprocessing is a crucial step in ML implementation, and this
study followed prior studies by using the maximum value when many values were discovered
for the same compound-target pairings [16, 17].
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A neural network imputation method that can learn from incomplete bioactivity data has
been proposed. The correlation between molecular descriptors and bioactivity, as well as
between different bioassays, was used by the authors [16]. This model can also calculate the
confidence of the prediction. This is a better model for difficult datasets where the compounds
are poorly represented. Galushka and colleagues [18] presented a work inspired by variational
autoencoder in which they predicted the fingerprint of bioactive compounds. Using 1024
latent vectors and ChEMBL data, the model was able to regenerate 90% of the compounds’
SMILES. Although such errors in regeneration are not accepted, their contribution to locating
the SMILE representation’s latent space can increase efficiency in classification and regression
tasks. CSConv2d, which has a convolutional block attention module (CBAM), was proposed
for drug-target interaction (DTI) prediction [19]. A deep learning framework that requires no
extra computation was proposed to compute a valid and efficient confidence interval [20]. It
has the potential to expand the use of deep learning in early-stage drug discovery with
reliability.

Machine Learning technologies have significant opportunities and potential to combat
COVID-19 through their use in predicting compounds for drugs and vaccines [21, 22]. Tt is
possible to find the required drug using a drug and an open chemical database as inputs. Jha
and team [23] proposed a deep learning approach based on Logistic Regression, SVM, and
Random Forest after QSAR modeling. Deep learning was used to learn from the OPLRAreg
algorithm’s molecular descriptors. Another study conducted by [24] compared two generative
models—]JT-VAE and DQN—in order to identify small candidate molecules against SARS--
CoV-2. They discovered that DQN performed better in terms of score, and that JT-VAE pro-
duced molecules that were structurally similar to those in the database. Potential candidates
were identified in another study by [25] via RDOCK virtual screening of the ChEMBL dataset,
and potential drugs were listed in their paper. Another paper by [26] used Random Forest
combined with Recursive Feature Elimination and Cross-Validation to build SVM classifiers.
Using this method, they achieved an accuracy of 88% on PostEra COVID-19 Moonshoot pub-
lic activity data. Santana and his colleagues [12] used ULMFit to train chemical models and
design a classifier for bioactivity prediction. For the classification task, they used transfer learn-
ing and obtained more than 90% valid, novel, and diverse candidates. In the work by [27],
QSAR and molecular docking were used to identify novel inhibitors against SARS-CoV-2
3CLpro. They proposed five candidate components for further in-vitro and in-vivo coronavi-
rus research. Another study to find SARS-CoV-2 3CLpro inhibitors by [28] combined virtual
screening, molecular dynamics, machine learning, and in vitro analysis.

3 Materials and methods
3.1 Data collection and curation

We have collected data for bioactivity prediction from two different database. First one is
ChEMBL by [29] database where a number of experimental results are stored against SARS--
CoV-2. The second one is BioAssay data from PubChem database [30, 31] that contains
around 300,000 compounds activity against SARS-Cov-2 3CLpro.

Experimental data from ChEMBL targeting coronavirus (https://www.ebi.ac.uk/chembl/g/
#search_results/targets/query=coronavirus), single protein was used in this study. The number
of bioactive and inactive compounds used in these trials is displayed in Table 1. The activities
were measured using a variety of standards, principally inhibition (%), IC50 (nM), and Ki
(nM). Which molecules can be treated with lower dosages depends on the half maximum
inhibitory concentration (IC50), which measures the amount of medication required to inhibit
a target by 50%. Therefore, we have used the estimated data of the IC50 standard.
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Table 1. Bioactivity datasets from ChEMBL.

ChEMBL Dataset Active Compound Inactive Compound Total Compounds
CHEMBL3927 15 104 119
CHEMBL4523582 5 156 161
CHEMBL5118 79 34 113

https://doi.org/10.1371/journal.pone.0288053.t001

It is essential to keep in mind that the IC50 values reported in various research can change
according on the experimental setup. For instance, several studies have documented the IC50
values for the FDA-approved medication remdesivir, which is effective against SARS-CoV-2.
Remdesivir had an IC50 of 0.77 uM in Vero E6 cells infected with SARS-CoV-2 [32]. Remdesi-
vir’s IC50 was found to be 0.16 4M in another investigation [33] in human airway epithelial
cells infected with SARS-CoV-2. Therefore, the values for this candidate is in the range of
0.16-0.77 uM Based on the IC50 values against SARS-CoV-3CLpro protein, we categorized
the data in our curated dataset as active, intermediate, or inactive using the following criteria
—Active : IC50 value < 1000nM, Intermediate : 1000 < IC50 value < 10, 000nM, Inactive :
IC50 value > 10, 000nM. Since powerful inhibitors had IC50 values less than 1000 nM, these
threshold values were chosen since models created using them outperformed those discovered
through [34]. Additionally, the activity levels as inhibitors are no longer assessed by [35] if the
IC50 value hits 1000 nM. As a result, we classified the data as Intermediate and Inactive as the
value climbed. If the IC50 value is lower, then less of the chemical is needed to cause inhibi-
tion. The intermediate active substances were excluded from our analysis. We used informa-
tion from both active and inactive chemicals for our models.

We then searched the Pubchem database for additional experimental data and discovered a
few tests against SARS-CoV-2 3clpro. For machine learning, we gathered all the datasets asso-
ciated with the works by [30, 31] and combined them. We have collected approximately
300,000 molecular bioactivity records from this data repository. However, the number of
active molecules is significantly lower than the number of inactive molecules, causing the data-
set to be unbalanced. The specifics of these gathered datasets are displayed in Table 2.

Table 2. Bioactivity datasets from Pubchem.

PubChem AID Active Compound Inactive Compound Total Tested Compounds
AID1706 405 290,321 290,726
AID1879 136 244 380
AID1890 44 57 101
AID1944 19 82 101
AID435015 0 1 1
AID488877 0 1 1
AIDA488958 9 5 14
AID488967 15 17 32
AID488984 10 93 103
AID488999 3 1 4
AID493245 3 3 6
AID588771 5 5 10
AID588772 14 14 28
AID588786 3 7 10
AID602486 0 1 1
AID602487 0 5 5

https://doi.org/10.1371/journal.pone.0288053.t002
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3.2 Molecular descriptors calculation

The 3D chemical structures must be converted into a mathematical form that the computer
can understand. Molecular descriptors are traits of molecules that are determined by an algo-
rithm. In order to predict biological activity, chemical substances are given molecular descrip-
tors. These descriptors are then used to build a quantitative structure-activity relationship
(QSAR) model. The descriptor values are employed for a range of tasks, such as drug design
and similarity searches, and they indicate the physical and chemical characteristics of the mol-
ecule. In this work, two descriptors—“Lipinski” proposed by [36, 37]—have been used. Fig 1
depicts the study’s workflow.

It is crucial to carefully evaluate the selection of descriptor in order to create a representa-
tion that works for a deep learning framework. The physical and chemical characteristics of a
molecule, such as its solubility, lipophilicity, and molecular weight, are described by physio-
chemical descriptors. For the design and improvement of drugs, these characteristics may be
crucial. On the other hand, molecular descriptors provide a more thorough description of a
molecule’s structure by taking into account its atom connections and molecular geometry. It is
crucial to thoroughly consider the advantages and disadvantages of each approach before
selecting the one that is best suited for what we are trying to accomplish.

Among the software tools commonly used for molecular description and computational
chemistry, PaDEL stands out as an excellent choice for high-throughput QSAR modeling.
PaDEL’s focus on efficient generation of a wide range of molecular descriptors, including 1D,
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Fig 1. Workflow of the study.
https://doi.org/10.1371/journal.pone.0288053.g001
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2D, and 3D descriptors, makes it particularly advantageous for our experimentation. Its ability
to swiftly calculate descriptors for large chemical databases enables rapid screening and analy-
sis, while its user-friendly interface ensures accessibility for researchers of varying expertise.
With PaDEL, we can efficiently explore the intricate relationships between molecular struc-
tures and activities, advancing our understanding of drug design and discovery.

3.2.1 Lipinski descriptors. Lipinski’s general rule of thumb describes the drugability of a
specific molecule. It is based on pharmacological properties known as pharmacokinetics and
aids in determining whether a molecule has the necessary chemical and physical properties to
be orally accessible. The conditions are listed here, and if two or more are broken, the molecule
is unlikely to be consumed.

o Molecular mass not greater than 500 Dalton
« Octanol-water partition coefficient (LogP) not greater than 5
« Hydrogen bond donors not greater than 5

» Hydrogen bond acceptors not greater than 10

3.2.2 PaDEL descriptors. PaDEL is a program that calculates molecular descriptors and
fingerprints developed by [37]. The chemical development kit is used to generate ten different
types of fingerprints, 663 one- and two-dimensional descriptors, 134 three-dimensional
descriptors, and other descriptors. This free and open-source software generates less descrip-
tors and fingerprints such as atom type electrotopological state, molecule linear free energy
relation, ring counts, and chemical substructure count.

3.3 Classification models for QSAR

From curated and preprocessed datasets, QSAR models were used to predict the bioactivity of
substances using ensemble classifiers, conventional machine learning, and traditional machine
learning, as well as neural network-based classifiers. We employed 26 conventional machine
learning and ensemble classifiers, as well as the Scikit-learn [38], to semi-automate the
machine learning activities. The classifiers were utilized using their default settings. However,
these classifiers’ performance might be enhanced by adjusting their hyperparameters. We were
interested in learning which classifiers work best with their default settings.

The majority of traditional classification models are linear, identifying a linear relationship
between the predicted and independent features. A linear relationship between a dependent

variable y and independent variables xy, x,, . . ., x,, can be represented by the following formula
(Eq 1), where wy, ws, . . ., w, are feature coefficients and wy is the line’s intercept.
Y=Wy+ wiRx + wykx, + ..+ WX, (1)

In this investigation, we employed linear logistic regression, Ridge, SGD, and passive-
aggressive classifiers.

Support vector machines (SVMs) can be used for regression, classification, and outlier
detection. When there are fewer samples than features in the dataset, these models perform
well in higher-dimensional domains. We employed SVC, LinearSVC, and NuSVC classifiers
in our study.

In addition to applying the Bayes theorem, naive Bayes classifiers make the incorrect
assumption that each pair of characteristics is conditionally independent. We used Gaussian
NB and Bernoulli NB in our investigation. The K-Neighbors Classifier and Nearest Centroid
neighbor-based classifiers compute the class of the points using majority voting techniques.
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Other classifiers were also applied on our dataset, including Decision Trees, Label Spreading,
Label Propagation, and Dummy Classifiers.

By aggregating the predictions of several base estimators, ensemble techniques compute the
final prediction. The predictions of various independent estimators are averaged in some
ensemble approaches. By reducing the bias of the combined estimator, other ensemble
approaches perform better. In this study, we employed a range of ensemble classifiers, includ-
ing Random Forest, Bagging, Extra Tree, LGBM, XGB, and AdaBoost.

Finally, we developed a deep learning-based categorization model with plenty of dense lay-
ers. Neural networks provide a variety of benefits over traditional categorization techniques
because of their ability to carefully evaluate and calculate all the features. Researchers can use
hyperparameter tweaking to fine-tune model performance for the best outcomes. This is a fun-
damental aspect of machine learning, and selecting optimal hyperparameter values is critical
for success. We investigated and experimented with many parameters, including the number
of layers, the dropout ratio, and the number of nodes in each layer, and eventually developed
an optimum design. Our proposed neural network for bioactivity prediction utilizing PaDEL
features consists of eight hidden layers. In Table 3, the model’s layers and their shapes are
shown. Around 15M trainable parameters are available for this model. To address the over-fit-
ting issue and improve the model, we added the dropout layers, which greatly improved per-
formance. When creating the model, we modified the Adam optimizer to enhance the weights.
The formula to update the weights by adding the Adam optimizer is shown in Eqs 2 and 3.

Wi = W, —am, (2)
=+ (-] ®)
t
Here,
m; : Aggregate of gradients at time i
w; : Weights at time i
o : Learning rate
B: Moving average
Table 3. Neural network model architecture.
Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 881) 0
dense (Dense) (None, 2048) 1806336
dropout (Dropout) (None, 2048) 0
dense_1 (Dense) (None, 4096) 8392704
dropout_1 (Dropout) (None, 4096) 0
dense_2 (Dense) (None, 1024) 4195328
dense_3 (Dense) (None, 512) 524800
dense_4 (Dense) (None, 256) 131328
dense_5 (Dense) (None, 128) 32896
dense_6 (Dense) (None, 2) 258

Total params: 15,083,650
Trainable params: 15,083,650

Non-trainable params: 0

https://doi.org/10.1371/journal.pone.0288053.t003
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SL : Derivative of Loss function
Oow, : Derivative of weights at time t

4 Results

In this study, we looked at how well ensemble classifiers and conventional machine learning
performed in predicting the bioactivity of several drugs that target coronavirus. To find the
descriptor that is most appropriate for the task, we developed two different molecular descrip-
tors for this experiment: Lipinski and PaDEL. There were two phases to the experiment. First,
we used 26 conventional and ensemble classifiers independently to each of the two descriptors.
From this experiments we will understand which descriptors are more suited for this task.
After that, we created and put to the test a neural network architecture for this classification
job using the more suitable chemical descriptors.

4.1 Lipinski Vs PaDEL descriptor

The results of traditional and ensemble machine learning classifiers on ChEMBL Dataset are
displayed in Table 4. We calculated the accuracy, ROC-AUC, and F1 score for each classifier
using both types of descriptors. SVC is found to be the most accurate classifier for Lipinski

Table 4. Performance of traditional and ensemble classifiers on dataset collected from ChEMBL.

PaDEL Desc. Lipinski Desc.
Model Acc. AUC F1 Acc. AUC F1
LogisticRegression 0.87 0.87 0.87 0.65 0.65 0.65
RidgeClassifier 0.8 0.8 0.8 0.63 0.63 0.63
RidgeClassifierCV 0.78 0.78 0.78 0.63 0.63 0.63
SGDClassifier 0.8 0.8 0.8 0.44 0.42 0.39
PassiveAggressiveClassifier 0.83 0.83 0.83 0.68 0.67 0.68
SvC 0.85 0.85 0.85 0.76 0.76 0.76
LinearSVC 0.78 0.78 0.78 0.65 0.65 0.65
NuSVC 0.87 0.87 0.87 0.69 0.7 0.69
GaussianNB 0.76 0.76 0.76 0.74 0.73 0.74
BernoulliNB 0.57 0.57 0.56 0.61 0.62 0.61
KNeighborsClassifier 0.7 0.7 0.69 0.66 0.66 0.66
NearestCentroid 0.57 0.57 0.56 0.68 0.68 0.67
DecisionTreeClassifier 0.83 0.83 0.83 0.66 0.66 0.66
LabelSpreading 0.52 0.52 0.41 0.73 0.72 0.72
LabelPropagation 0.52 0.52 0.41 0.71 0.7 0.71
DummyClassifier 0.46 0.46 0.45 0.34 0.33 0.33
CalibratedClassifierCV 0.8 0.8 0.8 0.63 0.63 0.63
LinearDiscriminantAnalysis 0.7 0.7 0.7 0.65 0.65 0.65
QuadraticDiscriminantAnalysis 0.7 0.7 0.7 0.76 0.75 0.76
RandomForestClassifier 0.8 0.8 0.8 0.73 0.72 0.73
BaggingClassifier 0.8 0.8 0.8 0.71 0.7 0.71
ExtraTreeClassifier 0.76 0.76 0.76 0.71 0.71 0.71
ExtraTreesClassifier 0.8 0.8 0.8 0.74 0.74 0.74
LGBMClassifier 0.8 0.8 0.8 0.71 0.71 0.71
XGBClassifier 0.8 0.8 0.8 0.69 0.69 0.69
AdaBoostClassifier 0.8 0.8 0.8 0.61 0.61 0.61
Perceptron 0.76 0.76 0.76 0.71 0.71 0.71

https://doi.org/10.1371/journal.pone.0288053.t004
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descriptors, with an accuracy rate of 76%. While ensemble techniques had an accuracy rate of
roughly 70%, linear classifiers did not perform effectively. However, when using PaDEL
descriptors, we found that the NuSVC model had an accuracy of 87%. With PaDEL descrip-
tors, nearly all classifiers performed better than Lipinski. About 80% of ensemble techniques
were accurate. In both cases, support vector-based classifiers perform best when employed
with their default parameters.

We discovered that PaDEL descriptors, as opposed to Lipinski, are more suitable for classi-
fication from the evaluation metrics. Since PaDEL generates many more molecular features
than Lipinski, it does the categorization task better.

4.2 Deep learning model performance

The present study describes the development of a neural network based on PaDEL descriptors.
The architecture of the implemented model is depicted in Table 3. The TensorFlow framework
was employed for the implementation and conduct of trials. Initial training and assessment of
the model was performed using a proprietary dataset for 200 iterations. The presence of a
dropout layer prevented overfitting during the training phase. Furthermore, the validation
accuracy of the model, with a maximum accuracy of 91%, indicates its efficacy on test data.

The performance of the proposed neural network model on the ChREMBL Dataset was eval-
uated and the results are presented in Table 5. The F1-score for inactive and active compounds
was 91% and 92%, respectively. Class-wise analysis revealed that the Positive Predictive Value
(PPV) of the model was 95%, indicating a high level of confidence in the prediction of bioac-
tive compounds. The model was able to identify 87% of active compounds and 96% of inactive
compounds, with an accuracy of 88% for inactive compounds. In conclusion, the classification
report of the model highlights its exceptional ability to identify active compounds and the high
accuracy of its predictions.

The initial training of the model was performed on a small dataset to demonstrate its proof
of concept and establish a baseline performance. However, as the goal of the model was to
accurately classify compounds in a large-scale dataset, it was deemed necessary to further train
the model on a significantly larger dataset. This additional training allowed the model to
improve its generalization capabilities, and to better capture the underlying patterns in the
data. Moreover, a larger dataset helps the model to avoid overfitting and increase its
robustness.

On the large Pubchem dataset, we trained the proposed model. This dataset, however, is
extremely unbalanced. This poses an issue for the model because it may learn to make biased
predictions in favor of the majority class. Synthetic Minority Over-sampling Technique
(SMOTE) was used to generate synthetic samples for the minority class in order to address
this issue [39]. Rather than simply duplicating existing instances, SMOTE generates synthetic
samples by interpolating between existing minority class instances. This helped to balance the
dataset and mitigate the class imbalance problem, resulting in a more accurate and robust
model. The use of SMOTE was critical in ensuring that the model was unbiased and performed
well on both minority and majority classes.

Table 5. Performance of neural network on ChEMBL data.

0 (Inactive)
1 (Active)
Accuracy

https://doi.org/10.1371/journal.pone.0288053.t005

Precision Recall fl-score Support
0.88 0.96 0.92 23
0.95 0.87 0.91 23

0.91 46
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Fig 2. Learning curve for training and validation data.
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https://doi.org/10.1371/journal.pone.0288053.9002

The results of the large-scale training revealed significant improvement in the model’s per-
formance, providing evidence for the importance of training deep learning models on a large,
diverse dataset for optimal results. Fig 2 depicts the learning progression of the training and
validation phases. Table 6 displays the classification performance. The test set included

Table 6. Performance of neural network on Pubchem data.

Precision Recall fl-score Support
0 (Inactive) 1.00 1.00 1.00 39855
1 (Active) 1.00 1.00 1.00 39854
Accuracy 1.00 79709

https://doi.org/10.1371/journal.pone.0288053.1006
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Fig 3. Confusion matrix of neural network on pubchem data.

https://doi.org/10.1371/journal.pone.0288053.g003

approximately 80,000 samples, and the model demonstrated remarkable accuracy in class pre-
dictions. Fig 3 shows the confusion matrix for the trained model.

To demonstrate the robustness and generalization capabilities of the pre-trained model
(trained from Pubchem and synthetic data), we used a combined dataset from two different
data repositories (ChEMBL, Pubchem). By testing the model on a merged dataset, we can clar-
ify its consistency and reliability, as well as its performance in a real-world scenario. The vali-
dation results on the merged dataset confirmed the effectiveness of the pre-trained model as
well as its suitability for use in a variety of real-world applications. Table 7 shows the evaluation
metrics and Fig 4 depicts the confusion matrix in prediction on test set. The results indicated
that the pre-trained model displayed a high level of accuracy, with a 93% prediction rate for
bioactivity.

4.3 Important fingerprints

It is important to identify specific features from PaDEL descriptors because it can lead to a bet-
ter understanding of the molecular properties. These characteristics are critical in determining
bioactivity, improving model performance and efficiency, and providing insights into the
underlying biology and chemical mechanisms. Therefore, we have used SHAP (SHapley Addi-
tive exPlanations) on XGB classifier to find important fingerprints from the PaDEL descriptors
for this task [40]. Compared to more conventional approaches like feature importance scores,
this offers a more thorough and understandable representation of the feature importances.
The interaction between features is taken into account by SHAP values, enabling a more in-
depth knowledge of how each feature affects the model’s prediction. Fig 5 demonstrates the

Table 7. Classification performance of trained model on combined data.

0 (Inactive)
1 (Active)
Accuracy

https://doi.org/10.1371/journal.pone.0288053.t007

Precision Recall fl-score Support
0.88 1.00 0.94 751
1.00 0.87 0.93 751

0.93 1502
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Fig 4. Confusion matrix of pre-trained model.
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top 20 fingerprints in a molecule’s PaDEL descriptors that are necessary for it to be bioactive
against SARS-CoV-2. The figure shows that the bioactivity against SARS-CoV-2 has an inverse
relationship with FP671, FP391, FP643, FP33, and FP368. Their widespread presence has a det-
rimental impact on bioactivity. However, FP341, FP20, FP180, FP143, and FP393 have a posi-
tive effect on bioactivity. Table 8 shows the corresponding substructure of these fingerprints.

5 Discussion

The present study utilized classification and ensemble methods on a carefully curated dataset.
The results indicated that the PaDEL descriptors were effective in predicting bioactivity, and
the proposed neural network design was efficient. Additionally, support vector-based classifi-
ers, due to their advantage in handling high-dimensional data and limited number of samples,
demonstrated good performance. The neural network models were able to identify the key fea-
tures contributing to classification through in-depth learning, resulting in high accuracy in
predicting the bioactivity class. To prevent overfitting, the neural network architecture was
equipped with a dropout layer and synthetic data was used in training.

Recently, machine learning techniques have been utilized to find potential drugs against
SARS-CoV-2. Besides generating effective molecular descriptors for coronaviruses, ML is also
used to predict the bioactivity of existing drugs. The use of ML algorithms has been limited to
in-vitro and in-vivo experiments in a few studies. A study by [26] showed that the SVM classi-
fication algorithm had an accuracy of 88%. However, our method performed better, with a
93% accuracy rate. Additionally, we investigated multiple molecular description methods and
identified important molecular substructure that impacts the bioactivity.

Finding a suitable classification system to forecast the bioactivity of compounds against the
SARS coronavirus was the aim of this research. We also wanted to learn the best method for
describing molecules during this process. After careful curation and processing we have used
experimental data from two database—ChEMBL and Pubchem, and trained a neural network
model that can identify bioactivity of molecular compounds against SARS-Cov-2 with 93%
accuracy. We also identified the important substructure of the molecules that impacts the bio-
activity positively and negatively. However, in-vitro and in-vivo experiments can establish our
findings with a probable drug structure.
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6 Finding drug candidate

We compared our results with DrugCentral REDIAL 2020 by [41], an activity estimation por-
tal against coronavirus, to evaluate our neural network model using a list of different small
molecules targeting SARS-CoV-2 3CLpro used by [28]. There are approximately 700 inactive
compounds and 486 SARS-CoV-2 3CLPro inhibitors in this list. With a threshold class proba-
bility of 99.9%, our model correctly classified 456 chemicals as active. We created several

PLOS ONE | https://doi.org/10.1371/journal.pone.0288053 September 5, 2023 14/19


https://drugcentral.org/Redial
https://doi.org/10.1371/journal.pone.0288053.g005
https://doi.org/10.1371/journal.pone.0288053

PLOS ONE

Bioactivity prediction of SARS-Cov-2-Targeting drug compounds using machine learning approaches

Table 8. Important fingerprints for bioactivity prediction against SARS-CoV-2.

FP Bit position Substructure Effect on Bioactivity
FP671 0=C-C=C-C Negative
FP391 N(~C)(~C)(~C) Negative
FP643 [#1]-C-C-N-[#1] Negative
FP33 >=18§ Negative
FP368 C(~H)(~S) Negative
FP341 C(~C)(~C)(~0) Positive
FP20 >=40 Positive
FP180 >= 1 saturated or aromatic nitrogen-containing ring size 6 Positive
FP143 >= 1 any ring size 5 Positive
FP393 N(~C)(~H) Positive

https://doi.org/10.1371/journal.pone.0288053.t008

activities of the same compound from REDIAL 2020 to further validate the active compounds
we have discovered from our model, giving us a notion that these compounds can be consid-
ered as drug candidates against SARS-Cov-2 3CLPro. The activities derived from REDIAL are

the following:
o SARS-CoV-2 cytopathic effect (CPE)

o SARS-CoV-2 cytopathic effect (host tox Counter) / Cytotoxicity

« ACE2 enzymatic activity
» 3CL enzymatic activity

+ SARS-CoV pseudotyped particle entry (CoV-PPE)

Table 9. Activities of the candidate compounds from REDIAL 2020, where, Active = A, Inactive = I, Cytotoxicity= C,,, CoV-PPE=C,, MERS-PPE= M, CoV--

PPE_cs=Cy., MERS-PPE_cs= M.
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https://doi.org/10.1371/journal.pone.0288053.t009
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o MERS-CoV pseudotyped particle entry (MERS-PPE)

o SARS-CoV pseudotyped particle entry counter screen (CoV-PPE_cs)

o MERS-CoV pseudotyped particle entry counter screen (MERS-PPE_cs)
« Human fibroblast toxicity (hCYTOX)

In Table 9, we present 20 active chemicals identified by our model together with their level
of activity. It is obvious that our model’s active chemicals are supported by these actions to be
candidates for new drug development. All of the discovered active compounds’ SMILES repre-
sentations are accessible in the Github repository—https://github.com/tbabd/bioactivity-
against-SARS-CoV-2.

7 Conclusion

It is evident that the drug development is a costly and time-consuming process. Through using
the proper molecular descriptors and the capabilities of machine learning techniques this pro-
cess could well be expedited efficiently. The bioactivity of a drug against the SARS-CoV-2
3CLpro protein was determined in this study using classic machine learning and ensemble
approaches. The study examined the Lipinski and PaDEL molecular descriptors to determine
whether one is more appropriate for such classification activity. Subsequently, this study also
present an efficient neural network model which surpassed the competition with just predic-
tion performance of 93%. Our model was trained on a large dataset that was carefully curated
and collected from two different data sources. The proposed model was trained in a large data-
set that has been vetted and assembled from two distinct data sources. In addition, the trained
model was then applied to a list of 1186 candidate compounds of which 486 identified active
inhibitors. The model identified 456 compounds as active, which were then evaluated for fur-
ther activities against SARS-CoV-2 using REDIAL. Therefore, it is demonstrated in our
approach can effectively determine the undiscovered active substance. To determine which
molecular structure will be the greatest option for drug creation, more in-vitro and in-vivo
study is necessary. In addition, the study identified a significant substructure of molecules that
impacts the bioactivity against SARS-Cov-2. Biologists benefit from bioactivity prediction in
drug design because it allows for in silico screening of potential drug candidates prior to con-
ducting costly and time-consuming experiments. By reducing the number of unsuccessful
compounds that must be tested, this helps to save resources and increase efficiency in the drug
discovery process. This work will eliminate the laborious search for potential molecules against
the deadly SARS-CoV-2 reasonably.
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