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Abstract

Virtualization and resource isolation techniques have enabled the efficient sharing of net-

worked resources. How to control network resource allocation accurately and flexibly has

gradually become a research hotspot due to the growth in user demands. Therefore, this

paper presents a new edge-based virtual network embedding approach to studying this

problem that employs a graph edit distance method to accurately control resource usage. In

particular, to manage network resources efficiently, we restrict the use conditions of network

resources and restrict the structure based on common substructure isomorphism and an

improved spider monkey optimization algorithm is employed to prune redundant information

from the substrate network. Experimental results showed that the proposed method

achieves better performance than existing algorithms in terms of resource management

capacity, including energy savings and the revenue-cost ratio.

Introduction

Network virtualization [1] is an integral component of current and future networks and pro-

motes the development of networked technologies such as cloud computing [2]. Due to virtua-

lization, network operators have opportunities to consolidate their equipment into

standardized high-volume components. This is reflected by efficiently utilizing substrate net-

work (SN) resources through sharing among several virtual networks requests (VNRs) [3].

Virtualization introduces great flexibility in terms of “where” VNRs can be embedded. How-

ever, exploiting this resource allocation problem poses a fundamental algorithmic challenge.

In general, the resource allocation problem is known as the virtual network embedding

(VNE) problem [4], which can be posed as a graph-theoretic problem: both VNR, describing a

workload, and SN, describing the physical infrastructure, can be modeled as graphs. To better

explain the VNE problem, Fig 1 shows a physical network of numerous nodes and edges

receiving a VNR with four virtual nodes and four virtual links. To realize the embedding of

this request, the VNE algorithm will search for candidate physical resources in the substrate

network graph that have enough residual capacities to host its demands, and Fig 1 shows two
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embedding solutions for this VNR, identified in blue and yellow, respectively. In solution 1

(blue), virtual nodes A, B, C and D are hosted on substrate nodes a, b, c and d, and the virtual

links A-B, A-D, B-C and C-D are subsequently hosted on substrate links a-b, a-d, b-d and c-d.

The same procedure repeats in solution 2 (yellow), where virtual nodes A, B, C and D will be

embedded on substrate nodes a’, b’, c’ and d’. Although both solutions are feasible, it is not dif-

ficult to find the difference between them: solution 2 opens up more link resources than solu-

tion 1, which means that solution 2 takes up more redundant resources and more latency than

solution 1. Therefore, a VNE algorithm with strong resource management capabilities needs

to search for candidate physical nodes that can satisfy the demands while maintaining similar

connectivity to virtual requests.

However, this feature has been largely overlooked in previous studies [5–7]. Most related

works are "straightforward" in solving the VNE problem, which focusing only on resource

availability [8–12] to find the most adequately resourced physical nodes in the entire physical

network space to host virtual nodes. As applications of VNE range from mapping testbeds

over embedding batch-processing tasks to embedding service function chains with different

embedding restrictions on nodes and edges, not only capacity [13] but also latency [14] and

power consumption [15], such a strategy that ignores the relationship between demands (i.e.,

VN) and services (i.e., SN) may face a dilemma: nodes selected without structure restriction

may have a scattered location, which results in the use of more substrate resources. With the

physical nodes powered up and links segmented, would most probably result on rejecting

some virtual demands, or including additional hidden SN resources, accordingly, increasing

embedding costs and consuming more energy.

Therefore, more and more research performs virtual nodes mapping and virtual links map-

ping no longer as two separate subproblems but with some coordination between their solu-

tions, and according to predefined constraints, performing resource allocation by building a

substrate resource management region [16–18]. By using a feedback loop, spectral clustering

and other methods, several nodes and links in the substrate graph are formulated into a collec-

tion, which is used to allocate all or part of the networked resource requirements in the VNR.

However, although these approaches provide some limitations on the location of node map-

ping, they have two drawbacks that cannot be ignored: (1) the impact of structural similarity

between requests and services on the final embedding result is not fully considered. In fact,

according to Fig 1, when realizing the embedding for VNR demands, an efficient VNE algo-

rithm needs not only to find a physical node for each virtual node that meets the demands, but

also to maintain the similar connections as the request, as a similar structure allows open fewer

physical link resources and the more similar the hosted physical graph is to the request graph,

the fewer redundant resources are opened. (2) The impact of search space on the final embed-

ding result is ignored. In order to avoid inefficient usage due to under-exploitation of physical

resources in the substrate network graph, full-scale search in the underlying network is

required. However, the information of the substrate graph is not always useful [19], even some

information is redundant. To quickly find the most accurate substrate resource management

region, a fast and efficient optimization method [20] is needed to help find the most potential

physical resources.

Consequently, in this paper, by finding the most potential substrate resource management

region, we propose an edge-based VNE algorithm, abbreviate as VNE_MR for providing pre-

dictable performance guarantees on all resources. Specifically, different from previous algo-

rithms that focus on the nodes, we abstract the virtual network as a request graph, denoted by

Gv, and employ an edge-based graph edit distance method CSI_GED [21] following the links

to edit Gv to the physical resource management region with a similar size to Gv, denoted by R
(Gv). In addition, to control the hosted physical network structure efficiently and support
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various requirements flexibly, we restrict the use conditions of network resources and restrict

the structure of R(Gv) based on common substructure isomorphism. Nevertheless, to find the

highest potential R(Gv) to host the Gv as the VNE solution, a modified spider monkey optimi-

zation (SMO) [22] algorithm is designed to prune redundant information from the substrate

network and to find the highest potential R(Gv) in a parallel manner. So that after only a few

iterations, the candidate resources are delimited in a region similar to the size of the request

graph, which not only keeps the full exploration of the substrate network but also controls the

cost of optimization in an small value.

Main contributions:

1. To perform resource allocation according to predefined constraints, we model the VNE

problem using graph theory and transform it into the problem of building a substrate

resource management region based on an edge-based graph editing distance method.

2. To find the VNE solution with low cost, a modified SMO optimization algorithm is

designed to prune redundant information from the substrate network and to find the high-

est potential substrate resource management region in a parallel manner.

3. Experimental results showed that the proposed method achieves better performance than

existing online VNE algorithms in terms of resource management capacity, including

energy savings and the revenue-cost ratio.

Fig 1. An example of embedding a virtual network request on the physical substrate network, where the virtual network (left) is presented as a request graph

describing the resource requirements both on nodes and links; substrate network (right) is presented as a substrate graph describing the physical infrastructure and

its resources.

https://doi.org/10.1371/journal.pone.0288037.g001
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The remainder of the paper is organized as follows. Section 2 reviews related studies.

Embedding preliminaries are defined in Section 3. Section 4 introduces the proposed

VNE_MR algorithm in detail. An explanation of the proposed algorithm and a discussion of

its results are presented in Section 5. Finally, Section 6 concludes the paper and highlights cer-

tain future work.

Related work

In existing VNE research, a common method focuses on resource availability when addressing

the resource allocation problem and managing substrate resources.With regard to resource

availability, the most referenced approach is that suggested by Chowdhury et al.[10], which

embeds virtual nodes onto SN nodes based on their residual capacities and coordinates edge

embedding using the multicommodity flow algorithm. In addition, with the increase in delay-

sensitive services [23,24] on the network, a smaller and guaranteed transmission delay is

required. Therefore, researchers are starting to consider delay as an important factor when

considering the VNE problem. Based on the Google PageRank algorithm and considering link

propagation delay as a node-link constraint in the VNE problem, Cao et al. [11] designed a

VNE algorithm, denoted as VNE-TAGRD, to manage the underlying network resources. And

Shi et al. [12] also based on this devised a node-ranking approach for SDN-based virtual net-

work embedding. However these resource availability-based algorithms ignored the relation-

ship between requests and services. Nodes selected in this manner may be scattered, longer

paths could be used, which would result on adding additional costs.

Therefore, some researchers pay more attention on allocating resources according to prede-

fined constraints by building a resource management unit. For example, to manage resources,

Khaled et al. [16] proposed a resource set format, called segments, to manage and match

resources in segments. They modeled the VNE problem as a two-stage mapping problem and

introduced a VNE algorithm called OPaCoVNE to solve the resource management problem

while considering the end-to-end delay as the embedded constraint. However, due to the

under-exploitation of physical resources in the substrate network, its resource utilization effi-

ciency is low..He et al. [17] used spectral clustering based on field theory to extract substrate

network features and manage physical resources. Then, they developed dynamic regions of

interest to find embedding areas with energy-saving potential for virtual networks. However,

they did not consider the effect of the similarity between the request graph and the service

graph on the final embedding result, so some unnecessary costs may be introduced.

In addition, some researchers have proposed some effective VNE methods based on heuris-

tic methods. For example, aiming at maximizing the revenues by mapping more virtual nodes

and minimizing the energy cost, Zhang et al. [25] leveraged niche particle swarm optimization

technique to design a meta-heuristic algorithm to solve the VNE problem. To manage sub-

strate resources, Jahani et al. [26] designed a D-reachability algorithm to assign reachability

rank to resources, modeled VNE as a multiobjective optimization problem, and pursued a

nondominated sorting heuristic genetic algorithm to solve it. However, to the best of our

knowledge current heuristics are combined with the resource availability and are used to fully

explore the substrate network resources. Thus they are still essentially resource availability-

based approaches, which aim at finding the most sufficient resources. This implies that the

search space in finding candidate physical nodes for each node is the entire underlying net-

work, and thus more iterations are often required in exploring the substrate network to obtain

the optimal embedding solution, which resulting in a high cost.
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Preliminaries

In this section, VN and SN are modeled as the request graph and the substrate graph, respec-

tively. Some propositions about resources, i.e., nodes and links in the VNE problem, are

reviewed (Propositions 1–7). In addition, Proposition 8, presenting the common substructure

isomorphism, is specifically proposed for our VNE_MR algorithm.

Substrate network model

We model the substrate network as an undirected graph Gs = (Ns,Ls). This paper also refers to

it as a substrate graph, where Ns is the set of all substrate nodes. Each substrate node m2Ns is

characterized by its node capacity-available CPU, denoted as C(m). With respect to substrate

links, we consider any link as a pair of nodes, and each substrate link lmn has a finite bandwidth

B(lmn) and a substrate link propagation delay D(lmn).

VN request model

In the VNE research area, each VN can also be modeled as a weighted graph Gv = (NV, LV).

This paper also refers to it as a request graph, where NV is the set of all virtual nodes and Lv is

the set of all virtual links. Each virtual node M2NV is characterized by the required CPU,

denoted as C(M). With respect to virtual links, each virtual link LMN has a required bandwidth

B(LMN) and required virtual link propagation delay D(LMN). By adding the time attributes

(e.g., maximum waiting time, arrival time, duration time, leaving time), the VN is extended to

a VNR.

VNE propositions

• Proposition 1: node mapping.

8M 2 Gv;m 2 Gs : xm
M ¼

1; if M is mapped on m

0; otherwise
ð1Þ

(

In (1), if xm
M ¼ 1, virtual node M is mapped to physical node m.

8M 2 Gv :
X

M2Gv

xM
m ¼ 1 ð2Þ

8m 2 Gs :
X

m2Gs

xM
m � 1 ð3Þ

Eqs (2) and (3) ensure that a virtual node must correlate with just one substrate node.

• Proposition 2: node capacity.

8M 2 Gv; 8m 2 Gs : xm
MCðMÞ � CðmÞ ð4Þ

As shown in (4), to successfully embed a VN, all the virtual nodes must be embedded on sub-

strate nodes with adequate capacity.

• Proposition 3: link mapping.

8LMN 2 Gv; 8lmn 2 Gs :

xlmn
LMN
¼

LMN; if LMN is mapped on lmn

0; otherwise
ð5Þ

(
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In (5), if xlmn
LMN
¼ 1, virtual link LMN is mapped on physical link lmn.

8LMN 2 Gv; 8lmn 2 Gs :

X

lmn

xlmn
LMN
�
X

LMN

xlmn
LMN
¼

1; if xm
M ¼ 1

n; if xm
N ¼ 1

0; otherwise

ð6Þ

8
>>><

>>>:

Eq (6) specifies that the physical path can be split.

• Proposition 4: link bandwidth and delay.

8LMN 2 Gv; 8lmn 2 Gs :

xlmn
LMN
� B LMNð Þ � B lmnð Þ and m 6¼ n

ð7Þ

8LMN 2 Gv; 8lmn 2 Gs :

xlmn
LMN
� D LMNð Þ � D lmnð Þ and m 6¼ n

ð8Þ

As shown in (7) and (8), to successfully embed Gv, all the virtual links must be embedded

on substrate links with available bandwidth and delay.

• Proposition 5: node energy consumption.

8m 2 Gs;

Em ¼

m:base þ pl∗t

if the selected physical node n is open

0; otherwise

ð9Þ

8
>>><

>>>:

where m.base is the baseline power without any central processing unit (CPU) load, pl repre-

sents the energy proportion factor, m.max denotes the total power at maximum capacity (pl =

m.max—m.base), and τ denotes the CPU utilization of node m (τ = C(M)/C(m)). When the node

is powered off or in the hibernation state, the energy consumption of the node is 0.

• Proposition 6: link energy consumption.

8lmn 2 Gs;

Em ¼

lmn:base;

if the selected physical link n is open

0; otherwise

ð10Þ

8
>>><

>>>:

lmn.base indicates the link energy consumption, which is generally constant. When the link is

powered off or in the hibernation state, the link energy consumption s 0.

• Proposition 7: the status of substrate resources. The variable st is a binary variable that

demonstrates that the substrate node or link is turned on/off at time t and is described in (11).

It should be noted that the turned-on (not-off) servers should have a greater chance of
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mapping because they need less electrical energy to host new nodes.

st ¼
1; if the physical resource is turned on at time t

0; if the physical resource is turned off at time t
ð11Þ

(

As shown in (11), if st ¼ 1, the status of the substrate node or link is turned on.

• Proposition 8: common substructure isomorphism. Given two graphs G1 = (N1, L1)

and G2 = (n2, l2), if 9f: N1!n2. Then, we must be able to find link L1!l’ among them induced

by f, where L1 ¼ UðM;NÞ2N LMNf g, l0 ¼ Uðm;nÞ2N0 Lmnf g, where l0 � l2. The two graphs G1 = (N1,

L1) and G’ = (n2, l’) have the same structure; thus, these nodes and links are a common sub-

structure isomorphism of G1 and G2 induced by f. As a rule of thumb, the common substruc-

ture is typically a minimally connected graph and is not unique in the sense that it can be

determined by different maps.

Fig 2 shows the common substructure isomorphism of G1 and G2, with four nodes colored

green, where nodes A and B are mapped to nodes a and b, and edge A-B is mapped to edge a-

b. Then, nodes B, C and D need to map to nodes b, c, and d, and edges B-C and B-D need to

map to edges b-c and b-d, subsequently following a graph edit function. For this graph edit

problem, we set this process beginning with the source node, Nsource (the A in G1) and nsource

(the a in G2), which are always selected by a given method. Node Na (B in G1), which has been

mapped to na (b in G2), is denoted as an active node, and its task is to explore new nodes.

Nodes that are surrounded by active nodes are called passive nodes, which are denoted as Np

(the C in G1). Its task is to act as the “next” node to be mapped. The nodes in G2 that have not

been exploited are called free nodes, denoted as nf. The edge in G1 between Na and Np is

marked as Lap, and the edge in G2 between na and np is marked as lap.

Fig 2. Example of embedding the common substructure isomorphism of G1 (left) to that of G2 (right).

https://doi.org/10.1371/journal.pone.0288037.g002
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Proposed VNE_MR algorithm

In VNE_MR, instead of focusing on research availability and searching the whole substrate

network, we narrow the solution space to a certain range by building resource management

regions for solving the VNE problem efficiently; however, considering various constraints, the

problem is still very complex.

Proposition. Building a resource management region with resource constraints is NP-

hard.

Proof. We use a reduction from the well-known NP-hard problem MAX-SAT [27]. An

instance of MAX-SAT is defined by (CF,w), where CF is a set of Boolean clauses such that each

clause C2CF is a disjunction of literals with a positive weight w(CF). Let X = {x1,. . .,x2n} be the

set of Boolean variables in the clauses of CF. A literal is a variable x2X or its negation �x. For

each xi2X, let xi = 1 (xi = 0 resp.), xnþi ¼ �xi ¼ 1 � xi, a clause Cj ¼ xj1
_ xj2

_ � � � _ xjk
2CF can

be considered a function on x as follows:

Cj ¼ CjðxÞ ¼ 1 �
Ykj

i¼1

1 � xjk

� �
ð12Þ

Thus, its goal, as shown in (13), is to find an assignment of these variables that maximizes

the weight of the clauses. The value of a truth assignment CF is defined as:

Max
X

Cj2CF

w Cj

� �
CjðxÞ

0

@

1

A ð13Þ

If we solve the resource management region, denoted as R(Gv), and build the problem by

considering the resource constraints (Propositions 1 to 7) as variables, taking add one physical

resource to R(Gv) as a clause and taking the energy consumption inverse value as the clause

weight, then we can obtain a VNE solution of MAX-SAT: x1 = 1 (or 0) if the capacity of na is

more than Na; x2 = 1 (or 0) if the capacity of np satisfies the requirement of Np; x3 = 1 (or 0) if

np is turned on; x4 = 1 (or 0) if the bandwidth of lap satisfies the constraint of Lap; x5 = 1 (or 0)

if the delay of lap satisfies the constraint of Lap; x6 = 1 (or 0) if lap is turned on. The cost of the

solution is equal to the sum of the costs of the clauses, which describes the energy consumption

of this R(Gv). This ends the proof.

Therefore, given that building R(Gv) with resource constraints is an NP-hard problem, we

turn our attention to finding a feasible solution that is near optimal by delimiting the highest

potential physical region in the substrate network. However, when delimiting R(Gv), it is not

hard to conclude that restrictions in a resource management region that are too tight (in

extreme cases, treating each node and link as a unit) will most likely result in rejecting some

virtual demands; or restrictions in a resource management region that are too loose (in

extreme cases, treating the whole substrate graph as a unit) will occupy many unnecessary

physical resources and identify additional hidden nodes, accordingly increasing embedding

costs and consuming more power. Therefore, when we delimit R(Gv), an edge-based graph

edit distance method CSI_GED is used to ensure that the size of R(Gv) is nearly the same as the

size of Gv. The main advantage in delimiting R(Gv) relies on its ability to “copy” the informa-

tion of Gv into R(Gv) step by step so that R(Gv) can be controlled at a predicted size. Among

this process, we use this approach to edit each element, i.e., virtual nodes and links, in Gv to

their counterparts in R(Gv) and calculate the edit distance from Gv to R(Gv), considering the

following constraints, namely, CPU, bandwidth, and end-to-end delay to find a physical region

to host Gv.

PLOS ONE An Edge-based Approach for Virtual Network Embedding Based on the Graph Edit Distance

PLOS ONE | https://doi.org/10.1371/journal.pone.0288037 July 7, 2023 8 / 30

https://doi.org/10.1371/journal.pone.0288037


More details about the steps in our VNE algorithm (VNE_MR) are discussed in the follow-

ing subsections. The method of delimiting the R(Gv) in the substrate graph is introduced in

Section 4.1, and Section 4.2 introduces an improved SMO algorithm for pruning the substrate

graph rapidly to find the highest potential R(Gv) that is the final near-optimal VNE solution.

Delimiting the resource management region

In the previous VNE algorithm, the mapping process typically begins with node mapping and

then embeds the links by connecting the respective endpoints, which ignores the network

topology constraints on mapping location and may scatter the position of the mapped nodes,

leading to a high probability that a substrate link may cross several substrate nodes and yield

more resources to be occupied.

Therefore, when solving the VNE problem, we propose a method for delimiting R(Gv) by

using an edge-based graph edit distance CSI_GED to edit Gv to R(Gv), which focuses on links

and taking their end nodes follow directly as a byproduct to strictly control the node locations

and ensure the coordination between nodes and links. The motivation behind using the link-

based approach is to facilitate allocating all virtual resources belonging to a specific VNR on

the corresponding substrate resources that have enough resources to host the demands of the

virtual nodes and edges without using any additional hidden substrate resources, which guar-

antees using networked resources accurately.

Before discussing the implementation of this method, we provide a brief introduction to

CSI_GED’s basics.

CSI_GED is an edge-based mapping method that is used for computing graph edit dis-

tances via common substructure isomorphism enumeration and uses a depth-first backtrack-

ing search combined with heuristics to reduce memory requirements and quickly prune a

large portion of the mapping search space. The goal is to transform graph G1 into graph G2 (G1

6¼ G2) with minimal cost c(f), which is defined as:

cðf Þ ¼ gðf Þ þ hðf Þ ð14Þ

where f is a function of finding the common substructure isomorphism between G1 and G2; c
(f) denotes the total edit cost on the mapped vertices and edges; g(f) denotes the induced edit

cost on the mapped vertices and edges in the common substructure isomorphism; and h(f) is

the edit cost of the remaining part (i.e., remaining nodes and edges in the graph that are not in

the common substructure isomorphism).

It is not difficult to find that in this typical graph edit distance computing problem, there

are no weights on the nodes or links. However, in the VNE problem, not only are structural

constraints embedded in the connection relationship between nodes and links but also

resource constraints for them, including capacity, bandwidth and delay, and they are typically

nonuniform. Therefore, when editing Gv into R(Gv), we aim to minimize energy consumption

(as shown in Formula 15, where energy consumption is posed as the edit distance), which can

best illustrate the cost of this process because every time a node or link is turned on, there’s a

corresponding energy consumption, and formulate the bounds for R(Gv) by presenting the

restrictions from two aspects: resource restrictions and structure restrictions. The formulation

is given below.

Objective:.

C ¼
X

ðm;n;lmnÞ2R Gvð Þ

Em þ Elmn ð15Þ
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Resources restrictions:. Capacity constraints:

8M 2 Gv; 8m 2 R Gvð Þ : xm
M � CðMÞ � CðmÞ ð16Þ

Bandwidth constraints:

8LMN 2 Gv; 8lmn 2 RðGvÞ : xlmn
LMN
� BðLMNÞ � BðlmnÞ and m 6¼ n ð17Þ

Delay constraints:

8LMN 2 Gv; 8lmn 2 R Gvð Þ :

xlmn
LMN
� D LMNð Þ � D lmnð Þ and m 6¼ n

ð18Þ

Mapping constraints:

8M 2 Gv;m Gs :

xm
M ¼

1; if M is mapped on m

0; otherwise
ð19Þ

(

8lmn 2 Gs;

Em ¼

lmn:base;

if the selected physical link n is open

0; otherwise

ð20Þ

8
>>><

>>>:

Structure restrictions:. Inspired by CSI_GED, we designed the structural restriction of R
(Gv), which is called the common substructure isomorphism constraint:

8 M;N; LMNð Þ 2 Gv; 8 m; n; lmnð Þ 2 R Gvð Þ :

if xlmn
LMN
¼ 1; xm

M ¼ 1
ð21Þ

Constraints 16–20 ensure the legal use of resources in R(Gv); please refer to Section 3.3 for

the specific meaning of the symbols. Constraint (21) is inspired by Proposition 8 in Section

3.3, and it ensures that links are allowed to match only if their composing nodes are consistent

with the previously matched nodes and the nodes at both ends of the link satisfy the resource

constraints. Under the resources and structure restrictions, even though the link map space

seems to be relatively large, resource and structure restrictions prune considerable redundant

information and sharply reduce the search space.

Since our method is link-based, editing the virtual link set in Gv step by step to a physical

link set is our task, and during this process, the parameters of both links must be unanimous

(including the end node following directly); additionally, the values also satisfy the demands.

Next, we provide more information about the steps for delimiting R(Gv) by editing Gv into a

similar-sized substrate region under the resource and structure restrictions. The pseudocode is

shown in Algorithm 1.

Algorithm 1 delimiting the resource management region
1: Input: Gs and Gv
2: While t6¼ 0 do
3: for each VNR arriving at the SN randomly at time t

PLOS ONE An Edge-based Approach for Virtual Network Embedding Based on the Graph Edit Distance

PLOS ONE | https://doi.org/10.1371/journal.pone.0288037 July 7, 2023 10 / 30

https://doi.org/10.1371/journal.pone.0288037


Formulate SetL
4: for each Lvw in SetL:
5: if B(lvw)>B(LVW) and D(lvw)<D(LVW)
6: if C(np) > C(Np) then match LVW to lvw, w to W
7: else extend to the neighbor node of w
8: else split the other link of V with sufficient

bandwidth, and select the first node whose capacity meets the
constraint as W from the neighbor node of the node at the other
end of the link

9: calculate gvne(f) using (15)
10: update the physical resource capacity
11: use the shortest path algorithm to match the remaining

links
12: calculate hvne(f) using (15)
13: record cvne(f) and cvne(f) = gvne(f) + hvne(f)

At each time t, if a VNR arrives, first, we need to structure the common substructure iso-

morphism of Gv and R(Gv) according to the CSI_GED. For Gv, in accordance with the struc-

ture restrictions, a minimally connected graph without loops is obtained by using the Prim

algorithm (an edge-based minimum spanning tree method), which takes the link bandwidth

reciprocal as the weight. Thus, we can obtain a subset of Gv = (N, L), denoted as Gv’ = (N, L’),
where L0 � L. Then, we start from Nsource and output the link set SetL = {L1’, L2’ . . . Ln’} (where

n<|L|) of Gv’ in a breadth-first manner with the link’s bandwidth as the weight (Fig 3). Next,

starting from the adjacent link of nsource that is matched to the Nsource (introduced in Section

4.2), we search the physical resources that meet the requirements of each link in SetL in the

same breadth-first manner and output the physical resources set Setl = {l1’, l2’ . . . ln’} corre-

sponding to SetL. In this process, we check links one-to-one directly: if each element in Setl has

enough resources to satisfy the demands of its counterpart in SetL, the first parameter in Gv is

Fig 3. A set of links in a graph starting from Nsource rearranged according to bandwidth in a breadth-first manner. The adjacency links of Nsource are at the first level,

the other links of the adjacency nodes of Nsource are at the second level, and so on, until all the links in the whole graph are traversed.

https://doi.org/10.1371/journal.pone.0288037.g003
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compared to the first parameter in R(Gv), the second parameter to the second, and so on for all

the remaining parameters. If the resource constraint check results are true, that is, each virtual

link found a matching substrate link, as the nodes follow directly as the byproduct, embedding

the virtual nodes and edges is realized together in full coordination onto the corresponding

physical substructure isomorphism. Therefore, the resource matching in the common sub-

structure isomorphism can be regarded as a one-stage mapping that highlights the link status.

Note that because each virtual node can map to only one physical node, while the links can be

split, an energy-saving region must have a compact structure that identifies as few links as pos-

sible between a fixed number of physical nodes. However, CSI_GED backtracks the edge map-

ping space in a depth-first manner, which violates our requirement. Therefore, we modify the

search method to proceed in a breadth-first manner.

To facilitate understanding, an example of matching one virtual link in Gv to its counterpart

in R(Gv) is illustrated in Figs 4–6. The request graph is composed of three links and tree nodes,

and the substrate graph is composed of six links and five nodes, in which a virtual node Na is

mapped to the physical node na. Next, when matching the adjacency links Lap1 and Lap2 of Na

(Fig 4), if lap1 satisfies all constraints of Lap1, i.e., both the bandwidth and delay of lap1 meet the

Lap1 requirements, and np1 at the other end of lap1 also meets the capacity requirements of vir-

tual node Np1, then we match Lap1 to lap1. Similarly, if Lap2 meets all the requirements of lap2,
we match Lap2 to lap2. However, if the bandwidth constraint cannot be met, then we match

Lap1 to another adjacent link of Na with sufficient bandwidth (Fig 5), lap2 is split to host Lap1

and Lap2, and Np1 is matched to an np2 adjacent node that satisfies the Np1 capacity constraint.

If the link’s resource constraint is satisfied, but the capacity of the node at the other end of this

link is not satisfied (Fig 6), then we match Np1 to an adjacent node of np1’ that meets the capac-

ity constraint.

Next, Eq (15) is used to calculate the editing distance gvne(f) during the editing process of

the substructure isomorphism of Gv into that of R(Gv), that is, the energy consumption of the

physical resources turned on in R(Gv) to hold this virtual request.

Finally, we edit the remaining part of Gv excluding the common substructure isomorphism

to R(Gv) by finding their shortest paths in the common substructure isomorphism and

Fig 4. An example of mapping virtual link Lap1 in Gv (left) on physical link lap1 in R(Gv) (right) because lap1 (the green edge) satisfies all the resource constraints,

including its byproduct—physical node np1 (the green node) on the other end.

https://doi.org/10.1371/journal.pone.0288037.g004
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calculate the energy consumption of the physical resources that turn on in this region, denoted

as hvne(f). Given that the remainder is only partial connection information between the nodes,

to ensure the VNE service quality, we relax the restriction of embedding when editing this

part: only the resource constraints are retained.

In general, using R(Gv) to host VNRs provides an absolute advantage in controlling the

resources usage by limiting R(Gv) to a scale that is almost as small as Gv so that only a few of

the necessary resources are opened. Moreover, it can also provide flexible and predictable ser-

vices for users. Since the bounds of R(Gv) are set by the resource constraints and the structure

Fig 6. An example of mapping the virtual link Lap1 in Gv (left) on the physical link lap1 in R(Gv) (right) by extending the link to the next hop node np1 (the green

node) of node np1’ because the remaining capacity of np1’ does not meet the demand of virtual node Np1.

https://doi.org/10.1371/journal.pone.0288037.g006

Fig 5. An example of mapping the virtual link Lap1 and Lap2 in Gv (left) on the same physical link lap1 in R(Gv) (right) because another adjacent link of node Na (the

red edge) does not satisfy the bandwidth constraint, while link lap1 (the green edge) still has sufficient remaining bandwidth to host Lap1 even after hosting Lap2, and

the adjacent node of np2 (the dark green edge) has sufficient capacity to meet the demand of virtual node Np1.

https://doi.org/10.1371/journal.pone.0288037.g005
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constraints, we can make a new bound for R(Gv) by changing the constraints in the restrictions

and find a new R(Gv) to host Gv while fitting the new requirement.

Searching the highest potential resource management region

Different from the previous metaheuristic algorithm that traverses the solution space with a

fixed population [28,29]. SMO is an algorithm that simulates the intelligent foraging behavior

of spider monkeys with a fission-fusion social structure (FFSS). In FFSS, a swarm is a social

grouping pattern in which individuals form temporary subgroups whose members belong to a

larger unit group. There can be fluid movement between subgroups and unit groups such that

group composition and size change frequently and vice versa based on the real-time situation

of the search to control the optimization speed. Therefore, when we search for the highest

potential R(Gv) in a parallel way in the SN, we take advantage of this feature of SMO to con-

verge to a potential physical region quickly by searching with a small-size group in the SN at

the beginning. When the research is stagnant, we expand the population size by splitting the

group into a larger group to explore and repeat the previous search phases until we find the

near-optimal solution. Therefore, during this optimization process, we can balance the explo-

ration and exploitation capability of the optimization algorithm while maintaining the conver-

gence speed.

There are six stages in the algorithm: the local leader phase, global leader phase, local leader

learning phase, global leader learning phase, local leader decision phase and global leader deci-

sion phase. The first and second phases are used to explore the search region while generating

the new positions, i.e., the new solutions to this problem, for all the group members by using

self experience, local/global leader (the spider monkey with the greatest fitness in its subgroup/

unit group) experience and group member experience to promote the exploitation. The third

and fourth phases, are used to determine whether the local best and global best solutions are

updating in a predefined number of trials. If not, then the solution is considered stagnated.

The fifth and sixth phases are used to avoid the stagnation or premature convergence of the

local solutions/global best solution and control the population size. If the local best solution is

not updated in a predefined number of trials (LocalLeaderLimit) then all the members of that

group are reinitialized. If the global best solution is not updated within a predefined number

of trials (GlobalLeaderLimit) then the group is divided into smaller subgroups. The position

update process of spider monkeys (SMs) is shown in Fig 7. Moreover, to clarify how we use

and enhance SMO to find the highest potential R(Gv), a step-by-step scenario graph describing

the overall process and the pseudocode of VNE_MR are shown in Fig 8 and Algorithm 2

respectively. The implementation process is explained below:

Algorithm 2 VNE_MR
Input: Gs and Gv, P, MG, local leader limit, global leader

limit, pr.
1: calculate the Nsource of GV use (23);
2: randomly select P nsourcei (i?=?1 . . .P);
3: for each nsourcei
4: call Algorithm 1 to delimit Ri(Gv) corresponding to the SMi
5: use (22) to calculate SMi’s fitness
6: Select global leader and local leaders by applying greedy

selection
7: while (termination criteria is not satisfied) do:
8: for k in MG do:
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9: generate a new position for each SMi2kth subgroup using
(18)
10: produce new position for each SMi2kth subgroup using (19)
11: update global leader and local leaders; record the

position and the fitness
12: call Algorithm 3 to update all the groups
13: end while

Initialization. Initially, we generate a population of P spider SMs as the VNE solutions,

i.e., delimit P R(Gv) in the substrate graph. SMi represents the ith SM in the population, i.e., ith
R(Gv). The local/global leader represents R(Gv) with the greatest fitness in its subgroup/swarm

and MG represents the maximum number of groups in the swarm. However, as this optimiza-

tion process starts with a single group having all the SMs, in the beginning, the local leader and

global leader are both the same SM. Moreover, because the goal of this study is to find the

most energy-saving R(Gv), each SMi corresponds to the ith Ri(Gv). Therefore, the fitness of

each SMi is equal to the energy consumption of physical resources opened in Ri(Gv):

Fitness ¼ E R GVð Þð Þ ¼
X

n2RðGVÞ

EðnÞ þ
X

l2RðGVÞ

EðlÞ ð22Þ

In addition, according to the previous section, the following conclusion can be easily

drawn: to build an energy-saving R(Gv) with a compact structure in the SN, a proper source
node is essential. Therefore, to ensure R(Gv) has a compact structure, the region must have

short links, and a high utilization rate is high; thus, Eq (23) is presented to calculate the virtual

node Nsource of Gv, which is the node with the shortest distance sum from all other nodes in the

graph; the formula for calculating Nsource is:

Nsource ¼ Min sum hops from other nodes to the Nsourceð Þð Þ ð23Þ

Then, P physical nodes, which are the candidate mapping nodes of Nsource, are randomly

selected in the SN and each physical node is marked as nsourcei (i = 1 . . . P) to build the R(Gv)

(Fig 7(A): 3!1). A detailed description is provided in Lines 1–5 of Algorithm 2.

Local leader phase (LLP) and global leader phase (GLP). To accelerate the convergence

speed, in the LLP, every SM generates its current position based on the experience information

of the local leader as well as local group members. The fitness value of the obtained new posi-

tion is calculated. The position update equation for the ith SM (which is a member of the kth

subgroup) is:

SMnewi ¼ SMi � r1 � LLkYSMið Þ þ r2 � SMrYSMið Þ½ � ð24Þ

where LLk represents the kth subgroup leader position.

SMr is the rth SM, which is chosen randomly within the kth group such that r 6¼ i. r1 and r2

represent the two random variables that are uniformly distributed in [0, 1] and r1 + r2 = 1. As

VNE is a discrete problem, numeric computing is divided into taking one step (in one-hop

units) toward LLk or SMr. As shown in Fig 7(A), after we calculate the updating direction of

each SMi (i = 1,2,3) by using the contents in the brackets of (17), we move SMi from the origi-

nal position (black dotted circle in Fig 7(A) -➀) to this direction by moving the center node

nsource of Ri(Gv) (yellow node in Fig 7(A) -➁) to the calculated direction by one hop (green

node in Fig 7(A) -➁)). Θ denotes the AND operation.� denotes the calculation of the short-

est path between two nsource of R(Gv)).
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Fig 7. Updating the SM positions: (a) SM position updates in the subgroup. The SM marked with a red cross represents the region

where VNR requirements are not met and must be pruned; (b) the population is divided into smaller groups with the nsource placed in

two positions.

https://doi.org/10.1371/journal.pone.0288037.g007

Fig 8. SMO-based optimization process.

https://doi.org/10.1371/journal.pone.0288037.g008
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In the global leader phase, all SMs update their position using the experiences of the global

leader and local group members. The position update equation for this phase is as follows:

SMnewi ¼ SMi � r1 � GLY SMið Þ þ r2 � SMrYSMið Þ½ � ð25Þ

Global leader learning (GLL) phase and local leader learning (LLL) phase. The local

leaders and global leader are updated in this phase by applying greedy selection in its subgroup

and the population, respectively. Furthermore, in the LLL phase, we check whether the posi-

tion of the local leader in its group is updating, and if not, then the local limit count is incre-

mented by 1. In the GLL phase, we check whether the position of the global leader in the whole

population is updating, and if not, then the global limit count is incremented by 1.

Local leader decision (LLD) phase and Global Leader Decision (GLD) phase. If any

local leader position is not updated to the threshold local leader limit, then the members in

that subgroup update their positions either by random initialization or by collective informa-

tion from the global leader and local leader through (19), based on the pr. The pseudocode of

this phase for the kth group is shown in Lines 1–8 of Algorithm 3.

SMnewi ¼ SMi � r2 � GL Y SMið Þ þ r3 � SMi Y LLkð Þ½ � ð26Þ

where LLCk is the trial counter for the local best solution of the kth group.

In the global leader decision phase, if the position is not updated to the threshold global
leader limit, then the population is divided into smaller groups (Fig 7(B)). At first, the popula-

tion is divided into two groups, and then three groups, etc.; each time, the local leaders in the

newly formed groups are elected until MG’s limit is reached. In the case in which the maxi-

mum number of groups is formed, then the global leader combines all the groups to form a

single unit group and further selects the position with the highest fitness as the solution to the

problem. The operation in this phase is shown in lines 9–15 of Algorithm 3.

Algorithm 3 Local leader decision and global leader decision
phase
1: for kth group in MG do:
2: if LLCk > local leader limit then
3: LLCk = 0
4: for SMi in the kth group do
5: if U(0,1)� pr then
6: random select a nsource from the substrate network and

initialize SMi
7: else
8: initialize SMi using (19)
9: if global limit count > global leader lthen
10: global limit count = 0
11: if number of groups < MG then
12: divide the population into subgroups.
13: else
14: combine all the groups to make a single group.
15: Update Local Leader’s position.

Finally, for SMOs to play a better role in VNE problems, several points must be noted.
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First, traversing the substrate network to find the optimal region quickly is a discrete prob-

lem that needs to be solved. To speed up convergence, we set every SM to use its self-experi-

ence, leader experience and group members experience to update its position in the LLP and

GLP instead of having a certain probability to update.

Second, during the optimization process, if the capacity of a selected nsource does not meet

the requirements of its corresponding virtual node Nsource, this subgroup to which it belongs is

pruned (Fig 7(A)). Regardless of which direction we select on the update, we must obey

resource and structure restrictions as the proposed bounds to achieve rapid pruning from the

surrounding physical topology. After all, if one constraint is not satisfied, then this R(Gv) can-

not be used, and the next endeavor will be meaningless.

Third, the search speed will be faster with a large population; however, gaining this advan-

tage may sacrifice some computational time. If there are N SMs in the population, then the

time complexity of VNE_MR is o(|Nv| + |Lv| + |LR(Gv)| + |NR(Gv)|
2) �|P|, where |N|. represents

the number of nodes, |L| represents the number of links, and |P| represents the total number of

SMs used in this algorithm, which has a direct effect on the computational time. Therefore, ini-

tially, there is a small group in our algorithm so every newly generated position is attracted

toward the best position; the population is only divided into smaller subgroups to expand

exploitation when regeneration stagnates.

Performance evaluation

In this study, we designed two sets of experiments to demonstrate the resource management

ability of the proposed VNE_MR algorithm. In the first group, to verify the overall perfor-

mance of VNE_MR, VNE_MR is compared to VNE_TAGRD [14] and OPaCoVNE [16], all of

which have the same goal: to solve the virtual network embedding problem using fewer

resources and consuming less power. Table 1 provides a high-level comparison of VME_MR

and those methods, listing their strategies and resource constraints.

In the second group, VNE_MR is compared to two metaheuristic-based VNE algorithms,

namely EE_CTA [26] and MO-NPSO [25], to verify that our optimization method design

based on SMO can successfully keep the optimization cost within a small value while maintain-

ing adequate exploration of the substrate network to ensure the quality of service. In addition,

VNE_MRWD is a VNE algorithm without delay requirements, which is designed as

VNE_MR’s comparison experiment. It is presented to delimit a new R(Gv) by changing the

resource constraint model introduced in Section 4.1 and then solving the VNE problem by

using the improved SMO to find the highest potential R(Gv) to host Gv. Therefore, it is

designed to verify the flexibility of VNE_MR. Table 2 provides a high-level comparison

between VNE_MR and those methods, listing their resource constraints and other parameters.

Table 1. Comparing VNE_MR to VNE_TAGRD and PaCoVNE.

Item VNE_MR VNE_TARGET OPaCoVNE

Embedding

Strategy

building a resource management unit by delimiting

an R(Gv) similar in size to Gv

focusing on the availability of

resources

building a resource management unit by treating pairs of

nodes and their edge as a segment

Power

consumption

Yes Yes Yes

End-to-end

delay

Yes Yes Yes

https://doi.org/10.1371/journal.pone.0288037.t001
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Simulation settings

Substrate network and virtual network topologies were randomly generated using the

GT-ITM tool, and the mean probability of a pair of two nodes being connected was set equal

to 0.5. The substrate network included 100 nodes, CPU and BW resources were given as real

numbers uniformly distributed between 50 and 100, and delay in each substrate edge was ran-

domly selected between 1 and 25. The number of virtual nodes per VNR was randomly deter-

mined by a uniform distribution between 2 and 10. The virtual CPU and BW resources were

real numbers uniformly distributed between 0–20 and 0–50, respectively, while delay in each

virtual edge was randomly selected between 20 and 100. The VNR arrival process was simu-

lated as a Poisson process, and its average arrival rate was set to 5 VNRs per 100 time units. Its

residence time obeyed an exponential distribution with an average value of 500 time units. To

map a sequence of 2,000 VNRs, our simulation lasted for approximately 40,000 time units. A

time window was equal to 2,000 time units. To obtain final representative and stable experi-

mental results, we ran all of our simulations in 20 time windows and collected the experimen-

tal data after 5 time windows. To ensure acceptable convergence of the SMO used in

VNE_MR, we investigated the values of best and average fitness in different generations. The

parameters used in the SMO were P = 5, MG = 3, local leader limit = 2, global leader limit = 3,

and pr = 0.9.

VNE performance metrics

The comprehensive ability to manage the resources of the VNE problem can be judged in

terms of the following metrics [30].

1. Average number of open nodes (NON):

NON ¼

XnT

i¼1
noi

nT

where nT represents the number of all valid time periods from 0 to T and nOi represents the

number of physical nodes that are active in effective period i.

2. The average number of open links (NOL) is

NOL ¼

XnT

i¼1
loi

nT

where lOi represents the number of open substrate links at time period i.

Table 2. Comparing VNE_MR to VNE_MRWD and EE_CTA.

Item VNE_MR VNE_MRWD EE_CTA MO-NPSO

Optimization

strategy

Based on the

SMO

Based on the

SMO

Based on the Non-dominated Sorting Genetic

algorithm

Based on the particle swarm optimization

algorithm

Power

consumption

Yes Yes Yes Yes

End-to-end delay Yes No No No

https://doi.org/10.1371/journal.pone.0288037.t002
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3. The average utilization of CPUs (UCPU) is

UCPU ¼

XnT

i¼1
nCPUi

nT

where nCPUi represents the CPU utilization of the node resources at time slice i.

4. The average utilization of bandwidth (UBW) is

UBW ¼

XnT

i¼1
lBWi

nT

where lBWi represents the bandwidth utilization of the link resources at time slice i.

5. The average energy consumption (E) is

E ¼

PnT
i¼1

P

N2Nv ;n2ns

EðnÞ þ
P

L2Lv ;l2lmn

EðlÞ

 !

nT

where (
P

N2Nv ;n2ns

EðnÞ þ
P

L2LV ;l2lmn

EðlÞ) is the substrate resource consumption at time period i.

6. The average ratio of revenue and cost (RRC) is

RRC ¼

XAT

i¼1
Revenue Ri

XAT

i¼1
Cost Ri

where AT represents the number of virtual networks that are received within the time period 0

to T and RevenueRi and CostRi represent the revenue and cost, respectively, of the mapped vir-

tual network Ri.

RevenueRi ¼
X

N2Nv

Caccept ðNÞ þ
X

LMN2Lv

Baccept ðLÞ

CostRi ¼
X

nv2Nv

xm
M � CðnÞ þ

X

ev2Ev

xlmn
LMN
� BðlÞ

where Caccept(N) represents the number of requested CPU resources for virtual node N that

has been accepted and Baccept(L) represents the amount of requested bandwidth for virtual link

L that has been accepted.

Discussion of VNE_MR’s overall performance

In the first group, compared to other algorithms, VNE_MR has the smallest number of open

nodes (�50), indicating that the proposed algorithm achieves good results in node opening

control (Fig 9). We calculate node utilization while collecting the number of open nodes (Fig

10). The VNE_MR node utilization rate (73%) exceeds those of the other algorithms (VNE_-

TAGRD� 62%, OPaCoVNE� 70%). As shown in Fig 11, after 5 time windows, the number

of open links with VNE_MR is only 100 units, while that with VNE_TAGRD is 230 units,

which is more than twice as high. The link resource utilization rate (40%) of VNE_MR is

much higher than those of the other algorithms (VNE_TAGRD� 28%, OPaCoVNE� 32%)
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(Fig 12). According to Propositions 5 and 6, we can conclude that these performances directly

affect the final average energy consumption (Fig 13).

This result likely occurs because VNE_TAGRD, a two-stage algorithm, only focuses on

resource availability and ignores the coordination between nodes and links. Nodes selected in

Fig 9. Average number of open nodes.

https://doi.org/10.1371/journal.pone.0288037.g009

Fig 10. Average CPU utilization.

https://doi.org/10.1371/journal.pone.0288037.g010
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this manner may be scattered, which results in the use of unnecessary substrate resources.

OPaCoVNE manages resources in several resource management units, named segments so

that the original topology structure ofGv is disturbed when requirements are allocated in these

segments. As the nodes and links are firmly bound in the segment, flexibility and fault toler-

ance are markedly reduced. Thus, these segments can only be separated to find the appropriate

physical resource, which leads to opening hidden resources. Fig 13 shows the energy consump-

tion results. The energy consumption of VNE_MR exhibits an apparent advantage over other

algorithms. In addition to the energy savings shown, the ratio of revenue and cost is another

advantage of VNE_MR (Fig 14). The ratio is maintained at 86%, and only 50 nodes and 100

links are turned on. The energy consumption is also the lowest among all of the tested algo-

rithms because we use an edge-based graph edit distance method to edit Gv to the physical R
(Gv) in the substrate graph, keeping the size of R(Gv) similar to that of Gv, so that when

Fig 11. Average number of open links.

https://doi.org/10.1371/journal.pone.0288037.g011

Fig 12. Average bandwidth utilization.

https://doi.org/10.1371/journal.pone.0288037.g012
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mapping a VNR, only the minimum network resources need to be turned on, and no hidden

resources are used. In addition, if this direct approach fails to find the optimal physical region

in the SN, we also designed a metaheuristic optimization method based on SMO to find the

highest potential R(Gv) in a parallel manner.

In the second group, Fig 15 shows that VNE_MR achieves a much lower average computa-

tional time compared to EE_CTA. This is because different from the resource availability-

based algorithms that require more iterations to obtain node-by-node embedding solutions

when exploring the substrate network, VNE_MR operates on a resource management region

Fig 13. Average energy consumption.

https://doi.org/10.1371/journal.pone.0288037.g013

Fig 14. Average revenue-cost ratio.

https://doi.org/10.1371/journal.pone.0288037.g014
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instead of all nodes in the physical network, and finds the most potential region to host the

request by focusing on the graph edit distance between VNR and SN. In addition, the time

complexity of our algorithm is o(|Nv| + |Lv| + |LR(Gv)| + |NR(Gv)|
2)�|P1|, where jP1j ¼

P

i¼1;2���MG
Pi.

It can be seen that the size of our population gradually increases to a scale similar to that of the

Fig 15. Average processing time.

https://doi.org/10.1371/journal.pone.0288037.g015

Fig 16. Average number of open nodes.

https://doi.org/10.1371/journal.pone.0288037.g016
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comparative experiment, which has a direct impact on the computational time. Therefore, as

only a small population that is used to search in the SN at the beginning, and they converge to

a potential physical area quickly. Only when the regeneration stagnates do we expand the pop-

ulation size by combining the group into a larger population to explore and repeat the previous

search phases until we find the near-optimal solution. Furthermore, VNE_MR also achieves

this result by pruning the redundant SN information to reduce the size of the search space.

Fig 17. Average number of open links.

https://doi.org/10.1371/journal.pone.0288037.g017

Fig 18. Average node utilization.

https://doi.org/10.1371/journal.pone.0288037.g018
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Fig 20. Average energy consumption.

https://doi.org/10.1371/journal.pone.0288037.g020

Fig 19. Average bandwidth utilization.

https://doi.org/10.1371/journal.pone.0288037.g019
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Therefore, we only concentrate on the physical resources in R(Gv), while EE-CTA explores the

appropriate physical resources in the SN; obviously, the former’s order of magnitude is much

smaller than that of the latter. In particular, although our computational time is sharply

reduced, it does not cause the R(Gv) to skip the global minima in the long run, as the

VNE_MR achieved good results in terms of energy savings and revenue-cost ratio compared

with EE-CTA. Others, we can also see from Fig 15 that MO-NPSO achieves a computation

time that is close to that of VNE-MR, due to the fact that the number of its optimization itera-

tions is similar as ours, but we can also see from Figs 16–21 that MO-NPSO achieves the worst

performance in terms of resource management. As shown in Fig 20, the average energy con-

sumption of VNE_MR is reduced by 7,000 W compared with the other two metaheuristic-

based VNE algorithms. Fig 21 shows that the revenue-cost ratio of the VNE_MR algorithm is

approximately 12% and 15% higher than that of EE_CTA and MO-NPSO, respectively. Figs

16–19 also confirm this result; VNE_MR opens fewer nodes and links and obtains greater utili-

zation than EE_CTA and MO-NPSO. Overall, VNE-MR can guarantee full exploration of the

underlying network resources with a small number of iterations, enabling efficient manage-

ment of resources with a small cost.

Moreover, in Figs 15–21, the yellow dotted line indicates the proposed comparative experi-

ment, VNE_MRWD, without the end-to-end time delay constraint. There is a marginal drop

in VNE_MR’s performance across the board compared to that of VNE_MRWD due to the

tougher resource requirements. Therefore, the conclusion can be drawn that it is feasible to

apply VNE_MR to the VNE problem by simply assigning a new R(Gv) with personal resource

restrictions for virtual networks with different requirements.

Fig 21. Average revenue-cost ratio.

https://doi.org/10.1371/journal.pone.0288037.g021
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Conclusion

In this study, we used the proposed method to find the near-optimal resource management

region in the substrate network to accurately and flexibly control the networked resources in

the VNE problem. Two groups of experiments confirmed its resource control ability and

flexibility.

In future work, we are planning to conduct further research on network requirements in

the contexts of service function chaining or network function virtualization, such as more pre-

cise latency and storage, to find a more effective VNE method to control resource allocation

accurately when facing personal requirements.
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