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Abstract

Various methods have been developed to combine inference across multiple sets of results

for unsupervised clustering, within the ensemble clustering literature. The approach of

reporting results from one ‘best’ model out of several candidate clustering models generally

ignores the uncertainty that arises from model selection, and results in inferences that are

sensitive to the particular model and parameters chosen. Bayesian model averaging (BMA)

is a popular approach for combining results across multiple models that offers some attrac-

tive benefits in this setting, including probabilistic interpretation of the combined cluster

structure and quantification of model-based uncertainty. In this work we introduce clus-

terBMA, a method that enables weighted model averaging across results from multiple

unsupervised clustering algorithms. We use clustering internal validation criteria to develop

an approximation of the posterior model probability, used for weighting the results from each

model. From a combined posterior similarity matrix representing a weighted average of the

clustering solutions across models, we apply symmetric simplex matrix factorisation to cal-

culate final probabilistic cluster allocations. In addition to outperforming other ensemble

clustering methods on simulated data, clusterBMA offers unique features including probabi-

listic allocation to averaged clusters, combining allocation probabilities from ‘hard’ and ‘soft’

clustering algorithms, and measuring model-based uncertainty in averaged cluster alloca-

tion. This method is implemented in an accompanying R package of the same name. We

use simulated datasets to explore the ability of the proposed technique to identify robust

integrated clusters with varying levels of separation between subgroups, and with varying

numbers of clusters between models. Benchmarking accuracy against four other ensemble

methods previously demonstrated to be highly effective in the literature, clusterBMA

matches or exceeds the performance of competing approaches under various conditions of

dimensionality and cluster separation. clusterBMA substantially outperformed other ensem-

ble methods for high dimensional simulated data with low cluster separation, with 1.16 to

7.12 times better performance as measured by the Adjusted Rand Index. We also explore

the performance of this approach through a case study that aims to identify probabilistic

clusters of individuals based on electroencephalography (EEG) data. In applied settings for
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clustering individuals based on health data, the features of probabilistic allocation and mea-

surement of model-based uncertainty in averaged clusters are useful for clinical relevance

and statistical communication.

1. Introduction

When faced with an unsupervised clustering problem, different clustering algorithms will

often offer plausible, but different, perspectives on the clustering structure for a given dataset.

A typical approach is to report results from one ‘best’ model based on goodness of fit, explain-

ability, model parsimony, or other criteria. However, this ignores the uncertainty that arises

from model selection, and results in inferences that are sensitive to the particular model and

parameters chosen, and assumptions made, especially with small sample size data or when one

or more of the clusters are relatively small [1]. Consideration of model-based uncertainty is

particularly important when developing analyses with an ‘M-open’ perspective where the

model class is not determined in advance, but is chosen and defined iteratively as more infor-

mation becomes available and exploratory analysis proceeds [2, 3].

The problem of combining multiple sets of clustering results has received substantial atten-

tion in statistics and machine learning research, particularly in the ensemble clustering litera-

ture [4]. A common approach is to find something analogous to the ‘median partition’

between a number of clustering solutions [5]. An alternative, proposed in this paper, is to con-

sider an approach based on Bayesian model averaging (BMA). BMA provides a framework

that enables the analyst to probabilistically combine results across multiple models, where the

contribution of each candidate model is weighted by its posterior model probability, given the

data [3, 6]. Implementing BMA for clustering could allow integrated inference across multiple

different clustering algorithms. Compared to other available approaches for combining clus-

tering results, this approach has the potential to offer unique benefits including weighted aver-

aging across models, generation of probabilistic inferences, incorporating the goodness of fit

of the candidate algorithms, and quantification of model-based uncertainty. This would also

enable downstream inferences based on combined clustering results to be calibrated for

model-based uncertainty.

For clustering and other applications, BMA has typically been applied in the context of

averaging within one class or family of models, using different combinations of potential

explanatory variables [7]. Previous work in the space of BMA for clustering has been limited,

with a few examples of applications within specific classes of clustering method such as Naive

Bayes Classifiers and Gaussian Mixture Models [7, 8]. A gap remains in the literature around

applying BMA across results from multiple different clustering algorithms. Ultimately all clus-

tering methods predict quantities that can be compared directly across algorithms in a BMA

framework, such as the marginal probability of individuals being allocated pairwise into the

same cluster across all clusters. In previous work by Russell et al. on BMA for clustering with

mixture models, the pairwise similarity matrix has been used to represent clustering results in

a way that is directly comparable across sets of results regardless of the number and labels of

clusters [8]. In this work the authors rely on the Bayesian Information Criterion (BIC) for each

model, which they use to generate an approximation for the posterior model probability to

assign weights for averaging results across models [9]. However, for the present application the

BIC will not be directly comparable across results from different clustering algorithms, and for

some algorithms it cannot be calculated at all where a likelihood term is not used.

The aim of this work is to propose a BMA framework that can effectively combine results

across multiple unsupervised clustering algorithms. We showcase the performance and
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effectiveness of this framework through various clustering applications, including simulated

data experiments and a real-world case study involving neuroscientific data. Our method clus-
terBMA is designed to accommodate input solutions from a variety of clustering methods, and

so we must look beyond the BIC to other measures to approximate the posterior model proba-

bility for each algorithm and enable weighted averaging. The BIC is commonly used as a clus-

tering internal validation index (CIVI) for applications including choosing among candidate

models with differing numbers of clusters. We propose considering alternative CIVIs, which

share mathematical and conceptual similarity with the BIC, to approximate the marginal likeli-

hood and generate an approximation for posterior model probability that is directly compara-

ble across different clustering algorithms. clusterBMA shares useful features with some other

ensemble clustering approaches, including being agnostic to the clustering algorithms used

and the number of clusters in each individual set of results. Compared to other ensemble clus-

tering methods, clusterBMA offers several unique and valuable features, including: probabilis-

tic allocation to clusters averaged over multiple input models; combining allocation

probabilities from ‘hard’ and ‘soft’ clustering algorithms; and measuring model-based uncer-

tainty in averaged cluster allocation, which can be propagated forward for cluster-based infer-

ences in a Bayesian setting to take that uncertainty into account. To our knowledge, no other

ensemble clustering method has all of these key strengths.

In Section 2 we provide an overview of the methodological pipeline for clusterBMA, pro-

vide background on Bayesian model averaging in the context of clustering, and discuss

approximation of posterior model probability based on clustering internal validation indi-

ces. In Section 3 we present methods and results for 3 simulations studies which include

benchmarking clusterBMA against four other methods for ensemble clustering with simu-

lated data, demonstrating handling of model-based uncertainty in relation to cluster separa-

tion, and performing model averaging across input solutions with different numbers of

clusters. In Section 4 we present a case study applying our method for clustering electroen-

cephalography data in young people, and highlight the utility of probabilistic allocations

with quantified model-based uncertainty in a health research setting. In Section 5 we discuss

the benefits and implications of this method and our findings, and consider limitations and

future directions for this work.

2. Methods

In this section we present background, motivation and details of the methodological steps

involved in clusterBMA. Table 1 presents a comparison of features that are available in clus-
terBMA, and five other available methods for ensemble clustering. The features of BMA for

Gaussian Mixture Models are presented for the sake of comparison to previous work which

has developed a BMA approach within one class of clustering algorithm [8]. We selected the

other four ensemble methods as they have been shown in the literature to be effective, and

they are readily compared with clusterBMA through their implementation in the diceR R pack-

age [4, 10]. Relative to these other methods, clusterBMA uniquely offers several features includ-

ing combining cluster allocation probabilities across ‘soft’ and ‘hard’ clustering algorithms,

generating probabilistic allocations to averaged final clusters, and quantifying model-based

uncertainty. These features are discussed in more detail throughout the following sections.

2.1 Bayesian model averaging for clustering

Consider a quantity of interest Δ which is present in every model across a set of candidate

models for a given analysis. Given data Y with dimension D, consider a set of posterior esti-

mates Δm,m = 1, . . .,M, each obtained from a corresponding model Mm. The BMA
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framework provides a weighted average of these estimates, given by

pðDjYÞ ¼
XM

m¼1

pðDmjY;MmÞpðMmjYÞ; ð1Þ

where pðMmjYÞ is the posterior probability of model Mm, given by

pðMmjYÞ ¼
pðYjMmÞpðMmÞ

PM
m0¼1

pðYjMm0 ÞpðMm0 Þ
: ð2Þ

Here pðMmÞ is the prior probability for each model, and pðYjMmÞ is the marginal likelihood

for each model (also called the model evidence) [7]. As is common in BMA applications, here

we assign priors to give equal weight to each model, with pðMmÞ ¼
1

M. Alternative approaches

could be used for assigning prior probability for each model, as addressed in the Discussion.

Following Russell et al. [8], we consider the pairwise similarity matrix as a common prop-

erty Δ which is present across all clustering algorithms of interest. The similarity matrix Sm of

pairwise co-assignment probabilities for any clustering model Mm will have dimensions N ×
N. Since clustering solutions are combined at the level of pairwise co-allocation probabilities

via similarity matrices, this has the benefit of avoiding any issues regarding alignment of clus-

ter labels across the different models. Each element sij of the similarity matrix represents the

probability that data points i and j belong to the same cluster gk8k = 1, . . ., Km where Km is the

total number of clusters in model Mm:

sijjMm;Y ¼
XKm

k¼1

pðgkji;MmÞ pðgkjj;MmÞ; ð3Þ

where gk is the kth cluster, and pðgkji;MmÞ indicates the probability that point i is a member of

cluster gk in model Mm [11]. Here Δm = Sm = {sij}, i, j = 1, . . ., N. For ‘hard’ clustering methods

such as k-means or agglomerative hierarchical clustering, these pairwise probabilities will be 0

or 1, while for ‘soft’ clustering methods such as a Gaussian mixture model, these pairwise prob-

abilities can take any value between 0 and 1. To represent each clustering solution as a pairwise

Table 1. Feature comparison between clusterBMA and five other ensemble clustering methods.

Method Combine solutions

with different

numbers of clusters

Combine solutions

from different

algorithms

Weight each input

solution by model

quality

Combine allocation

probabilities from ‘soft’ and

‘hard’ clustering algorithms 1

Probabilistic

allocation to

averaged clusters

Measure model-based

uncertainty in allocations

to averaged clusters

BMA for

GMM 2
✓ × ✓ × × ×

CSPA ✓ ✓ * × × ×
LCE ✓ ✓ * × × ×
K modes ✓ ✓ * × × ×
Majority

voting

✓ ✓ * × × ×

clusterBMA ✓ ✓ ✓ ✓ ✓ ✓

1 ‘Soft’ clustering refers to algorithms which assign a probability between 0 and 1 for each observation to be allocated to each cluster (e.g. Gaussian Mixture Model).

‘Hard’ clustering refers to algorithms which assign a 0 or 1 binary probability of cluster allocation (e.g. k-means).
2 Features of BMA for Gaussian Mixture Models are based on the preprint by Russell et al [8].

* For these ensemble methods, weighting by internal validation indices is available as an auxiliary feature in the diceR R package [10].

CSPA = Cluster-based Similarity Partioning Algorithm; LCE = Linkage-Based Cluster Ensembles.

https://doi.org/10.1371/journal.pone.0288000.t001
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similarity matrix Sm, we can use the N × Km matrix Am of cluster allocation probabilities where

each element Amik contains the probability that point i is allocated to cluster k under model

Mm. We calculate the similarity matrix for each model by multiplying Am by its transpose,

and setting the diagonal to 1 [8]:

Smij ¼
ðAmðAmÞ⊺Þij if i 6¼ j

1 if i ¼ j
:

8
<

:
ð4Þ

2.2 Approximating posterior model probability with clustering internal

validation indices

As introduced above, BMA has previously been implemented within the model class of Gauss-

ian mixture models, by calculating an element-wise weighted average across the similarity

matrices representing each set of clustering results [8]. These authors weighted results from

each mixture model according to an approximation of posterior model probability based on

the BIC. Assuming equal prior probability for each candidate model, this is equivalent to

weighting each model by its adjusted marginal likelihood as a proportion of the sum of the

adjusted marginal likelihoods across all candidate models:

PðMmjYÞ �
exp 1

2
BICm

� �

PM
m¼1
exp 1

2
BICm

� � ; ð5Þ

where

BICm ¼ 2 log ðLÞ � km log ðNÞ: ð6Þ

Here L is the likelihood of the data given the model, κm is the number of estimated model

parameters for the model, and N is the number of observations [12]. This is the negative of the

usual construction of the BIC, and a larger number of model parameters κm will result in a

smaller estimate for the approximated posterior model probability of model Mm. The BIC has

a theoretically established use for estimating marginal likelihood and posterior model proba-

bility in the context of Gaussian mixture models [9]. It can be seen from Eqs 5 and 6 that the

weighting method used by Russell et al. is constructed to recover an estimate for the likelihood

[8]. From Eq 6, the likelihood L is assumed to be a multivariate Gaussian mixture, calculated

as:

LðYÞ ¼
XN

n¼1

XK

k¼1

pkN ðynjμk;SkÞ; ð7Þ

where μ is a D-dimensional vector of means, π1, . . ., πK are the mixing probabilities used to

weight each component distribution, K is the selected number of mixture components, S is a

D × D covariance matrix, |S| represents the determinant of S, and N ðxnjμk;SkÞ is a multivari-

ate Gaussian density given by

N ðyjμ;SÞ ¼
expf� 1

2
ðy � μÞTS� 1ðy � μÞg

jSj
1

2ð2pÞ
D
2

: ð8Þ

While ideally we would like to use a measure such as the BIC with strong theoretical sup-

port for approximating the marginal likelihood to weight each model, the BIC is not viable for

our application of weighting solutions generated from multiple classes of clustering algorithm.
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The BIC is theoretically supported for estimating the posterior model probability for GMMs,

but in practice the BIC has a number of shortcomings for the purpose of estimating posterior

model probability in the context of Bayesian model averaging for clustering solutions gener-

ated by multiple algorithms. For example, three considerations are as follows. First, BIC scores

are not able to be directly compared across multiple classes of clustering algorithm, and are

not able to be generated at all for some classes of clustering algorithm without a likelihood

term, such as hierarchical clustering. Second, the exponentiation step in Eq 5 required to esti-

mate the marginal likelihood from the BIC tends to result in a large majority of the overall

weight being assigned to one model. Some evidence suggests that in this way the BIC works

well for model selection (assigning all weight to a single model), but not as well for model aver-

aging [13, 14]. Third, there are known instances where the BIC is not a good reflection of clus-

tering analytic objectives. For example, the BIC has well documented difficulties for model

selection in high dimensional settings [15], including a tendency towards underfitting and

selecting overly parsimonious mixture models with too few mixture components [16, 17].

Instead of the BIC, we can consider cluster internal validation indices as a set of measures

which offer methods for assessing model quality and approximating posterior model probabil-

ity across clustering algorithms with different constructions and objective functions [18].

CIVIs are typically developed to reflect common traits of clustering analytic objectives shared

across algorithms including compactness, separation or inter-cluster density for a particular

clustering of a dataset. Compactness describes how closely related the data points are within a

cluster, and is typically measured by within-cluster variance or sum of squared distances of all

points from their respective cluster centres. Separation describes how distinct clusters are from

each other, and is often measured by the distances between cluster centres or minimum pair-

wise distances between points across clusters [19]. Similar to cluster separation, the goal for

inter-cluster density is that the density of points in the area between clusters is low in compari-

son with the density within the considered clusters [20]. The BIC can be applied as a CIVI, for

purposes including choosing a suitable number of clusters for a finite mixture model. From

Eqs 6–8 it can be seen that in the context of Gaussian mixture models, the BIC is driven by a

ratio of within-cluster variance (compactness) to overall variance.

Internal validation indices are commonly interpreted in a way that is analogous to the mar-

ginal likelihood, being used to make some judgement about model quality or goodness of fit in

order to decide between multiple candidate models with differing numbers of cluster Km.

There are established parallels between different CIVIs and objective functions, loss functions

and likelihoods for clustering algorithms. Some CIVIs have similar structures to the objective

functions of algorithms for which they were developed and will tend to preference results gen-

erated by those algorithms [21]. For instance, the Xie-Beni index has a clear link to the objec-

tive function for the Fuzzy C-Means algorithm [22]. Other indices are developed to reflect

more general analytical objectives that are common across the likelihoods or objective func-

tions for many clustering algorithms, such as the Calinski-Harabasz index [23], or the S_Dbw

[20], among others [18]. CIVIs have been used as loss functions for clustering with neural net-

works [24], and for measuring and comparing model quality across different clustering algo-

rithms [25, 26].

While it would be preferable to start from an estimation of the marginal likelihood for each

model to approximate posterior model probability, in this application this is not viable. Instead

we take the approach of starting from an internal validation index to substitute for the mar-

ginal likelihood term, and building an approximation for the posterior model probability to

weight each candidate clustering solution.

We acknowledge that the process of selecting an appropriate CIVI for model weighting

opens the door to myriad candidate validation indices, from which the analyst must choose an
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appropriate measure to suit the goals of their clustering analysis. We view this as a strength

and a designed feature of our method as it does not automate the choice of an appropriate

measure to weight models across all scenarios, and instead requires the analyst to consider and

choose a weighting measure that is appropriate for the clustering analytic objectives of their

application. Just as the analyst must make reasoned and considered decisions about preparing

data, choosing appropriate clustering algorithms, and choosing appropriate numbers of clus-

ters, a CIVI should be chosen that is appropriate for weighting each model in a given analysis.

In this paper we make recommendations regarding two indices which are likely to perform

well for approximating clustering posterior model probability in many common applications

—the Calinski-Harabasz (CH) and S_Dbw indices [20, 23]. These two indices are well sup-

ported with evidence regarding their utility for comparing model quality across solutions gen-

erated from different clustering algorithms [25], and their robustness to different challenging

features of clustering data [27]. Both of these were developed as algorithm-independent indi-

ces, reflecting general clustering analytic objectives such as cluster compactness, cluster separa-

tion, and inter-cluster density, and reducing bias towards any one class of algorithm. We

address some caveats and limitations of these indices in the Discussion.

Similarly to the BIC which is driven by a ratio of cluster compactness to overall variance for

GMMs, the CH index is an internal validity measure representing a ratio of cluster separation

to compactness, calculated with a ratio of between-cluster sums of squares to within-cluster

sums of squares, penalised by the number of clusters in the model [23]. This index is calculated

as:

CH ¼
PK

j6¼k nk d
2ðcj; ckÞ=ðK � 1Þ

PK
k¼1

P
x2gk
d2ðx; ckÞ=ðN � KÞ

; ð9Þ

where nk is the number of observations allocated to cluster gk, d(x, y) is the distance between x
and y, ck is the centroid of gk, and x 2 gk are the data points allocated to cluster gk. Higher CH

scores indicate better internal clustering validity, with more separated and compact clusters.

The S_Dbw index is calculated as the sum of an intra-cluster variance term Scat(K) that

measures cluster compactness, and a density term Dens_bw(K) that measures inter-cluster

density:

S Dbw ¼ ScatðKÞ þ Dens bwðKÞ: ð10Þ

The intra-cluster variance term Scat(K) is defined as:

ScatðKÞ ¼
1

K

XK

k¼1

jjsðCkÞjj
jjsðDÞjj

; ð11Þ

where σ(Ck) is the variance of cluster Ck and σ(D) is the variance of the dataset. The inter-clus-

ter density term Dens_bw(K) is defined as:

Dens bwðKÞ ¼
1

KðK � 1Þ

XK

k¼1

XK

j6¼k

P
x2Ck[Cj

f ðx; ukjÞ

max
�P

x2Ck
f ðx; ckÞ;

P
x2Cj

f ðx; cjÞ
�

0

@

1

A

f ðx; yÞ ¼
0 if dðx; yÞ >

1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
jjsðCkÞjj

q

1 otherwise;

8
><

>:

ð12Þ

where ukj is the mid-point between ck and cj.Dens_bw represents a ratio of inter-cluster density
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to within cluster density, with lower values indicating better separation between clusters.

Lower S_Dbw scores indicate better internal clustering validity, with more compact and well-

separated clusters.

Having chosen a CIVI to act as a weighting variable Wm for each model, we propose the fol-

lowing normalised weight Ŵm as an approximation for the marginal likelihood PðYjMmÞ for

each model:

PðYjMmÞ � Ŵm≔

Wm
PM

m0¼1
Wm0

if Wm is to be maximised

1

WmPM
m0¼1

1

Wm0

if Wm is to be minimised;

8
>>>>>>><

>>>>>>>:

ð13Þ

where≔ indicates ‘is defined as’. Using this approximation of the marginal likelihood in Eq 13

and setting equal prior probability for all input models pðMmÞ ¼
1

M, we arrive at the following

approximation for posterior model probability, substituting in to Eq 2:

PðMmjYÞ �
Ŵm

1

M

� �

PM
m0¼1

Ŵm0
1

M

� � ¼ Ŵm: ð14Þ

While these are the two indices that we recommend due to evidence of their strong perfor-

mance across a range of algorithms and settings, users of the clusterBMA package can select

any cluster internal validation index implemented in the clusterCrit R package. Details on

available cluster internal validation indices and their interpretation (e.g. whether to be maxi-

mised or minimised) are provided in a previous publication, and in documentation accompa-

nying the package [28].

2.3 Symmetric simplex matrix factorisation for probabilistic cluster

allocation

Having represented each candidate set of clustering results as a similarity matrix as in Eq 4 and

having calculated normalised weights as in Eq 13, we can generate a consensus matrix C which

is a posterior similarity matrix of co-assignment probabilities, using a weighted average of sim-

ilarity matrices from input models Sm,m = 1, . . .,M. We calculate the N × N consensus matrix

C as the element-wise weighted average of the similarity matrices from each candidate model,

weighted by the normalised weights Ŵm:

C ¼
XM

m¼1

ŴmSm: ð15Þ

We then generate final probabilistic cluster allocations based on this consensus matrix

using symmetric simplex matrix factorisation (SSMF), a method developed in the context of

an approximate Bayesian method for clustering [29], and applied for Bayesian distance cluster-

ing [30]. Having specified a final number of clusters KBMA, this method can be used to factorise

an N × N posterior similarity matrix, in this case the consensus matrix C, into an N × KBMA
matrix of cluster allocation probabilities resulting from this BMA pipeline, ABMA.

For each input model, we suggest choosing the optimal number of clusters Km based on a

variety of cluster internal validation indices. To select the number of clusters for the final BMA

clustering solution KBMA, one possible heuristic is to select the largest Km across the input
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models. SSMF as implemented by Duan includes an L2 regularisation step [29], which is useful

for emptying redundant clusters in the final clustering results represented in ABMA. This L2

regularisation step can result in fewer final clusters than selected for KBMA. For instance, where

a model Mf with fewer clusters Kf is heavily weighted by Ŵ f relative to other models, the clus-
terBMA solution may contain Kf combined clusters after L2 regularisation even where a larger

KBMA is selected. Given the reduction of redundant clusters with L2 regularisation, another

possible heuristic for choosing KBMA would be to choose a larger number of clusters than the

largest Km across the input models, accommodating the possibility of different sets of sub-clus-

ters appearing across different input models.

This method enables quantification of uncertainty for probabilistic cluster allocations. Fol-

lowing previous work in Bayesian clustering, we can measure uncertainty in this allocation as

the probability that the estimated cluster allocation gi for point i is not equal to the ‘true’ cluster

allocation ĝi for that point, pðgi 6¼ ĝiÞ [30]. This uncertainty measure incorporates both

within-model and across-model uncertainty for cluster allocation from the input candidate

models.

2.4 clusterBMA overview

Here we present a high level overview of the methodological steps involved in clusterBMA.

The intention is to provide a reference structure for the reader, making the detailed explana-

tions of each individual step easier to understand in the broader context of this framework.

The method implemented in clusterBMA consists of the following steps:

1. Calculate results from multiple clustering algorithms on the same dataset. These clustering

solutions can be produced by any ‘hard’ (binary allocation, e.g. k-means or hierarchical

clustering) or ‘soft’ (probabilistic allocation, e.g. Gaussian mixture model) clustering algo-

rithm [19], and can each contain a varying number of clusters. Results from each model

should be in the form of a N × Km allocation matrix Am, where N is the number of data

points, k = 1, . . ., K indexes the clusters in the model, andm = 1, . . .,M indexes the input

models.

2. Represent the clustering solution Am as a N × N pairwise similarity matrix Sm.

3. Compute an approximate posterior model probability Ŵm to weight each input solution, cal-

culated as a normalised weight based on a CIVI such as the CH or S_Dbw indices [20, 23].

4. Calculate the consensus matrix C as an element-wise weighted average across the similarity

matrices Sm,m = 1, . . .,M from (2), weighted by the approximation for posterior model

probability from (3).

5. Generate a final set of averaged probabilistic cluster allocations using symmetric simplex

matrix factorisation of the consensus matrix in (4), a method proposed in an approximate

Bayesian clustering context [29].

An R package clusterBMA implementing this method has been developed and made avail-

able on Github [31].

3. Simulation studies

To investigate the performance and properties of clusterBMA, we conducted three simula-

tion studies. The first simulation study aimed to benchmark clusterBMA against several

other ensemble clustering methods that have been shown in the literature to be effective [4,

10], assessing their performance under conditions of varying numbers of dimensions and
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levels of cluster separation for simulated data. The aim of the second simulation study was

to investigate the effect of cluster separation on model averaging results, and to test the util-

ity of clusterBMA for identifying model-based uncertainty in situations of increasing ambi-

guity between clustering solutions. The objective of the third simulation study was to

demonstrate the ability of clusterBMA to average across models with differing numbers of

clusters. Full details of methods and results for simulation studies 2 and 3 are presented in

the S1 File.

3.1 Simulation study 1–methods

We designed this principal simulation study to compare the performance of clusterBMA with

several other ensemble clustering algorithms, using simulated datasets with low (2), medium

(10) and high (50) numbers of dimensions, and varying conditions of low, medium and high

levels of separation between simulated clusters.

We generated 10 replicates of simulated datasets under 9 combinations of each level of cluster

separation and number of dimensions. Simulated datasets were generated using the R package

clusterGenerate, resulting in a total of 90 simulated datasets [32]. This package allows the user to

simulate data from multivariate normal clusters, and easily control the degree of separation

between the clusters. Each simulated dataset contained 1500 data points, with 500 points in each

of 3 clusters. For each number of dimensions (2, 10 and 50) we generated 10 high separation

datasets (separation value = 0.1), 10 medium separation datasets (separation value = -0.05), and

10 low separation datasets (separation value = -0.15). These separation values were chosen heu-

ristically through trial and error, based on visual inspection of the plotted values in 2 dimensions.

For each simulated dataset, we calculated clustering solutions with k = 3 clusters using 9

clustering algorithms: Hierarchical Clustering with average linkage, using the R base package

stats [33, 34]; Divisive Analysis Clustering (DIANA), using the R package cluster [35, 36]; k-
means, using the R base package stats [34, 37]; Partitioning Around Medoids (PAM), using

the R package cluster [35, 36]; Affinity Propagation, using the R package apcluster [38, 39];

Spectral Clustering, using the R package kernlab [40, 41]; Gaussian Mixture Model (GMM),

using the R packagemclust [42, 43]; Self-Organising Maps (SOM), using the R package koho-
nen [44]; and Fuzzy C-Means, using the R package e1071 [45, 46].

For each set of 9 clustering solutions, we combined results across these algorithms using

clusterBMA, and compared its performance to four other cluster ensemble methods. We used

the Calinski-Harabasz index as the CIVI for clusterBMA weighting in Eq 13, as the data were

generated from multivariate normal clusters and clusters were approximately spherical. The

other cluster ensemble methods included for comparison against clusterBMA were the Clus-

ter-based Similarity Partioning Algorithm (CSPA) [47], Linkage-Based Cluster Ensembles

(LCE) [48], K-modes [49], and Majority Voting [50]. These ensemble methods were applied

using the R package diceR [10]. Performance for each ensemble method was assessed using the

Adjusted Rand Index (ARI) to assess the degree of agreement between the combined cluster-

ing solution from each ensemble method and the true cluster labels for the simulated data

[51]. The ARI was calculated using the R package pdfCluster [52].

For each dataset, we also calculated the ARI for clusterBMA using a subset of the data points

which had a high probability (p> 0.8) of allocation to the final averaged clusters for each data-

set. This allowed us to demonstrate a unique feature of clusterBMA relative to these other

methods, where it enables probabilistic allocation to final ensemble clusters and measures

model-based uncertainty arising from ambiguity or disagreement between different clustering

solutions. This feature can be used to confine cluster-based inference to be made only for

those points which have low model-based uncertainty, and refrain from making clustering
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inferences for points with a high degree of ambiguity in their cluster allocation across different

input solutions.

3.2 Simulation study 1–results

Table 2 presents the mean and standard deviation for ARI scores between each ensemble solu-

tion and the true cluster labels, for 10 simulated datasets in each combination of cluster separa-

tion level (high, medium, low) and number of dimensions for the simulated dataset (2, 10, 50).

Examples of 2-dimensional datasets at each level of cluster separation are visualised in Fig 1.

S1 Table in S1 File presents the mean model weights assigned to each of the 9 clustering algo-

rithms, across the combinations of separation levels and numbers of dimensions.

These results shows that clusterBMA had similar or better performance relative to the best

performing alternative ensemble methods under all conditions, and substantially outper-

formed all competing ensemble methods for 50-dimensional simulated data with medium or

low separation between clusters. For 50-dimensional simulated data with low cluster separa-

tion, performance measured by mean ARI for clusterBMA (ARI = 0.57) was 1.16 (CSPA

ARI = 0.49) to 7.12 (Majority voting ARI = 0.08) times better than competing ensemble

methods.

Further, when considering only points with high probability (p> 0.8) of allocation to final

clusters, clusterBMA offered much higher accuracy across all datasets when confining infer-

ence to points with low model-based uncertainty in the model averaged solution. The propor-

tion of points with (p> 0.8) of allocation to final clusters varied from 0.97 (High separation, 2

dimensions) to 0.67 (Low separation, 50 dimensions).

Table 2. Simulation study results—ARI mean (standard deviation) across 10 simulated datasets, comparing clusterBMA with four other ensemble clustering

methods.

Cluster separation Method 2 Dimensions 10 Dimensions 50 Dimensions

High CSPA 0.93 (0.03) 0.95 (0.01) 0.94 (0.02)

LCE 0.89 (0.13) 0.91 (0.13) 0.74 (0.22)

K-modes 0.93 (0.03) 0.89 (0.18) 0.93 (0.01)

Majority voting 0.93 (0.03) 0.89 (0.15) 0.38 (0.24)

clusterBMA 0.93 (0.03) 0.95 (0.01) 0.94 (0.02)

clusterBMA—high certainty 0.97 (0.01) 0.98 (0.01) 0.97 (0.01)

Medium CSPA 0.81 (0.05) 0.79 (0.03) 0.69 (0.16)

LCE 0.81 (0.05) 0.76 (0.09) 0.42 (0.25)

K-modes 0.81 (0.04) 0.80 (0.02) 0.68 (0.17)

Majority voting 0.81 (0.04) 0.68 (0.16) 0.11 (0.09)

clusterBMA 0.81 (0.04) 0.80 (0.02) 0.76 (0.02)

clusterBMA—high certainty 0.86 (0.04) 0.91 (0.02) 0.86 (0.04)

Low CSPA 0.63 (0.08) 0.62 (0.05) 0.49 (0.16)

LCE 0.60 (0.11) 0.61 (0.05) 0.32 (0.17)

K-modes 0.63 (0.07) 0.58 (0.11) 0.49 (0.18)

Majority voting 0.62 (0.09) 0.42 (0.15) 0.08 (0.10)

clusterBMA 0.63 (0.08) 0.61 (0.04) 0.57 (0.13)

clusterBMA—high certainty 0.70 (0.06) 0.78 (0.04) 0.69 (0.11)

ARI was calculated for 10 datasets in each combination of three clustering separation levels (Low, Medium and High) and differing number of dimensions (2, 10 and

50).

ARI = Adjusted Rand Index; CSPA = Cluster-based Similarity Partioning Algorithm; LCE = Linkage Clustering Ensemble; “clusterBMA—high certainty” indicates ARI

for clusterBMA based on points with allocation probability p> 0.8 to final clusters.

https://doi.org/10.1371/journal.pone.0288000.t002
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3.3 Simulation study 2

In the second simulation study we aimed to demonstrate the strength of clusterBMA for incor-

porating and accounting for the uncertainty that arises across multiple candidate models,

when trying to identify cluster structure in data that may be representing overlapping or

poorly separated groups. We generated three simulated datasets using the R package cluster-

Generate. Each simulated dataset contained 500 data points, with 100 points in each of 5 clus-

ters, at three levels of separation between clusters (S1 Fig in S1 File). For each simulated

dataset we applied k-means, hierarchical clustering using Ward’s method, and Gaussian mix-

ture model, selecting the number of clusters Km = 5 for each. We combined each set of three

clustering solutions using clusterBMA with KBMA set to 5, and the Calinski-Harabasz index as

the CIVI for weighting.

S5 Fig in S1 File presents the final cluster allocations for each simulated dataset generated

by clusterBMA, with point size scaled according to uncertainty of cluster allocation, where

larger points representing higher uncertainty of allocation to a final cluster. It is evident that

as the degree of separation present between clusters in the data becomes lower, the degree of

uncertainty in cluster allocations rises due to ambiguity and disagreement in clustering

results across the multiple input algorithms. As real world data will typically not have clearly

separated clusters, this demonstrates that in these common scenarios with messy data over-

lapping among possible clusters, it is valuable to use this Bayesian model averaging

approach to take model-based uncertainty into account. Our method incorporates and

quantifies this uncertainty, enabling cluster-based inferences that are better calibrated for

this model-based source of uncertainty that is often ignored when using results from one

chosen clustering algorithm.

3.4 Simulation study 3

The third simulation study demonstrates the ability of clusterBMA to average across models

with differing numbers of clusters. We generated a simulated dataset contained 300 data

points, with 100 points in each of 3 clusters. We calculated two clustering solutions: k-means

with K = 3, and hierarchical clustering with K = 2. As above, we applied the clusterBMA pipe-

line to combine results from these two models, with KBMA set to 3.

S6 Fig in S1 File displays the clustering solutions generated by each algorithm, and the com-

bined solution from clusterBMA. From panel (c) in S6 Fig in S1 File, there is low model-based

uncertainty for cluster 1, moderate model-based uncertainty for clusters 2 and 3 where the

algorithms disagree on the number of clusters for these points, and high model-based uncer-

tainty at the border of cluster 2 with cluster 1 where the algorithms disagree on the allocation

Fig 1. Example scatter plots of 2-dimensional simulated datasets at each level of cluster separation.

https://doi.org/10.1371/journal.pone.0288000.g001
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of marginal points. These results demonstrate that our approach can combine clustering solu-

tions across models with with differing numbers of clusters Km.

4. Case study: Clustering adolescents based on resting state EEG

recordings

We demonstrate the application of this method through a case study to identify clusters of ado-

lescents based on resting state electroencephalography (EEG) recordings. Three popular unsu-

pervised clustering algorithms were applied, and each provided a different perspective on the

clustering structure in the data. To quantify model-based uncertainty and enable probabilistic

inference about clustering structure by combining results across the candidate models, we

implemented the clusterBMA framework described above. The full details of the data, pre-pro-

cessing, dimension reduction and clustering analyses for this case study are presented in a pre-

vious publication [53].

4.1 Case study methods

In this section we present a case study applying clusterBMA in the scenario of clustering young

people based on resting state electroencephalography data, and highlight the utility of probabi-

listic allocations with quantified model-based uncertainty in an applied health research setting.

4.1.1 Data collection. Resting state, eyes-closed EEG data were collected as part of the

Longitudinal Adolescent Brain Study (LABS) conducted at the Thompson Institute in Queens-

land, Australia. LABS is a longitudinal cohort study examining the interactions between envi-

ronmental and psychosocial risk factors, and outcomes including cognition, self-report mental

health symptoms, neuroimaging measures, and psychiatric diagnoses [54]. The present study

uses data collected from (N = 59) participants at the first time point in the study, from 12-year-

old participants (Mean = 12.64, SD = 0.32). Participants were recruited between July 2018 and

June 2020. For data used in this paper, authors did not have access to information that could

identify individual participants during or after data collection. Further information on data

collection and study protocols for LABS are provided in previous publications [54, 55]. In this

paper we aim to identify data-driven subgroups of LABS participants using EEG data.

4.1.2 Ethical approval. LABS received ethical approval from the University of the Sun-

shine Coast Human Research Ethics Committee (Approval Number: A181064). Written

informed assent and consent was obtained from all participants and their guardian/s. For data

analysis conducted at the Queensland University of Technology (QUT), the QUT Human

Research Ethics Committee assessed this research as meeting the conditions for exemption

from HREC review and approval in accordance with section 5.1.22 of the National Statement

on Ethical Conduct in Human Research (2007). Exemption Number: 2021000159.

4.2 Statistical analyses

This case study involved a multi-stage analysis pipeline. The first stage for clustering based on

EEG frequency characteristics included automated EEG pre-processing [53], frequency

decomposition with multitaper analysis [56, 57], and selection and calculation of 8 summary

features in the frequency domain. The second stage included dimensionality reduction using

principal component analysis, and applying three popular unsupervised clustering algorithms

to this dimension-reduced data: k-means [37], hierarchical clustering using Ward’s method

[33], and a Gaussian Mixture Model (GMM) [42].

We calculated results for k-means using the kmeans() function with default settings from

the base package ‘stats’ in R [34]. We calculated results for hierarchical clustering using the

hclust() function with method ‘ward.D2’ from the base package ‘stats’ in R. We calculated
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results for GMM with default settings including Euclidean distance and a diagonal covariance

matrix using the R package ‘ClusterR’ [58]. For the calculation of internal validation indices

for GMM results in this work, we use the crisp projection with allocation of each data point to

the mixture component in which it has the highest allocation probability.

For each clustering algorithm, the optimal number of clusters Km was selected on the basis

of a number of internal validation indices which could be calculated for all three methods.

Internal validation indices can be used to identify the number of clusters that creates the most

compact and well-separated set of subgroups in the data [19]. Each index is calculated based

on a slightly different construction, so using a selection of multiple indices can be more robust

than relying on a single index. Indices used included the Dunn index [59], silhouette coeffi-

cient [60], Davies-Bouldin index [61], Calinski-Harabasz index [23], and Xie-Beni index [22].

Clustering internal validation indices were calculated using the R package clusterCrit [28].

To probabilistically combine clustering results across these three algorithms, we imple-

mented clusterBMA using the Calinski-Harabasz index to generate weights for each model, as

all of the algorithms appeared to generate clusters with approximately spherical variance in 3

dimensions, and we did not have any a priori reasons to expect strongly non-spherical clusters.

Each set of cluster allocations was represented as a similarity matrix, and a normalised weight

Ŵm was calculated using Eqs 11 and 12. Subsequently we calculated an element-wise weighted

average across the similarity matrices using these weights, producing a consensus matrix.

From this consensus matrix we applied symmetric simplex matrix factorisation to generate

final probabilistic cluster allocations with associated uncertainty.

4.3 Case study results

From the principal component analysis, the first three principal components were retained

which together explained 80.6% of the overall variance. On the basis of the internal validation

criteria introduced above, we chose to implement a 5-cluster solution in each of the three indi-

vidual clustering methods. Further details on selecting the number of clusters Km for each

method are provided in a previous publication [53]. Table 2 presents the number of individu-

als assigned to each cluster for the three clustering algorithms, and to the final clusters gener-

ated from clusterBMA. For each algorithm, cluster labels (1–5) have been assigned by

decreasing cluster size except for HC clusters 3 and 4, for which labels were switched for the

sake of clearer visual comparison across plots in Fig 2. This relabeling step was applied only for

the sake of visual clarity, as clusterBMA does not require cluster labels to be aligned across the

candidate models. Fig 2 presents the clustering results from each algorithm, plotted according

to each two-dimensional combination of the three retained principal components. This figure

indicates that there is broad agreement between the 3 methods on cluster structure and alloca-

tions, with some differences particularly for allocation of individuals at the edges between

larger clusters.

Fig 3 displays heatmaps of similarity matrices representing results from each of these algo-

rithms, and also indicates the corresponding approximate posterior model probability, acting

as a normalised weight Ŵm for each model calculated from Eq 13 using the CH index. These

normalised weights were: 0.35 for k-means; 0.30 for hierarchical clustering; and 0.35 for

GMM. Taking an element-wise weighted average of these matrices, we calculated a consensus

matrix C for which a heatmap is also presented in Fig 3. Finally, we applied SSMF to the con-

sensus matrix C with KBMA = 5 to generate a matrix ABMA of final cluster allocation

probabilities.

Fig 4 presents the cluster allocations generated by clusterBMA, plotted according to each

two-dimensional combination of the three retained principal components. In this plot the points
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are scaled according to uncertainty of cluster allocation, pðgi 6¼ ĝiÞ, with larger points represent-

ing higher uncertainty of allocation to a final cluster. These points with high uncertainty are

largely at the boundaries between clusters, indicating the model-based uncertainty relating to

clustering structure that would be ignored if choosing only one ‘best’ model out of the candidate

algorithms. clusterBMA enables further analysis or prediction that can take this model-based

uncertainty into account, which is not possible with other ensemble clustering methods. These

outputs, including probabilistic allocation to averaged clusters and incorporation of model-

based uncertainty, are useful for interpretation and statistical communication in the setting of

applied health research and clinical practice. For instance, in scenarios where clusters might rep-

resent health phenotypes or clinical biomarkers, it is valuable for applied practitioners to under-

stand the strength and uncertainty of allocations to clusters for the purpose of developing

subsequent inferences and making assessments regarding clinical implications.

5. Discussion and conclusions

Clustering is a common goal for applied statistical analysis across many fields, and has grown

in popularity alongside other unsupervised machine learning methods in recent years [62]. In

Fig 2. 2D scatter plots of individuals by principal component scores, coloured by cluster membership, Km = 5. Top

row = k-means; middle row = HC; bottom row = GMM. Left column = PC1 v PC2; middle column = PC1 v PC3; right

column = PC2 v PC3.

https://doi.org/10.1371/journal.pone.0288000.g002
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the context of health and medical research, clustering methods comprise a versatile set of sta-

tistical tools with a wide variety of potential applications including design of clinical trials [63],

building data-driven profiles of individuals using functional biosignals data [64], and identify-

ing clinical or epidemiological subtypes based on multivariate longitudinal observations [65].

Bayesian model averaging offers an intuitive and elegant framework to access more robust

insights by combining inference across multiple clustering solutions.

Previous work has applied BMA within the model class of finite mixture models, weighting

each model using an expression based on the Bayesian Information Criterion [8]. However,

there has been limited development to date on methods to enable BMA across different classes

of clustering models. We have introduced a novel Bayesian model averaging methodology,

enabling a flexible approach for combining results from multiple unsupervised clustering

methods which reduces the sensitivity of inferences to the analyst’s choice of clustering

Fig 3. Heatmaps of similarity matrices for each clustering algorithm and BMA consensus matrix.

https://doi.org/10.1371/journal.pone.0288000.g003

Fig 4. 2D scatter plots of individuals by principal component scores, coloured by final cluster membership. Point

size is proportional to the uncertainty of cluster allocation, pðĝi 6¼ giÞ. Larger points have greater uncertainty.

https://doi.org/10.1371/journal.pone.0288000.g004
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algorithm. We have extended on previous work to approximate the posterior model probabil-

ity for each model using a normalised weight based on cluster internal validation indices. This

approach allows BMA to be implemented across results from different clustering methods. A

consensus matrix is calculated as an element-wise weighted average of the similarity matrices

from each input algorithm. Final probabilistic cluster allocations are generated by applying

symmetric simplex matrix factorisation to this consensus matrix.

Our principal simulation study has shown that relative to other available methods for

ensemble clustering, clusterBMA offers equal or better performance among different condi-

tions for simulated data, and consistently outperforms other ensemble clustering methods for

high-dimensional data with low cluster separation, which is reflective of data features that are

common for many real world clustering scenarios (Table 3). In addition to this strong bench-

marking performance, our method implements a number of attractive features that are not

available in competing methods, including weighted averaging across models, generation of

probabilistic inferences, and quantification of model-based uncertainty. Our case study and

simulation studies have demonstrated the capacity of clusterBMA to combine clustering solu-

tions from different clustering algorithms and with different numbers of clusters. These appli-

cations demonstrate identification of cluster allocations with higher model-based uncertainty

that are typically concentrated at the boundaries between clusters, where there tends to be a

higher level of disagreement between multiple clustering solutions. Our method captures this

uncertainty relating to clustering structure that would be ignored when using results from one

‘best’ algorithm, or when using a consensus clustering method that does not incorporate

model-based uncertainty. This method has flexibility to accommodate different numbers of

clusters in each candidate model, and does not require cluster labels to be aligned across

models.

As in most statistical and machine learning methods, many elements of clustering analysis

require the analyst to make reasoned and considered choices including the choice of algo-

rithms, validation indices, and numbers of clusters. Our approach makes these aspects of the

clustering process more transparent, which would otherwise tend to be hidden from the pre-

sentation of analysis and results. The outputs from clusterBMA highlight variation in clustering

results across different algorithms, assessment of the quality of the contribution from each

algorithm, and combination of these results in a principled way that allows subsequent infer-

ences to calibrate for the uncertainty that arises in an “M-open” candidate model space. When

making modelling decisions, the analyst’s due diligence should include considered choice of a

CIVI for weighting each clustering model according to traits which reflect the clustering objec-

tives of the analysis. Clustering algorithms and CIVIs have different use cases which should be

selected to align with the objectives of a given analysis. With this method, as with all Bayesian

model averaging, the principle of ‘Garbage In, Garbage Out’ applies and the onus remains on

the analyst to only average across input models that seem plausible and each provide useful

insight into the data. Including poor models as an input could dilute the quality of the model

averaging results.

Table 3. Cluster membership for different clustering algorithms & BMA clusters, KBMA = 5.

Cluster label 1 2 3 4 5

k-means 18 15 13 10 3

HC 17 15 9 15 3

GMM 21 13 13 9 3

BMA 19 15 13 9 3

https://doi.org/10.1371/journal.pone.0288000.t003
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For approximating posterior model probability, the two measures we have recommended

(the CH and S_Dbw indices) have demonstrated good performance in a range of settings [25,

27], but there are a range of alternative CIVIs that could be tested and considered in this set-

ting. While these two indices are likely to be useful for weighting each model in a wide range

of scenarios for clusterBMA, there are some caveats to their use. For instance, the CH index as

typically applied using Euclidean distance will tend to be biased towards solutions with more

spherical clusters [26]. This is likely to be a reasonable assumption for many clustering applica-

tions, however in situations where strongly non-spherical clusters are suspected, a different

CIVI should be used that accommodates this analytic objective. The S_Dbw index can have a

very high computational cost with large datasets [66], and may face computational obstacles

with density calculations for sparse, high dimensional data. A range of other CIVIs are avail-

able to use as weighting measures in clusterBMA, which are offered through the R package

clusterCrit which offers accompanying documentation on the characteristics of each index and

whether it is to be maximised or minimised [28].

In this setting we have assigned equal prior probability to each input model; however, alter-

native approaches for assigning priors could be considered. For instance, priors could be

selected to penalise for the number of parameters in each model in order to preference model

parsimony, or a vector of prior weights could be manually provided to assign greater weight to

selected input models in the scenario that one particular clustering structure is known to be

more useful for a particular dataset.

A limitation of this method is that uncertainty quantification is implemented as a point esti-

mate based on the probability that the true cluster allocation is not equal to the estimated cluster

allocation, pðgi 6¼ ĝiÞ. This approach has been used elsewhere [30], and incorporates both the

uncertainty of allocation from probabilistic clustering inputs from “soft” clustering algorithms, as

well as the uncertainty arising from ambiguity across multiple clustering models. However, it

does not fully characterise the probability distributions corresponding to probabilistic cluster allo-

cations and instead only a point estimate is available to measure the degree of this uncertainty.

For all of the applications presented in this paper, computing times for clusterBMA are typi-

cally of the order of seconds, rather than minutes or hours. The most computationally expen-

sive part of the clusterBMA pipeline is symmetric simplex matrix factorisation, where gradient

descents in each iteration of expectation maximisation (EM) have computational complexity

O(n2d) [29]. In addition to the sample size n and dimensionality d, the computation time will

also be dependent on the number of EM iterations—by default this is set to 5000 in the R pack-

age, but this is likely to be higher than necessary for many use cases, and can be adjusted by the

user as needed. Another aspect of computational complexity here is that when the sample size

is very large, this can make the similarity matrix computationally prohibitive. An alternative

approach that has been proposed for such scenarios is using random feature maps [29, 67]. We

have found that computation times are short using a personal computer for most use cases,

though applications with very large datasets may require adjustments as discussed above, or

implementation using high performance computing platforms.

While in the current work we have compared clusterBMA’s performance against four

ensemble clustering methods implemented in the diceR package, there are many other ensem-

ble clustering methods against which our method could be compared [4]. Additionally, other

metrics than the Adjusted Rand Index could be considered to compare different aspects of rel-

ative performance between clusterBMA and other ensemble clustering methods. However,

overall we have demonstrated that clusterBMA performs well across a variety of simulated data

scenarios relative to other methods, and to our knowledge the unique benefits and features of

our method described in this paper are not available in any other ensemble clustering

methods.
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This framework could be extended in future to be more ‘fully Bayesian’, accommodating

results from Bayesian clustering algorithms as inputs, and enabling more complete characteri-

sation of uncertainty in probability distributions for cluster allocation probabilities. As one

approach, this could be accomplished by using the existing pipeline with draws from Markov

Chain Monte Carlo sampling for results of Bayesian clustering models. This could potentially

accommodate inputs from both frequentist and Bayesian clustering algorithms as inputs, by

matching MCMC samples with an appropriate number of replicates of results from frequentist

clustering algorithms. This extension could enable more complete characterisation of the

model-based uncertainty relating to the probability distributions for probabilities of final allo-

cations. Another avenue that could be explored for approximating the marginal likelihood for

clustering models could consider the equivalence between the marginal likelihood and exhaus-

tive leave-p-out cross validation, investigating the validity of this approach in the clustering

setting and for methods without likelihood terms [68]. Future work could also explore the per-

formance and utility of different CIVIs in clustering scenarios with different data characteris-

tics and analytic objectives.

This method is implemented in an accompanying R package, clusterBMA [31]. It offers an

intuitive, flexible and practical framework for analysts to combine inferences across multiple

clustering algorithms with quantified model-based uncertainty. Future development in this

space could enable additional functionality such as accommodating sampling-based input

from Bayesian clustering algorithms, incorporating informative prior information, and explor-

ing the utility of alternative internal validation measures for the approximation of posterior

model probability.
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