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Abstract

Aim

Fluoroquinolone (FQ) is a potent antibiotic class. However, resistance to this class emerges

quickly which hinders its application. In this study, mechanisms leading to the emergence of

multidrug-resistant (MDR) Staphylococcus aureus (S. aureus) strains under FQ exposure

were investigated.

Methodology

S. aureus ATCC 29213 was serially exposed to ciprofloxacin (CIP), ofloxacin (OFL), or levo-

floxacin (LEV) at sub-minimum inhibitory concentrations (sub-MICs) for 12 days to obtain S.

aureus -1 strains and antibiotic-free cultured for another 10 days to obtain S. aureus-2

strains. The whole genome (WGS) and target sequencing were applied to analyze genomic

alterations; and RT-qPCR was used to access the expressions of efflux-related genes, alter-

native sigma factors, and genes involved in FQ resistance.

Results

A strong and irreversible increase of MICs was observed in all applied FQs (32 to 128 times)

in all S. aureus-1 and remained 16 to 32 times in all S. aureus-2. WGS indicated 10 notice-

able mutations occurring in all FQ-exposed S. aureus including 2 insdel mutations in

SACOL0573 and rimI; a synonymous mutation in hslO; and 7 missense mutations located

in an untranslated region. GrlA, was found mutated (R570H) in all S. aureus-1 and -2.

Genes encoding for efflux pumps and their regulator (norA, norB, norC, and mgrA); alterna-

tive sigma factors (sigB and sigS); acetyltransferase (rimI); methicillin resistance (fmtB);

and hypothetical protein BJI72_0645 were overexpressed in FQ-exposed strains.
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Conclusion

The emergence of MDR S. aureus was associated with the mutations in the FQ-target

sequences and the overexpression of efflux pump systems and their regulators.

Introduction

Staphylococcus aureus (S. aureus) is a common extracellular pathogen with the ability to cause

a wide range of infections ranging from mild (skin infections, and soft tissues) to serious (life-

threatening infections, such as pneumonia, osteomyelitis, endocarditis, toxic shock

syndromes. . .) [1]. The rates of multidrug resistance in S. aureus have been increasing consid-

erably in recent years, leading to serious consequences, including treatment failure, treatment

cost consumption, and protracted therapy [2, 3].

Fluoroquinolone (FQ) is a unique synthetic broad-spectrum antibiotics class that has been

applied in the treatment of a wide variety of community and nosocomial infections [4]. Unfor-

tunately, the broad use of these drugs has led to a steadily increasing number of FQ-resistant

bacterial strains, with rates of resistance varying with both organisms and geographic regions

[5]. The proportion of Gram-positive cocci resistance to these drugs increased worldwide,

especially for S. aureus [6]. Clinical isolates were found to resist to FQs via the modification of

the FQ targets, overexpression of efflux pumps, plasmid-mediated resistance, and decrease in

permeability due to alterations in the outer membrane [7–11]. Furthermore, other phenotypic

characteristics such as the biofilm-forming ability or the presence of small colony variants can

also markedly increase the concentrations of FQs required to inhibit and eradicate biofilm

compared to planktonic cells [12, 13]. However, the mechanisms leading to the emergence of

FQ resistance have not been well understood. It can emerge from gene acquisition, gene muta-

tion, or just simply gene regulation.

It has been speculated that in the presence of antibiotics, bacteria undergo microevolution

via the change in their genetic information to adapt to the environment and ensure their sur-

vival [14, 15]. This process happens in several ways. Bacteria may acquire genes including

drug-resistant genes, through gene transfer processes [16, 17]. Besides, they can become resis-

tant through stress-induced mutagenesis [18–20], in which the bacteria can increase the muta-

tion rate to enhance the probability of mutations that permit adaptations to the stressor.

Antibiotics can impose strong selection pressure on microbial populations that keep resistant-

gene-carrying individuals surviving, replicating, and quickly becoming the dominant type

throughout the microbial population [21–23].

The resistance of S. aureus to FQs results from mutations in quinolone resistance-determin-

ing regions (QRDRs) of topoisomerase IV and/or DNA gyrase [9, 24]. These enzymes are both

tetrameric with pairs of two different subunits: GyrA and GyrB for gyrase and ParC and ParE

for topoisomerase IV which are chromosomally encoded by gyrA, gyrB, parC, and parE,

respectively. The most common mutations of the QRDR include S84 and D87 for GyrA, or

S80 and E84 for ParC [25, 26]. In S. aureus, genes encoding for topoisomerase IV are named

grlA (approximately 1992 bp) and grlB (approximately 2493 bp) which are analogous to parC
and parE in other species, respectively [25, 27–29]. It is assumed that some of the specific

mutations in the topoisomerase IV and DNA gyrase gene identified from clinical strains were

involved in FQ resistance [26, 30–32]. Although these alterations appear to decrease their

affinity to FQs [33], it is difficult to analyze the contribution of each mutation to the resistance

phenotype.
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In addition, FQ resistance is also mediated by the overexpression of endogenous efflux sys-

tems that pump drugs out of the cell could significantly reduce the accumulation of drugs

inside the bacterial cells [34, 35]. Among chromosomal efflux proteins in S. aureus, NorA,

NorB, and NorC which are encoded by norA, norB, and norC respectively, played an important

role in decreased susceptibility to antibiotics especially FQs [36–38]. These proteins are

belonged to the major facilitator superfamily (MFS) and negatively regulated by MgrA [37].

In this study, the in vitro-induced FQ resistance in the fully susceptible S. aureus ATCC

29213 was generated for investigating the mechanism associated with intrinsic FQ resistance

development. Whole genome sequencing of in vitro-induced FQ-resistant S. aureus strains as

well as target sequencing of important genes were analyzed to associate the mutations in the

target enzymes with the obtained resistant phenotypes. Additionally, the expression of efflux-

related genes, alternative sigma factors, and genes involved in FQ resistance were evaluated

using RT-qPCR.

Methods

Selection of FQ-resistant strains

S. aureus ATCC 29213 (initial S. aureus), a fully susceptible strain, was cultured in Mueller-

Hinton Broth (MHB) that contained sub-minimum inhibitory concentrations (sub-MICs) val-

ues of FQ which is either ciprofloxacin (CIP), ofloxacin (OFL) or levofloxacin (LEV) following

a previously published procedure [39]. The experiment was repeated until no increase in MIC

to the FQ used in exposure was observed. At the endpoint, the obtained CIP-, LEV-, and OFL-

exposed S. aureus (S. aureus-1) strains were sent to NK Biotechnology Company (HCM, Viet-

nam) for 16S rRNA sequencing. These selected resistant strains were sub-cultured for another

10 days in an antibiotic-free medium with the daily examination of MIC in order to obtain

CIP-, LEV-, and OFL-revertant S. aureus (S. aureus-2) strains. Repetitive sequence-based PCR

(Rep-PCR) amplification was established to confirm the genetic relatedness of initial S. aureus
ATCC 29213 and those of selected strains. The test was adapted from Vito et al. [40]. The

strains at day 12th of FQ exposure (S. aureus-1 including CIP-, OFL- and LEV-1) and the

strains at day 10th of antibiotic-free culture (S. aureus-2 including CIP-, OFL- and LEV-2)

were then used for other experiments.

Antimicrobial susceptibility testing

The micro-dilution method on 96-well plates, instructed by EUCAST guidelines (Eucast.org,

version 11.0), was applied on seven bacterial strains (initial S. aureus, S. aureus-1 and -2) to

determine the MIC value of the strains to CIP, LEV, OFL, moxifloxacin, nalidixic acid, ampi-

cillin, amoxicillin, chloramphenicol, cefalexin, doxycycline, erythromycin, lincomycin, oxacil-

lin, and tetracycline. At the same time, MICs of the strains were also measured under the

presence of an efflux pump inhibitor, reserpine (Sigma-Aldrich, USA), at a concentration of

20 mg/L.

Whole genome sequencing

DNA extraction was carried out using the GeneJET Genomic DNA Purification Kit (Thermo

Scientific, USA) according to the manufacturer’s instructions. Sequencing libraries were pre-

pared using the TruSeq Nano DNA LT Library Prep Kit (Illumina, Singapore). Pooled libraries

were then sequenced using an Illumina NextSeq 500 sequencer with 2 x 151 bp reads. The

resulting FASTQ files were mapped to the ATCC 29213 genome (Genbank

GCF_001879295.1) using bwa (version 0.7.10) (PMID 19451168); indel realignment and SNP
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(single nucleotide polymorphism) calling were performed using Lofreq* (version 2.1.2) with

default parameters (PMID 23066108).

Quinolone-resistance determining regions (QRDRs) target sequencing

The genomic DNA of S. aureus strains (Initial S. aureus ATCC 29213, S. aureus strains at day

4th, 6th, 8th, 10th of CIP-, LEV- and OFL-exposure, CIP-, LEV-, OFL-resistant strain-1 and -2)

were extracted and then, utilized for QRDRs (DNA gyrase—gyrA and gyrB, and topoisomerase

IV—grlA and grlB) amplification. Each 50 μl PCR reaction was prepared with instructions

from the TopTaq Master Mix Kit (Qiagen, Germany). The amplification profiles and primers

were described previously [41]. The PCR products were finally electrophoresed and subjected

to sequencing (Macrogen, Korea).

Expression evaluation of efflux-related genes, alternative sigma factors, and

genes involved in FQ resistance

Total RNA extraction and cDNA Synthesis of seven S. aureus strains were performed using

Monarch1 Total RNA Miniprep Kit (NEB, UK) and SensiFAST cDNA Synthesis Kit (Bioline,

UK), according to the manufacturer’s instructions. Each real-time qRT-PCR reaction con-

sisted of 20 μL of reagents, including Luna1Universal qPCR Master Mix (NEB, UK), one

primer pair (Table 1; Reference gene: 16S rRNA), cDNA template, and nuclease-free water.

The thermal cycle of the RT-qPCR machine was set up based on NEB #M3003 instruction

manual (NEB, UK). Transcription values (Ct) are analyzed as described in [42].

Statistical analysis

The RT-qPCR experiments were performed in triplicates. After obtaining the transcriptional

values (Ct) from amplicon-based fluorescence thresholds, the Ct values of the target genes

were normalized to that of the 16S rRNA transcripts to obtain a ΔCt. The 2-ΔΔCt method was

then used to compare the relative expression patterns between FQ-exposed strains and the ini-

tial S. aureus [42]. Fold change was calculated against initial S. aureus and visualized on a log

scale, with gene expression of initial S. aureus as 1. Values greater than one were considered

up-regulated, while values smaller than 1 were down-regulated. Fold change and confidence

level 95% CI (error bar) were calculated in MS Excel according to the standard practice [43].

Expression data of three biological replicates were analyzed by one-tail Student’s t-test to iden-

tify the statistical significance of differential expression between FQ-exposed S. aureus strains

Table 1. Primers for qRT-PCR analysis.

Genes Forward primer (5’!3’) Reverse primer (5’!3’) Amplicon Size (bp) References

mgrA GGGATGAATCTCCTGTAAACG TTGATCGACTTCGGAACG 131 [44]

norA AATGCCTGGTGTGACAGGTT TCCACCAATCCCTGGTCCTA 246 [45]

norB AGCGCGTTGTCTATCTTTCC GCAGGTGGTCTTGCTGATAA 213 [45]

norC AATGGGTTCTAAGCGACCAA ATACCTGAAGCAACGCCAAC 216 [45]

rimI ATTGCGTCCTCACCTTCACC CTGAGGCGGAACGAAATTGG 453 This study

fmtB ACTGCTGTTGCTAATTGTTGA GCACAAGTTGATGAAGCGAA 191 This study

Gene encoding hypothetical protein BJI72_0645 GCGAGATGTCCGCTAAAAGT TGGTGCATGTGATGACGTTG 191 This study

sigB ATGTACGTTTATTGAAGGATTG TAATTTCTTAATTGCCGTTCTC 103 [46]

sigS ACCTTGAAGGATACAAGCAA GGCATTTACGCTTAACGGAC 96 [47]

16S rRNA AGAGTTTGATCMTGGCTCAG GWATTACCGCGGCKGCTG 492 [45]

https://doi.org/10.1371/journal.pone.0287973.t001
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and the initial S. aureus ATCC 29213. A p-value of� 0.05 was considered statistically

significant.

Results

Serial exposure to FQs leading to FQ-resistant phenotype

After being serially exposed to FQs, S. aureus ATCC 29213 turned from FQ-sensitive to FQ-

resistant phenotype. The MIC values of the FQ-exposed strains reached peaks at day 8th-10th

of exposure (Fig 1), and no further increase in MIC values was observed after the peaks even if

these strains were continuously exposed to the antibiotics. After 12-day serial exposure to FQs,

the MIC values of obtained S. aureus-1 were 128 times higher than that of the initial strain for

CIP, and 32 times higher for OFL and LEV. Impressively, S. aureus-2 strains did not revert to

antibiotic-sensitive phenotype after being cultured in an antibiotic-free medium for 10 days

(remained 8–32 times higher than the initial strain). Gram staining, 16S rRNA sequencing, and

Rep-PCR fingerprint results proved no contamination during the antibiotic exposure process

(S1 Fig). In addition, molecular genotyping results showed that S. aureus-1 and -2 strains were

identical to the initial S. aureus ATCC 29213.

Susceptibility of S. aureus strains to different antibiotics

The FQ-exposed S. aureus ATCC 29213 turned into a multidrug-resistant phenotype, which

was not only resistant to other FQs but also to other antibiotics of unrelated groups (Table 2).

The increases in MICs of S. aureus-1 and -2 strains were as followings: ampicillin (8–16, 4–16

times), amoxicillin (64–128 times), cefalexin (4–128 times), doxycycline (16–32 times), eryth-

romycin (64–128 times), lincomycin (64–256, 64–128 times) and oxacillin (16–64, 16–32

times). Interestingly, the exposed strains remained sensitive to moxifloxacin (0.25–0.5 mg/L)

and unchanged to chloramphenicol and tetracycline. Subsequent cultures of S. aureus-1 strains

in an antibiotic-free medium only resulted in minor effects on their susceptibility. Most MIC

values of S. aureus-2 strains decreased only 2 to 4 times compared to S. aureus-1 strains.

Under the presence of reserpine, S. aureus ATCC 29213 was not affected while susceptibility of

S. aureus-1 strains was reduced by 2–8 folds for some antibiotics such as ampicillin, amoxicil-

lin, doxycycline, erythromycin, and lincomycin (S1 Table).

Whole genome sequencing of S. aureus ATCC 29213, S. aureus-1 and S.

aureus-2 strains

Whole genome sequencing was used to identify mutations associated with the changes in resis-

tance (S2 Table). Overall, a total of 42 positions where at least one strain carried a variant rela-

tive to the initial strain were discovered. Of these 42 variant positions, 10 were common in all

strains sequenced, indicating differences in our parental strain from the publicly available

genome sequence. Among 32 remaining variant positions, 24 were SNPs, 6 were deletions,

and 2 were insertions. A total of 11 variants were seen in all 6 of the S. aureus-1 and S. aureus-2

strains relative to our re-sequenced ATCC 29213 (Table 3). Of these 11 SNPs, 4 were found in

predicted protein-coding genes: an amino acid deletion in SACOL0573 (encoding a PIN

domain-containing protein); an amino acid insertion in rimI (an alanine acetyltransferase); a

missense mutation in grlA, encoding DNA topoisomerase IV subunit A, and a synonymous

mutation in hslO, which encodes heat shock protein Hsp33. The remaining 7 variants located

in the upstream region of norA and gene coding hypothetical protein BJI72_0645 were not

found in annotated protein-coding sequences.
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Fig 1. MIC values of S. aureus during sub-MIC exposure to FQs including ciprofloxacin (CIP) (A), ofloxacin

(OFL) (B), or levofloxacin (LEV) (C). The initial S. aureus was exposed to CIP, OFL, or LEV for 12 days to obtain FQ-

resistant S. aureus strains (CIP-1, OFL-1, and LEV-1). These exposed S. aureus strains were then continuously sub-

cultured for another 10 days in an antibiotic-free medium to obtain CIP-2, OFL-2, and LEV-2 with the daily

examination of MICs values evaluated. Day 0: MIC; day 1–12: 12 FQ exposed days; R1-R10: 10 days in antibiotic-free

medium.

https://doi.org/10.1371/journal.pone.0287973.g001
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Mutations observed in the Quinolone-resistance determining regions

(QRDRs)

Target sequencing of QRDRs indicated that there were some mutations in both grlA (S80F)

and gyrB (T451S and/or R450S) (Table 4), among those, mutations of both genes were found

in CIP- and OFL-1 while only one mutation in gyrB (T451S) was found in LEV-1. Additional

sequencing of the S. aureus strains at days 4th, 6th, 8th, 10th of CIP-, LEV- and OFL-exposure

revealed the grlA mutation (S80F) to appeared in earlier steps than the ones in gyrB, suggesting

the primary role of grlA mutation in FQ resistant phenotype (Table 4).

Overexpression of alternative sigma factors in FQ-exposed strains

The data in Fig 2 illustrates that there were upregulations of sigB and sigS genes in most FQ-

exposed strains, except for OFL-2 and LEV-2. The expression of sigB and sigS genes were

recorded highest in LEV-1, at a mean fold change expression of 2.39 and 3.80 respectively,

while the most significant downregulation of both genes was recorded in OFL-2 which were

about 0.41 and 0.55 fold decrease. In terms of the S. aureus-2 group, the upregulation of both

genes in CIP-2 made this the only strain in the group that experienced a rise in gene expression

of both alternative sigma factors, σB and σS in comparison with initial S. aureus. In the statisti-

cal analysis between two groups of S. aureus-1 and S. aureus-2 for the same antibiotic, it can be

seen that there was a decrease in gene expression in both sigB and sigS genes of S. aureus-2

strains compared with S. aureus-1 strains.

Efflux expression increased in FQ-exposed strains

The effect of FQ exposure on the expression level of the efflux pump genes was checked and

compared to the initial S. aureus. As shown in Fig 3, all S. aureus-1 and 2 strains increased the

expression of mgrA, norA, norB, and norC. Regarding to the expression level of mgrA, which is

Table 2. Antibiotic susceptibility profile of S. aureus ATCC 29213 (initial strain), S. aureus-1 (CIP-1, OFL-1, and LEV-1) and S. aureus-2 (CIP-2, OFL-2, and LEV-

2).

Antibiotics S. aureus strains

ATCC 29213 CIP-1 CIP-2 LEV-1 LEV-2 OFL-1 OFL-2

Fluoroquinolone MIC (mg/L)

Ciprofloxacin 0.125 16 4 8 2 4 2

Levofloxacin 0.125 4 1 4 2 8 4

Ofloxacin 0.25 4 2 16 4 8 4

Moxifloxacin 0.0625 0.25 0.25 0.5 0.5 0.5 0.25

Nalidixic acid 16 128 64 128 64 128 64

Other antibiotics
Ampicillin 16 256 256 128 64 128 64

Amoxicillin 0.5 32 32 64 32 64 64

Cefalexin 0.5 4 4 64 64 8 8

Chloramphenicol 16 32 32 16 16 32 16

Doxycycline 0.125 4 4 4 4 2 2

Erythromycin 0.25 32 16 16 16 32 32

Lincomycin 0.5 32 32 64 32 128 64

Oxacillin 0.5 16 16 8 8 32 16

Tetracycline 8 16 16 16 16 8 8

https://doi.org/10.1371/journal.pone.0287973.t002
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involved in the efflux pump regulation of S. aureus, LEV-1 exhibited the highest expression

level (about 12.63 folds change), followed by CIP-1 and LEV-2 (Fig 3A). Besides, norA was

also upregulated in all FQ-exposed strains, especially in CIP-1 and CIP-2 of which the expres-

sion increased by about 57.61 and 70.78 folds respectively compared to initial strains (Fig 3B).

Among S. aureus-1 strains, OFL-1 showed the lowest expression in mgrA, norA, norB, and

norC. A similar result was also found in OFL-2 when compared with the remaining S. aureus-
2 strains. In addition, almost all strains belonging to S. aureus-1 group had higher expression

in mgrA, norA, norB, and norC compared to the strains which were treated with the same anti-

biotic in S. aureus-2 group.

Table 3. The list of single nucleotide polymorphisms (SNPs), variants, and amino acid changes found in S. aureus-1 (CIP-1, OFL-1, and LEV-1) and S. aureus-2

(CIP-2, OFL-2, and LEV-2) strains but not in S. aureus ATCC 29213.

SNP/variant and GenBank

Accession

Amino acid changes Systematic and

trivial gene name

Protein encoded Mutations in samples

S. aureus
ATCC

29213

CIP-

1

OFL-

1

LEV-

1

CIP-

2

OFL-

2

LEV-

2

G5009GAAC

MOPB01000035.1

S33_S34insC BJI72_1850

rimI
Alanine acetyltransferase .

p p p p p p

TATCTAGATGATG4318T

MOPB01000016.1

G309_T315delinsC BJI72_0480

SACOL0573

PIN domain containing

protein

.
p p p p p p

A13766G

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

A13775T

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

A13777C

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

A13778T

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

T13781A

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

T13785G

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

CG13787C

MOPB01000012.1

No annotated

protein

- - .
p p p p p p

C32411A

MOPB01000008.1

Synonymous

Mutation

BJI72_0464

hslO

heat shock protein

Hsp33

.
p p p p p p

CATAGGCTTGTT22457C

MOPB01000021.1

N3181delinsR BJI72_1235

Ebh

Hyperosmolarity

resistance protein Ebh

. .
p p

.
p p

T86957C

MOPB01000021.1

Synonymous

Mutation

BJI72_1284

lpl

Lipoprotein . .
p p

.
p p

CTT26104C

MOPB01000037.1

K1283delinsRG BJI72_1954

fmtB
methicillin resistance

protein FmtB

. .
p p

.
p p

C93466T

MOPB01000004.1

A318T BJI72_0139

ThlA

acetyl-CoA

acetyltransferase

.
p

. .
p

. .

G308933A

MOPB01000004.1

R570H BJI72_0342

grlA
DNA topoisomerase IV

subunit A

.
p p p p p p

T13964TTA

MOPB01000008.1

V69delinsIRINQ BJI72_0448

purR

pur operon repressor . . . . .
p p

G52A

MOPB01000047.1

Synonymous

mutation

BJI72_2594

sdrE

serine-aspartate repeat-

containing protein E

.
p p p p p

.

Bolded entries represent SNP, variants, and amino acid changes that appeared in all S. aureus-1 and 2 strains, but not in S. aureus ATCC 29213.
p

, the mutation present; ., no mutation.

https://doi.org/10.1371/journal.pone.0287973.t003
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Overexpression of genes related to FQ-resistant development in S. aureus
According to the WGS results, there were genomic mutations located in the sequence of rimI
and fmtB in both S. aureus-1 and -2 strains. Besides, 7 SNPs were also found in all FQ-exposed

strains which were located in the upstream region of norA and the gene encoding hypothetical

protein BJI72_0645 (Table 3). The results suggested that these variants might be related to FQ-

resistant development in S. aureus. Therefore, investigating the expression of rimI, fmtB, and

the gene encoding hypothetical protein BJI72_0645 should be carried out to better understand

the relationship between these mutations and the FQ-resistant development in S. aureus.
Under the effects of FQ exposure, rimI was overexpressed in all FQ-exposed strains, espe-

cially the expression increased by 30.43 folds in LEV-1 (Fig 4A). The data also indicated that

fmtB was upregulated in fmtB-mutant strains (Fig 4B). Besides, although there was no fmtB
mutation in CIP-1 and CIP-2 which were resistant to ciprofloxacin, fmtB was also overex-

pressed in both strains. Regarding the expression level of the gene encoding hypothetical pro-

tein BJI72_0645, this gene was also overexpressed in all FQ-exposed strains, especially LEV-1

Table 4. Sequencing result of grlA and gyrB of S. aureus strains.

Strains MIC (mg/L) Appearance of mutation in

grlA gyrB
Ciprofloxacin

S. aureus ATCC 29213 0.125 - -

CIP4-resistant 2 - -

CIP6-resistant 8 S80F -

CIP8-resistant 8 S80F -

CIP10-resistant 16 S80F T451S

CIP12-resistant-1 (CIP-1) 16 S80F R450S and T451S

CIP-resistant-2 (CIP-2) 4 - T451S

Ofloxacin

S. aureus ATCC 29213 0.25 - -

OFL4-resistant 2 - -

OFL6-resistant 2 - -

OFL8-resistant 4 S80F -

OFL10-resistant 8 S80F -

OFL12- resistant-1 (OFL-1) 8 S80F T451S

OFL- resistant-2 (OFL-2) 4 - -

Levofloxacin

S. aureus ATCC 29213 0.125 - -

LEV4-resistant 0.5 - -

LEV6-resistant 1 - -

LEV8-resistant 2 - -

LEV10-resistant 4 - -

LEV12- resistant-1 (LEV-1) 4 A64A T451S

LEV- resistant-2 (LEV-2) 2 - T451S

No mutation was observed in gyrA and grlB. The substitution mutations resulted from changes in the following

nucleotides: S80F, UCC to UUC; A64A, GCG to GCA; R450S, AGA to AGU; T451S, ACG to UCG.

-, no mutation observed.
4, 6, 8, 10, 12, S. aureus strains at day 4th, 6th, 8th, 10th, and 12th (CIP-, OFL- and LEV-resistant S. aureus-1) of CIP-,

OFL- and LEV-exposure.

https://doi.org/10.1371/journal.pone.0287973.t004
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(Fig 4C). In addition, this study also found that the expression of rimI, fmtB, and the gene

encoding hypothetical protein BJI72_0645 in S. aureus-1 strains was higher than that in corre-

sponding S. aureus-2 strains in all cases.

Discussion

Sub-MIC exposure to FQ altered the antibiotic susceptibility profile of S.

aureus
After 12 days of exposure to the sub-MICs of FQs, S. aureus increased its MIC values and

became resistant to exposed antibiotics. Serial exposure to sub-MICs can create positive selec-

tion pressure that drove the development of resistant phenotypes, which is in agreement with

previous literature [48–50]. Although S. aureus had a decrease in MIC value after 10 days of

culturing in an antibiotic-free medium, indicating some reversion of resistance trait, S. aureus-
2 strains kept their resistance to FQs. Besides, after being serial exposed to CIP, OFL, and LEV,

S. aureus became resistant not only to the exposed antibiotics and other FQs but also to

Fig 2. RT-qPCR analysis of sigB and sigS in S. aureus ATCC 29213 and its exposed strains. * indicated a significant difference in gene expression

between initial S. aureus and FQ-exposed S. aureus strains.

https://doi.org/10.1371/journal.pone.0287973.g002
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unrelated antibiotics such as ampicillin, amoxicillin, doxycycline, erythromycin, and lincomy-

cin. The results suggested that serial FQ exposure resulted in cross-resistance to unrelated anti-

biotics and the emergence of multidrug-resistant phenotypes in S. aureus. It should be well

noted that this cross-resistance development under CIP exposure was well observed in Gram-

positive bacteria such as Actinobacillus pleuropneumoniae [51], S. aureus [52], Mycobacterium
tuberculosis [53]; but not in Gram-negative, ones like Salmonella enterica [54]; Pseudomonas
aeruginosa [55].

Genomic alterations involved in FQ-resistant development in S. aureus
It has been shown that the acquisition of FQ resistance is mainly due to the mutations in target

enzymes, topoisomerase IV (GrlA/B) as well as DNA gyrase (GyrA/B) [56]. In S. aureus, the

mutations occurred more frequently in QRDRs of grlA (S80F or Y, E84K, and A116E or P)

and gyrA (S84L or A, S85P, and E88K) which were described as the primary FQ resistance

mechanism [56]. Other studies have found that the mutations in QRDRs of gyrB including

D437N, R458E, D432N, and N470D also contributed to FQ resistance [57, 58].

In our in vitro-induced FQ-resistant model, we found mutations in both grlA (S80F) and

gyrB (T451S and/or R450S), among those, mutations of both genes were found in CIP- and

OFL-1 while only one mutation in gyrB (T451S) was found in LEV-1. Additional sequencing

of the S. aureus strains at days 4th, 6th, 8th, 10th of CIP-, LEV- and OFL-exposure revealed the

grlA mutation (S80F) to appeared in earlier steps than the ones in gyrB, suggesting the primary

Fig 3. RT-qPCR analysis of mgrA (A) and multidrug efflux pump norA (B), norB (C), and norC (D) in S. aureus ATCC 29213 and its exposed

strains. * indicated a significant difference in gene expression between initial S. aureus and FQ-exposed S. aureus strains.

https://doi.org/10.1371/journal.pone.0287973.g003
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role of grlA mutation in FQ resistant phenotype. These findings suggested that the mutation in

grlA (S80F) primarily induced the emergence of FQ resistance and might support the muta-

tions in gyrB (T451S); which was required for high-level FQ resistance in S. aureus.
In addition, we observed that mutations in both grlA and gyrB occurred in all S. aureus-1

strains. These mutations resulted in amino acid alterations in both DNA gyrase and topoisom-

erase IV, which were FQ targets. Consequently, that led to the emergence of FQ resistance in

S. aureus-1 due to the alteration of binding sites between FQ and target enzymes. However,

interestingly, all mutations in grlA disappeared in S. aureus-2 without a significant MIC

decrease in LEV-2 and only a four-time reduction in CIP-2. With OFL-2, it is impressive that

no mutation in gyrA, gyrB, grlA, and grlB QRDRs was retained while it kept most of its resis-

tant ability. These data suggested that mutations in FQ targets are important in the presence of

FQs but they may not be essential mechanisms to mediate FQ and multidrug-resistant pheno-

type. One previous study on Enterococcus faecium also showed no mutation detected in

QRDRs of gyrA, gyrB, parC, and parE genes in the strain selected from 2-step FQ-resistant

mutant induction [59], suggesting the importance of other mechanisms.

Changes in expression of alternative sigma factors associated with the

adaptive response of S. aureus under serial FQ exposure

Alternative sigma factors (σ) are an essential component of core RNA polymerase (RNAP) that

helps determine promoter selectivity [60]. The association of appropriate alternative sigma fac-

tors with core RNAP can help bacteria perform specialized cellular functions or stress-adaptive

Fig 4. RT-qPCR analysis of rimI (A), fmtB (B), and the gene encoding hypothetical protein BJI72_0645 (C) in S. aureus ATCC 29213 and its

exposed strains. * indicated a significant difference in gene expression between initial S. aureus and FQ-exposed S. aureus strains.

https://doi.org/10.1371/journal.pone.0287973.g004
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responses through redirection of transcription initiation [61]. The stress-response alternative

sigma factors σB and σS contribute to bacterial survival under multiple stresses. σB affects cellu-

lar processes including oxidative stress resistance, drug resistance, stress adaptation, and bio-

film formation [62]. Conversely, σS is activated in response to stresses such as stress resistance,

DNA and cell wall damage, cell morphology alterations, metabolism, virulence, and lysis [63].

In this study, the transcriptional analysis of sigB and sigS genes showed that both genes

increased their expression in S. aureus-1 strains in responding to FQ exposure but reduced in

the S. aureus-2 strains when FQs were withdrawn. It is understandable as sigma factors reacted

quickly to extracytoplasmic stresses in S. aureus in which under standard conditions, sigma fac-

tor transcription remains low but can be upregulated in response to external stimuli, especially

chemicals leading to DNA damage and cell wall disruption such as antibiotics [47]. In addition,

sigma factors enable bacteria to rapidly detect antimicrobial signals, activate resistance genes,

and repair mechanisms specific to the antimicrobials [64]. In our case, both sigB and sigS
seemed to play an important role in S. aureus fitness and adaptation to FQs. It could be the rea-

son for the marked change in proteomic profiles of the bacteria in responding to FQs [65].

Sub-MIC exposure to FQs led to overexpression of the efflux pump and its

regulator

Several specific efflux pumps have been associated with antibiotic resistance in clinical isolates

of S. aureus. With respect to FQ, norA, norB, and norC are the most important efflux pumps

localized on the cytoplasmic membrane of S. aureus [45]. These pumps can extrude many

chemically and structurally dissimilar compounds, namely hydrophilic and hydrophilic FQs

(such as norfloxacin, ciprofloxacin, moxifloxacin, and garenoxacin), dyes (like ethidium bro-

mide and rhodamine) and biocides (tetraphenylphosphonium and cetrimide) [37, 66]. It has

been shown that mgrA functions as a positive regulator of norB and a negative regulator of

norA and norC [67].

Regarding the expression level of mgrA, the results in this study were consistent with our

previous study on proteomic analysis [65]. In order to test the effects of overexpression of

mgrA on multidrug efflux pump norA, norB, and norC, RT-qPCR was applied for determining

their expression. In analysis, the expression of norA, norB, and norC was increased in all tested

strains. It means that efflux pumps were activated and could be one of the mechanisms leading

to the occurrence of multidrug-resistant S. aureus strains. Our results are in agreement with

the previous study, in which overexpression of MgrA has led to a change in the expression

level of norA and norB [66]. However, the increased expression of norC in this study was not

associated with the regulation of mgrA, and it might result from mutational alterations in

uncharacterized loci that affect the expression of this gene.

The decrease in efflux expression in S. aureus-2 compared to those of S. aureus-1 suggests

that under the FQ stressor in the environment, the efflux activity of S. aureus was promoted as

an adaptive response to resist the antibiotics. However, the efflux activity could decrease when

S. aureus-1 was cultured continuously in antibiotic-free media even though it still kept its resis-

tance to FQ. This is consistent with the result that S. aureus turned to an FQ-resistant pheno-

type after 12-day serial exposure to FQ, and the MIC values witnessed a slight decrease after

10-day continuous culturing S. aureus-1 in antibiotic-free media.

Sub-MIC exposure to FQs affected the protein acetylation and multi-drug

resistant phenotype of S. aureus
Protein acetylation is one of the major post-translational modifications (PTMs) which play an

important role in cell signaling and occurs when the cell encounters specific environmental
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stress conditions [68–70]. RimI encoded by rimI is a ribosomal protein S18 acetyltransferase

which catalyzes the acetylation of the N-terminal alanine of ribosomal protein S18; and also

acts as an N-epsilon-lysine acetyltransferase that catalyzes acetylation of several proteins [71,

72]. In this study, an insertion mutation (S33_S34insC) in rimI was found in all S. aureus-1

and 2 that might affect the RimI activities and the protein acetylation in S. aureus. In terms of

expression analysis, rimI was overexpressed in these mutant strains compared to the initial S.

aureus. These results suggested that the mutation in rimI, as well as its overexpression in FQ-

exposed S. aureus, was an adaptive response under antibiotic stressors. This might be associ-

ated with acetylation which alters mRNA translation efficiency in several proteins in S. aureus
to maintain its survival in an antibiotic-stress environment.

The fmtB gene codes for FmtB, a ~263 kDa cell wall-anchored protein [73]. Although there

is limited information about the function of fmtB, it has been proven to contribute to the

methicillin-resistant phenotype in S. aureus [74, 75]. According to the antibiotic susceptibility

profile of seven S. aureus strains, after being exposed to FQ, S. aureus enhanced its resistance

to FQ and other antibiotics including B-lactam. Besides, the mutation K1283delinsRG

(CTT26104C) in fmtB sequence was also found in OFL- and LEV-exposed strains. For RT-

qPCR analysis, fmtB was upregulated in all mutant strains. Although there was no mutation on

fmtB found in CIP-1 and CIP-2, which were resistant to ciprofloxacin, fmtB was also overex-

pressed in both strains. It was suggested that the in vitro-induced FQ resistance cooperating

with the acetylation modification somehow affects the fmtB expression and the antibiotic resis-

tance of S. aureus to FQs and other antibiotics of unrelated groups leading to a multi-drug

resistance phenotype.

According to whole genome analysis, 7 SNPs were found in the upstream region of both

norA and the gene encoding hypothetical protein BJI72_0645. The RT-qPCR results indicated

that the variants might play a crucial role in regulating the transcription of these genes because

both were overexpressed in all FQ-exposed S. aureus.

From genetic alterations to protein expression

The development of antibiotic resistance might involve not only transcriptional regulation and

genetic modifications but also translational regulation. In the proteomic study of our research

group, under the FQ stressor in the environment, there were 147 unique proteins in S. aureus-
1 and S. aureus-2 which changed their expression in comparison to the initial strain [65].

Regarding the molecular function of differently expressed proteins, 93 proteins were responsi-

ble for binding, 89 proteins for catalytic activity, 28 proteins for the structural constituent of

ribosome, and 10 other proteins were involved in transcription factor activity (6), transporter

activity (2) and antioxidant activity (2). Proteins involved in SOS/stress response and antibiotic

resistance and pathogenesis were upregulated upon FQ exposure. Among them, RecA and

MgrA are global regulators which are strongly implicated in antibiotic resistance development

[76, 77]. The presence of RecA leads to the upregulation of SOS genes which involve in DNA

repair and promote the autoproteolysis cleavage of LexA (an SOS gene repressor) [78, 79];

while MgrA affects multiple S. aureus genes which encoded proteins involving multidrug resis-

tance, autolytic activity, and virulence [80, 81]. The fluctuation in protein expression depends

on many factors including extracellular agents such as harsh temperatures, chemical and anti-

biotic stress in the environment, and intracellular agents such as modifications in the genetic

materials. Previous studies have proven that the elements belonging to genetic code including

amino acid [82], untranslated regions [83–86], length [86], GC content [87–89], and mRNA

secondary structure [90] affected the regulation of protein expression. However, under the

serial exposure of S. aureus to FQs, the direct relationship between protein expression and
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genetic modifications found in this study was not proved. They only suggested that resistance

to multiple drugs including FQs under drug exposure generally requires the contribution of

multiple proteins and processes. In short, the genetic mutations found in FQ-exposed S. aureus
and overexpression of global regulators may be the key to the expression change of a range of

proteins which assist this bacterium adapt the antibiotic-containing environments.

Conclusion

Exposure to sub-MICs of FQs provided positive selection pressure for the development of

resistance traits leading to alterations to the antibiotic susceptibility profile and transcription

of the pathogen. These alterations were reflected in the DNA mutations and the change in

mRNA expression levels of efflux pumps, especially alternative sigma factors. Multidrug resis-

tance or antibiotic-resistant development is a complicated and multifactorial process. The

found mutations might be spontaneous, but their combination is clearly a cause of the resis-

tance status observed in the bacterium.

FQs presently play a vital role in saving lives and are employed in treating a broad spectrum

of infectious diseases or even cancers. Nonetheless, the extensive utilization of FQs in human

and animal healthcare has led to a growing number of antibiotic-resistant pathogens. The ease

of S. aureus to develop FQ resistance emphazised the prudent and appropriate use of antibiot-

ics in preventing the selection of resistant bacteria. Additionally, molecules with ability to

interfere the resistance development would be highly recommended in FQ combination

therapy.
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