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Abstract

The main factor leading to a decrease in crop productivity is abiotic stresses, particularly
drought. Plants with C4 and CAM photosynthesis are better adapted to drought-prone areas
than C3 plants. Therefore, it is beneficial to compare the stress response of plants with dif-
ferent photosynthetic pathways. Since most crops are C3 and C4 plants, this study focused
on conducting an RNA-seq meta-analysis to investigate and compare how C3 and C4 plants
respond to drought stress at the gene expression level in their leaves. Additionally, the accu-
racy of the meta-analysis results was confirmed with RT-qPCR. Based on the functional
enrichment and network analysis, hub genes related to ribosomal proteins and photosynthe-
sis were found to play a potential role in stress response. Moreover, our findings suggest
that the low abundant amino acid degradation pathway, possibly through providing ATP
source for the TCA cycle, in both groups of plants and the activation of the OPPP pathway in
C4 plants, through providing the electron source required by this plant, can help to improve
drought stress tolerance.

Introduction

The impact of water scarcity is already being experienced in several regions around the world,
and climate change in the future can lead to the aggravation of the drought crisis. In addition
to decreasing the frequency and amount of precipitation, rising global temperatures result in
increased evapotranspiration and water loss. Therefore, it is expected that the amount of irri-
gation will increase in order to meet the growing needs of the crop, which will also lead to the
depletion of groundwater. To address the expanding areas with water shortages, it has become
necessary to develop crops with high water use efficiencies (WUEs) and drought tolerance
using traditional breeding or genetic manipulation methods [1, 2]. Plants have a range of
mechanisms to cope with drought stress at various levels, such as morphological, physiological,
anatomical, tissue, cellular, and molecular levels. Generally, drought stress triggers signal
transduction of the plant hormone abscisic acid (ABA). ABA is a key phytohormone involved
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in stomatal closing to decrease transpiration. Drought also inhibits cell growth and photosyn-
thesis, increases respiration and induces genes that respond to environmental stress [3, 4].
There is a significant difference in plant tolerance to drought stress relying on the duration
and intensity of stress, the plant species and the growth stage. It has been reported that C4
plants are better adapted to drought areas than C3 plants and have better WUE for the follow-
ing reasons: Kranz anatomy, having both phosphoenolpyruvate carboxylase (PEPC) and ribu-
lose-1, 5-bisphosphate carboxylase/oxygenase (RUBISCO) pathways in mesophyll and bundle
sheath that reduce photorespiration and increase photosynthetic efficiency, and a lower CO*
saturation point for photosynthesis [5]. However, there is limited information comparing the
response of plants C3 and C4 to drought stress, especially at the molecular level. Therefore,
evaluating these plants in terms of their response to drought stress, identifying genes associ-
ated with drought stress, exploring their functional relationships to develop drought-tolerant
cultivars can be critical.

Genome-wide analysis methods, such as RNA sequencing (RNA-seq) and microarrays,
allow researchers to simultaneously study the expression patterns of thousands of genes under
different stress conditions. Currently, there is a greater focus on RNA-seq data as studies have
shown that it is more effective in identifying differentially expressed genes (DEGs) compared
to microarray technology [6, 7]. DEGs are key indicators of plant response to different envi-
ronmental conditions. By merging the results of multiple studies, researchers can increase the
reliability of their findings and produce a more accurate set of DEGs. In addition, combining
gene expression information across species can improve the ability to identify conserved gene
sets that are key components of biological responses. Meta-analysis is a powerful strategy to
take advantage of the potential of transcriptome studies. Meta-analysis is the use of statistical
methods to analyze and combine the results of several independent but relevant studies [3, 6,
8]. So, in this study, an attempt has been made to reach a better conclusion about the drought
response mechanism in C3 and C4 plants by combining the results of different RNA-seq stud-
ies using a meta-analysis approach.

Methods and materials
Plant materials and drought treatment

The seeds of sunflower and Artemisia (as C3 and C4 plants) were obtained from the seed and
plant improvement institute, Karaj, LR. Iran. The seeds were treated with 70% ethanol and 1%
sodium hypochlorite, then washed by distilled water and germinated on moist filter paper in
Petri-dish. The germinated seeds were transferred to pots filled with a 1:1 mixture of sand/soil
and grown in three biological replicates in a greenhouse. The pots were irrigated to field capac-
ity (FC) until seedlings reached the four-leaf stages. Then, the seedlings were divided into two
groups: control (C) and water-stress (WS). For drought stress, watering for C pots was main-
tained at FC, and withheld for WS pots. The soil water content (SWC) and leaf relative water
content (RWC) were monitored daily, and leaf material was sampled based on SWC reaching
50+5% and 30+5% of FC, as moderate and severe drought, respectively. The leaf material of C
and WS plants frozen quickly in liquid nitrogen and stored at -80 "C.

RNA-seq dataset collection and pre-processing

To investigate the C3 and C4 plant response to drought stress, NCBI Sequence Read Archive
(SRA) (https://www.ncbi.nlm.nih.gov/sra) and EBI ArrayExpress database (https://www.ebi.
ac.uk/arrayexpress/) were searched in the winter of 2020 using the following keywords:
drought, drought stress, water stress, abiotic stress, and their combinations with an organism
such as drought stress and Zea mays [organism]. Our considerations were, "The dataset should
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be an RNA-seq gene expression profile, the data should be generated using the Illumina HiSeq
platform, the samples should include both control and drought-treated groups, and the tissue
type should be leaf". Finally, nine datasets including SRP071248, SRP042233, ERP107297,
SRP045409, SRP101470, SRP110211, SRP135093, SRP106756, and SRP057095 were chosen,
belonging to five different plant species: wheat, rice, barley, maize, and sorghum. RNA-seq
raw reads (Fastq format) were downloaded from the European Nucleotide Archive database
(https://www.ebi.ac.uk/ena/browser/home) (S1 Table).

The FastQC tool [9] was utilized to verify the quality of the raw data. Subsequently, the
Trimmomatic tool [10] was employed to remove low-quality bases and adapter sequences. Fol-
lowing this, the resulting high-quality reads were mapped to the corresponding plant reference
genome (http://ftp.ebi.ac.uk/ensemblgenomes/pub/release-49/plants/) using STAR software
[11].

Orthology definition and meta-analysis

In order to make a comparison of the transcriptional response among diverse species, it was
necessary to identify orthologous genes. In this study, we considered Arabidopsis as a refer-
ence plant and the orthologous genes of each plant species based on Arabidopsis genes were
obtained from the Ensembl and in the next steps the TAIR ID was used.

To remove batch effects across different datasets, the SVA package was utilized. Subse-
quently, a meta-analysis of C3 and C4 groups was carried out individually using the MetaDE R
package. The gene expression profiles were merged by the MetaDE.merge Bioconductor pack-
age. Meta-analysis was limited to genes that are commonly found in all individual datasets.
30% unexpressed genes and 30% non-informative genes were filtered out. The number of per-
mutation tests was set as 1000. Finally, to identify DEGs, Rank Prod method and Fisher
method were used. Any genes that exhibited a false discovery rate (FDR) < 0.05 [12] were con-
sidered as DEGs and henceforth referred to as meta-DEGs.

A Venn diagram was created by the Venny 2.1.0 web-based software [13]. Gene expression
values were determined by log ratio of means (ROM) through the following formula [14]:

Where yg,, 7, and 7,

¢ represent ROM, mean expression level of each gene in dataset.

Gene ontology enrichment and pathway analysis of meta-DEGs

Gene ontology (GO) of meta-DEGs was conducted based on molecular function (MF), biolog-
ical process (BP) and cellular components (CC) using SEA tool, agriGO (version 2.0) [15] with
default settings (p-value, FDR <0.01). Therefore, the ontology gene of the meta-DEGs was
compared to the ontology gene profile of the reference set. To identify the key pathways, a
pathway analysis was carried out against the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database using the ShinyGO v0.61 tool [16].

Protein-protein interaction network analysis

Protein-protein interaction (PPI) network analysis was executed using the STRING software
(http://www.mybiosoftware.com/string-9-0-search-tool-retrieval-interacting-genesproteins.
html). The resulting STRING network was visualized and analyzed by the Network Analyzer
tool, which is available by default in Cytoscape software (version 3.7.2) [17]. Hub genes in the
networks were also identified using the Cyto-Hubba plugin in Cytoscape software.
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Identification of transcription factor and miRNA families

Transcription factors (TFs) play an essential role in controlling the expression of genes in dif-
ferent environmental conditions. To identify TFs and cis-regulatory elements in the promoter
regions of meta-DEGs, the Arabidopsis Gene Regulatory Information Server (AGRIS (http://
arabidopsis.med.ohio-state.edu/)) was employed. Additionally, potential miRNAs were pre-
dicted by downloading meta-DEG sequences from the TAIR database (http://arabidopsis.org)
and searching them against published miRNA sequences downloaded from miRBase through
the psRNATarget server (http://plantgrn.noble.org/psRNATarget/).

Validation by RT-qPCR

Total RNA was isolated from leaf tissue using DENAzist Column RNA Isolation Kit (DENAz-
ist Asia Co., Mashhad, Iran) according to the manufacturer’s instruction, followed by DNase
treatment via DNasel. cDNA was then synthesized using the YT A Reverse Transcriptase Kit as
instructed by the manufacturer. The YTA SYBR Green PCR Master Mix was used for real-
time quantitative PCR (RT-qPCR), and the relative expression level of each gene was normal-
ized using the actin gene as a reference gene. The primer sequences for RT-qPCR can be found
in S2 Table.

Results
Identification of DEGs using meta-analysis

To explore how C3 and C4 plants respond to drought stress and to identify which DEGs are
shared or unique between the two groups, a meta-analysis was conducted on nine datasets. As
aresult, 693 and 528 meta-DEGs (adjusted p-value < 0.05) were identified in C3 and C4
plants, respectively (S3 and S4 Tables). Of these DEGs, 41.6% and 23.3% were unique to C3
and C4 plants, respectively, while 35.1% (317 genes) were common in both groups. Among
these common genes, 276 had similar expression patterns in both C3 and C4 plants, with 138
up-regulated and 138 down-regulated genes (Fig 1). A similar expression pattern in both C3

C4-DownRegulated C3-UpRegulated

143
(15.8%)

C3-DownRegulated \ C4-UpRegulated

Fig 1. Venn diagram of the number of unique and common differentially expressed genes (DEGs) found in C3
and C4 plant groups.

https://doi.org/10.1371/journal.pone.0287761.9001
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and C4 plants suggested that they respond to stress in a similar way and implies their impor-
tance as key genes in stress response pathways. On the other hand, there were 31 genes that
were down-regulated in C3 but up-regulated in C4, and 10 genes that were up-regulated in C3
but down-regulated in C4. The presence of genes with different expression patterns, as well as
unique genes in each group, indicates that each group may have specific pathways for respond-
ing to drought stress.

Identification of TFs and miRNAs

In this study, we identified 23 and 10 TFs from 14 and 6 TF families that respond to drought
stress in C3 and C4 plants, respectively (Tables 1 and 2). The bHLH, AP2-EREBP, Homeobox,
C2H2, C2C2-Dof, and NAC families were common in both groups of plants. However, the
GRAS, WRKY, bZIP, G2-like, NLP, ABI3VP1, C2C2-CO-like, and TCP families were only
detected in C3 plants. The Homeobox, AP2-EREBP, C2H2, bHLH, and NAC families had the
highest numbers of genes.

Through analyzing down-regulated meta-DEGs, we identified 79 and 42 miRNAs belong-
ing to 39 and 28 miRNA families that target 65 and 37 down-regulated genes involved in vari-
ous biological processes in C3 and C4 plants, respectively (S5 and S6 Tables). On the other
hand, the results showed that the families of ath-miR5021 with 19 targets in C3 plants and 10
targets in C4 plants, and ath-miR5658 with 9 and 5 targets in C3 and C4 plants respectively
were the most abundant miRNA. The ath-miR156, ath-miR414, ath-miR168, and ath-
miR5020a were the other miRNAs with the most targets (S1 Fig).

Four miRNAs, namely ath-miR5021, ath-miR5658, ath-miR172, and ath-miR5016, were
found to target five genes encoding TFs in C3 plants. These genes included C2C2-CO-like

Table 1. List of identified Transcription factors for C3 plants group.

TF Locus Id Gene Name, Synonym TF Family Name
At2g23340 - AP2-EREBP
At2g46680 ATHB-7, ATHB7 Homeobox
At3g01470 ATHB-1, ATHBI1, HAT5, HD-ZIP-1 Homeobox
At3g18290 EMB2454 C2H2
At3g59060 PIF5, PIL6 bHLH
At3g62420 ATBZIP53 bZIP
At5g08790 anac081, ATAF2 NAC
At5g09330 anac082 NAC
At5g11060 KNAT4 Homeobox
At5g16540 ZFN3 C2H2
At5g39660 CDF2 C2C2-Dof
At5g41030 - TCP
At5g47220 ATERF-2, ATERF2, ERF2 AP2-EREBP
At4g24020 NLP7 NLP
At4g32010 HSI2-L1, HSL1, VAL2 ABI3VP1
At4g36870 BLH2, SAW1 Homeobox
At4g38960 - C2C2-CO-like
At3g54990 SMZ AP2-EREBP
At1g50600 SCL5 GRAS
At1g64625 - bHLH
At1g80840 ATWRKY40, WRKY40 WRKY
At2g20570 GLK1, GPRI1 G2-like

https://doi.org/10.1371/journal.pone.0287761.t001
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Table 2. List of identified Transcription factors for C4 plants group.

TF Locus Id Gene Name, Synonym TF Family Name
At2g22200 - AP2-EREBP
At4g36870 BLH2, SAW1 Homeobox
At2g46680 ATHB-7, ATHB7 Homeobox
At3g18290 EMB2454 C2H2
At4g29930 - bHLH
At5g39660 CDEF2 C2C2-Dof
At4g36920 AP2,FL1, FLO2 AP2-EREBP
At5g09330 anac082 NAC
At5g16470 - C2H2
At5g11060 KNAT4 Homeobox

https://doi.org/10.1371/journal.pone.0287761.t1002

(AT3G38960), Homeobox (AT4G36870), AP2/EREBP (At5g47220 and AT3G54990), and
bHLH (AT3G64625). Additionally, the gene encoding C2H2 TF (AT3G18290), which was
identified in both C3 and C4 groups, was targeted by three miRNAs, namely ath-miR5021,
ath-miR2933, and ath-miR8173.

GO enrichment and pathway analysis

To investigate the function of meta-DEGs in C3 and C4 plants, GO analysis was conducted.
Results showed that out of 520 meta-DEGs in C4 plants, 420 genes were significantly enriched in
301 GO terms including 192 terms in the biological process category, 49 terms in the molecular
function category, and 60 terms in cellular component category. In C3 plants, out of a total of
693 meta-DEGs, 566 genes were assigned to 355 GO terms in three categories of biological pro-
cesses (226), molecular functions (57), and cellular components (72) (S7 and S8 Tables).
Response to stress (GO:0006950), response to stimulus (GO:0050896), response to water depri-
vation (GO:0009414), response to hormone (GO:0009725), photosynthesis (GO:0015979) in the
biological function category and catalytic activity (GO:0003824), binding (GO:0005488), oxido-
reductase activity (GO:0016620), ion binding (GO:0016491), and antioxidant activity
(GO:0016209) in the category of molecular function and in the cell components category also
cell (GO:0005623), cell part (GO:0044464), organella (GO:0043226), and membrane
(GO:0016020) were some of the most important common terms in both groups of plants (Fig 2).

The KEGG pathway analysis results revealed that the meta-DEGs in both C3 and C4 groups
were significantly enriched in 52 and 48 pathways (FDR p-value<0.05), respectively. The top
20 pathways based on fold enrichment and FDR are shown in Fig 3. Some common pathways
in both groups of plants with the highest number of assigned meta-DEGs were biosynthesis of
secondary metabolites (111 genes in C3 and 104 genes in C4), carbon metabolism (50 genes in
C3 and 38 genes in C4), ribosome (27 genes in C3 and 19 genes in C4), amino acid biosynthe-
sis (23 genes in C3 and 29 genes in C4), photosynthesis and carbon fixation (28 genes in C3
and 26 genes in C4), glyoxylate and dicarboxylate metabolism (22 genes in C3 and 13 genes in
C4) and glycolysis/gluconeogenesis (19 genes in C3 and 18 genes in C4), starch and sucrose
metabolism (14 genes in C3 and 19 genes in C4) and porphyrin and chlorophyll metabolism
(12 genes in C3 and 12 genes in C4).

PPI network analysis and identification of hub genes

Investigation and analysis of the interaction network of meta-DEGs was done using STRING.
In C3 and C4 plants, networks were obtained with 693 and 528 nodes, 3339 and 2385 edges,
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Fig 2. Enriched GO terms corresponding to biological processes (BP), cellular components (CC) and molecular
functions (MF) under drought stress in C3 (a) and C4 (b) plant groups.

https://doi.org/10.1371/journal.pone.0287761.9002

respectively, with an average node degree of 9.64 and 9.3 and PPI enrichment p-value<1.0e-
16. The hub genes in the two networks were identified using the Cyto-hubba plugin in Cytos-
cape software. The top 50 nodes with the highest degree and central value of closeness were
selected as hub genes, with 33 genes found to be common between the two groups (S2 and S3
Figs). These conserved genes were related to photosynthesis, antenna proteins, response to
stimulus, response to abiotic stimulus, and ribosomal protein during the response to drought

stress (Fig 4).

Important pathways identified in response to drought stress

Energy metabolism (photosynthetic pathway). Among the identified meta-DEGs, 38
and 36 genes were related to energy metabolism in C3 and C4 plants, respectively, including
carbon fixation pathway in photosynthetic organisms (22 and 19 genes, respectively, in C3 and
C4), photosynthesis (6 and 7 genes, respectively) in C3 and C4) and antenna proteins (10 and
10 genes in C3 and C4, respectively). The findings revealed that the majority of the genes
encoding enzymes involved in carbon fixation through the Calvin cycle were suppressed in
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Fig 3. KEGG pathway classification of the meta-DEGs in C3 (a) and C4 (b) plant groups under drought stress.
https://doi.org/10.1371/journal.pone.0287761.9g003

both plant groups under drought stress. However, some genes exhibited diverse expression
patterns, for instance, the gene encoding transketolase (AT3G60750) was up-regulated in C4
and down-regulated in C3, while the gene encoding glyceraldehyde-3-phosphate dehydroge-
nase C (AT3G04120) was down-regulated in C4 and up-regulated in C3.

The expression pattern of all the meta-DEGs associated with the photosynthesis pathway
and antenna proteins was similar in both C3 and C4 plants, except for the light-harvesting
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Fig 4. Protein-protein interaction network of common hub genes in C3 and C4 plant groups. Photosynthesis
(green nodes), antenna proteins (blue nodes), response to stimulus (pink nodes), response to abiotic stimulus (purple
nodes) and ribosomal protein (yellow nodes).

https://doi.org/10.1371/journal.pone.0287761.9004

complex photosystem II subunit 6 (LHCB6; AT1G15820) and petF (AT1G60950) genes. These
genes were up-regulated in C4 and down-regulated in C3 plants, as shown in Fig 5.

On the other hand, 12 meta-DEGs encoding several key enzymes involved in porphyrin
and chlorophyll metabolism were also identified in each group of C3 and C4 plants. Nine
genes were common in two groups of plants, including up-regulated genes, pheophorbide a
oxygenase (AT3G44880), magnesium dechelatase (AT4G11911) and chlorophyli(ide) b reduc-
tase (NYCI; AT4G13250), and down-regulated genes magnesium-chelatase subunit chlH
(GUNS; AT5G13630), HEMBI (AT1G69740), chlorophyllide a oxygenase (AT1G44446), gera-
nylgeranyl diphosphate reductase (AT1G74470) and Mg-protoporphyrin IX monomethyl ester
oxidative cyclase (AT3G56940). Gene glutamate-1-semialdehyde-2, 1-aminomutase (GSAL;
AT5G63570) was also up-regulated in C3 plants and down-regulated in C4 plants. Three
down-regulated genes HEMA2 (AT1G09940), ferrochelatase 2 (FC2; AT2G30390) and uro-
phorphyrin methylase 1 (UPM1; AT5G40850) were also detected only in C3 plants. The up-reg-
ulated gene protochlorophyllide oxidoreductase A (PORA; AT5G54190) and down-regulated
genes coproporphyrinogen III oxidase (AT1G03475) and, chlorophyll synthase (G4
AT3G51820), were identified exclusively in C4 plants.

The hub gene analysis identified many common top-ranked genes based on the MCC
method in both groups of plants. A significant proportion of these genes were related to the
energy metabolism pathway. Specifically, four of the genes were involved in carbon fixation in
photosynthetic organisms, and 12 genes were related to photosynthesis and antenna proteins,
as follows: petF (ferredoxin), PsbO and PSAD1 (Photosystem I reaction center subunit II),
PSBS (NPQ4: Photosystem II 22 kDa protein), petC (Cytochrome b6-f complex iron-sulfur
subunit), LHCAI-2 (light-harvesting complex I chlorophyll a/b binding protein), and LHCB3-
6 (protein binding to chlorophyll Il a/b light-harvesting complex II). In addition, two genes
related to porphyrin metabolism pathway, geranylgeranyl diphosphate reductase (AT1G74470)
and Mg-protoporphyrin IX monomethyl ester oxidative cyclase (AT3G56940) were also deter-
mined as hub genes.

Carbohydrate metabolism. The findings from the meta-analysis showed alterations in
the expression of genes involved in carbohydrate metabolism pathways in both C3 and C4
plants. The results suggested that the expression of some genes related to the sucrose cycle and
starch degradation, galactose metabolism and tricarboxylic acid (TCA) cycle were up-regu-
lated in both groups. However, the majority of the genes involved in the pentose phosphate
pathway (PPP) were down-regulated in C3 plants, in contrast to C4 plants.

In this study, in both groups of C3 and C4 plants, genes encoding key enzymes in sucrose
and starch metabolism such as sucrose phosphate synthase (SPS) and sucrose synthase (SuS),
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and starch synthase (SS), ADP-glucose-pyrophosphorylase, starch branching enzyme, as well
as beta-amylase (BAM) and isoamylase 3 (ISA3) genes that have a role in starch degradation
were identified. The investigation of the trehalose metabolism pathway revealed the identifica-
tion of crucial genes including trehalose-6-phosphate synthase 4 (TPS 4) in both groups of
plants and trehalase only in C3 plants. Under stress conditions, the expression of TPS gene,
which is one of the two important enzymes involved in trehalose biosynthesis, was down-regu-
lated, while trehalase, which is responsible for the breakdown of trehalose into glucose, was
up-regulated.

Among the important genes up-regulated in the galactose pathway in both groups of plants,
we can mention alpha-galactosidase genes (AT5G08380 (common in C3 and C4) and
AT5G08370 (only in C3)) and phosphoglucomutase gene (AT1G70730 (only in C3)) which are
involved in the synthesis and breakdown of glucose, as well as raffinose synthase genes
(AT3G57520 (common in C3 and C4) and AT5G40390 (only in C4)) and galactinol synthase
(AT2G47180 (only in C3)) which are involved in raffinose biosynthesis. Raffinose acts as an
osmoprotectant in tolerance to abiotic stresses. In addition, transporters involved in sugar
transport (section transporters) were also identified. Overall, these findings suggest that the
activation of the sucrose cycle in the leaves of both C3 and C4 plants is a shared response
mechanism to drought stress.

Ribosome. According to KEGG and network analysis, the "Ribosome" pathway was
found to be significant. The study identified 27 genes associated with large (RPL) and small
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(RPS) ribosomal subunit proteins in C3 plants and 19 genes in C4 plants. In C4 plants, all RP
genes were observed to be down-regulated, whereas in C3 plants, 12 RP genes were up-regu-
lated and 15 genes were down-regulated. Up-regulated genes RPL3e, RPL4, RPL23A, RPLS,
RPL7A, RPL10e, RPL6e, RPS3, RPS5e, RPS3A and RPS19 were detected only in C3 plants. 14
down-regulated genes including 10 RPL (RPL34, RPL35, RPL1, RPL7/12, RPL18, RPL17,
RPL21, RPL27, RPL6, and RPL19) and four RPS (RPS1, RPS17, RPS5, and RPS9) were common
in both groups. Five genes encoding RPL24, RPL11, RPL29, RPL3 and RPS13/18 were also
detected exclusively in C4 plants.

Amino acid metabolism. The accumulation of amino acids is one of the plant responses
to abiotic stress. Our study revealed that one of the important pathways with a considerable
number of meta-DEGs was the amino acids biosynthesis pathway. Several key genes in the
arginine and proline metabolism pathway were observed to be up-regulated. Furthermore, the
expression of genes related to cysteine and methionine metabolism was altered in response to
drought stress in leaves of both C3 and C4 plant groups. Transcripts encoding main genes
involved in the methionine salvage pathway were also up-regulated. Besides, genes related to
branched-chain amino acids (BCAAs) and lysine degradation were up-regulated in both C3
and C4 groups. However, genes related to the BCAAs biosynthesis pathway were only
observed in the C4 plants group.

Membrane transporters and channels. In both C3 and C4 groups, several genes related
to ion transporters and membrane channels were identified, including genes belonging to fam-
ilies of ATP-binding cassette (ABC), ATPase V type proton transporter (VHA), potassium
transporter, and aquaporin. Also, we detected several transcripts encoding sugar, sugar alco-
hol, and amino acid transporters that regulate the movement and distribution of compatible
solutes inside and between plant cells under stress. Including sucrose transporters/carriers
(SUC), the SWEET sugar family of transporters, tonoplast monosaccharide transporters
(TMT?2), lysine-histidine transporter (LHT), proline transporter (PROT), and amino acid vac-
uolar transporters (AVT).

In both groups of plants, the up-regulated genes of CAT2, SWEET 6, and ABCG22, ABCES,
ABCIS8 from the ABC transporter family and three amino acid transporter genes LHT, PROTS3,
AVT6B, and AVTI1B were common. Three genes ABCG12 ABCG25 and ERD6 and five genes
VHA-A, VHA-d2, VHA-H, VHA-D, and VHA-EI from the VHA family, two genes belonging
to the aquaporin family (PIP1, and TIP1) and two potassium transporter genes (KUP8 and
KUP2) were detected only in C3 group. Three genes SUC4, TMT2, and GONST3 which belong
to sugar and sugar alcohol transporters were also identified only in C4 group.

Aldehyde dehydrogenase family member. The results showed that drought stress
induced the expression of genes encoding aldehyde dehydrogenase (ALDH) family member in
both groups of C3 and C4 plants. Eight and five ALDH genes were detected in C3 and C4
plants, respectively. Five up-regulated genes ALDH3I, ALDH5F, ALDH7B, ALDHI10A and
ALDHI12A were common in both groups. ALDHI11A, ALDH2B, and ALDH6B were observed
only in C3 plants. Among them, only ALDHIIA was down-regulated.

Validation by RT-qPCR

The meta-analysis results were validated by conducting RT-qPCR experiments on sunflower
and Artemisia plants under drought stress. Four common genes in both groups of C3 and C4
plants were randomly chosen and their expression was compared between control and treat-
ment plants (Fig 6). The results showed that the expression pattern of selected meta-DEGs
under severe drought condition was the same as the meta-analysis results. These findings sug-
gest that the meta-analysis results are reliable and accurate.
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Fig 6. Relative expression of four selected genes Ferredoxin, GAPB, HVA22, and SPS.
https://doi.org/10.1371/journal.pone.0287761.9006

Discussion
Identification of TFs and miRNAs

TFs play a crucial role in controlling gene expression in plants and have an impact on multiple
functional processes such as response to environmental stimuli and hormones, cell growth
and differentiation, and the development of organs. TFs work by binding to particular DNA
sequences and interacting with various proteins within transcription complexes to regulate the
expression of numerous genes [18]. Homeobox proteins, a group of TFs, are present in a wide
range of organisms including invertebrates, vertebrates, fungi, and plants. In plants, HD-con-
taining proteins are divided into 14 families such as HD-Zip WOX, BEL, and KNOX [19]. Dif-
ferent expression of homeobox genes in response to abiotic stresses has been reported in many
plant species. For instance, an increase in ATHB7 and ATHBI2 transcripts from the HD-Zip I
group has been observed in plants subjected to drought stress [20]. HD-Zip genes as an impor-
tant member of the homeobox family, participate in the response to diverse abiotic stresses in
several plant species, including wheat, sesame, tea plant, foxtail millet, and potato [19].
Another largest group of TFs in plants is APETALA2/ethylene-responsive element binding
proteins (AP2/EREBPs), which act as crucial regulators in various abiotic stress conditions
such as drought, salinity, cold, and heat. Furthermore, AP2/EREBPs are involved in various
hormone-related signal transduction pathways such as ethylene, ABA, cytokinin, jasmonate,
and salicylic acid [21].
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MicroRNAs modulate the response of plants to abiotic stress through post-transcriptional
regulation [22]. Our research predicted several miRNAs from different families, including
miR5021, miR5658, miR414, and miR156, in both C3 and C4 plant groups. MiR5021, which
was found to have the highest number of target genes in our study, is a crucial miRNA
involved in various pathways according to previous studies. For example, in Arabidopsis, cer-
tain miRNAs such as miR5021, miR158, and miR171 have been found to negatively regulate
genes that contribute to cell growth, the ABA signaling pathway, and light-harvesting complex
II (LHCII) [23]. Furthermore, Singh et al. [24] have proposed that miR5021, miR414, and
miR156 may play a role in the secondary metabolite pathway, specifically in controlling the
biosynthesis of essential oils by regulating the genes that encode enzymes involved in this pro-
cess. In some plant species, miR156h has been observed to participate in various biological
processes such as abiotic stress responses, hormonal balance, tissue growth, and cytoplasmic
male-sterility [25]. The possible role of ath-miR5658 and ath-miR414 as the key regulators of
post-transcriptional salt-stress responses has been pointed out [22]. Singh et al. [25] discovered
that certain genes targeted by miRNAs, including miR5021, miR5658, miR408, and miR854,
were involved in carbohydrate metabolism during abiotic stress. They also found that
miR5021 targeted TFs such as WRKY and MYBs, which play regulatory roles in stress
response. In the present study, C2C2-CO-like and C2H2 TFs are among the target genes of
miR5021. It has been reported that C2H2 TFs are involved in Populus response to drought,
salinity, and heat through different mechanisms [26]. Mun et al. [27] showed that drought
stress significantly regulated several families of TFs, including AP2-EREBP, bHLH, MADS-
box, WRKY, C2H2, C2C2-CO-like, C2C2-Dof, and homeobox.

Combinatorial regulation by miRNAs and TFs as the most important regulators of gene
expression leads to an appropriate progression in biological events. Since many miRNAs are
able to target TFs, they can be ideal candidates to investigate the interaction between gene
expression networks and signaling pathways [18].

Important pathways identified in response to drought stress

Energy metabolism (photosynthetic pathway). Photosynthesis is the most important
metabolic process in plants which involves converting light energy into chemical energy [28].
This process occurs in two stages, with the first stage involving the absorption of light energy
by antenna systems associated with photosystem I (PSI) and photosystem II (PSII) in higher
plants [29]. LHC are responsible for several essential processes critical for plant growth, devel-
opment, and response to abiotic stress [30]. In plants, LHCA1-LHCAG6 genes encode LHCI,
which mainly contains chlorophyll a, while LHCB1-LHCB7 genes encode PSII antennae [30].
The process of water splitting in the oxygen-evolving complex (OEC) leads to the production
of H" ions in the thylakoid lumen. Electrons are transferred to PSI through the plastocyanin
pool and cytochrome b6-f (Cytb6f) complex. Ferredoxin (FD) receives electrons resulting
from water splitting in PSII, then ferredoxin NADP™ reductase transfers the electron from the
ferredoxin molecule to the nicotinamide adenine dinucleotide phosphate H (NADPH) mole-
cule. ATP synthase transports H" ions back to the stroma, which converts the gradient energy
of H into chemical energy in the form of ATP [29].

Functional analysis of meta-DEGs in this study showed that genes related to photosynthesis
and photosynthetic antenna proteins were significantly enriched. Photosynthesis-related genes
such as PSI (PSAD1), PSII (PsbO, and Psbs), Cytb6f (petC), and photosynthetic electron trans-
fer (FD) were determined as hub genes. FD was one of the genes with a differential expression
pattern (up-regulated in C4 and down-regulated in C3) in two groups of plants. In addition to
transferring electrons during photosynthesis, FD participates in reactive oxygen species (ROS)
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scavenging by the reduced ascorbate and thus protects the photosynthetic system against
photo-oxidative damage in plants under stress [31]. Down-regulation of FD gene expression
in Arabidopsis (C3) and up-regulation in sorghum and maize (C4) have also been reported
under drought stress [32-35]. FD up-regulation can lead to an increase in the stimulation of
the electron transport cycle and the ability to dispose of excess electrons in drought stress con-
ditions [34, 35].

LHClII-related genes, including LHCBI-LHCBS5, were down-regulated in both groups of
plants under drought stress. In contrast, only the LHCB6 coding gene showed up-regulation
in the C4 group and down-regulation in the C3 group (Fig 5). This observation was similar to
earlier research, which showed a decrease in the expression level of genes encoding LHC
under abiotic stress, such as drought [28-30, 36, 37]. It is noteworthy that genes related to
LHCI did not have the same expression pattern, as LHCAI and LHCA4 genes were up-regu-
lated, while LHCA2 and LHCAG6 genes were down-regulated in both plant groups. Variation in
LHC gene expression levels could be attributed to the chloroplast antenna’s adaptation to
excessive energy caused by high radiation or conditions limiting energy utilization such as
cold or dehydration [36]. According to a prior investigation, LHCII assemblies and PSII-LH-
CII super-complexes play a crucial part in protecting PSII from photo-damage during drought
stress [37]. Therefore, based on our findings and previous research, LHC may play an impor-
tant role in the response and adaptation of plants to drought stress. The reduction in the
expression of genes related to photosynthesis and photosynthetic antenna proteins in our
study implies that drought stress could affect the absorption and transmission of solar energy,
as well as the efficiency of photosynthesis, in both C3 and C4 plant groups.

Chlorophyll is an important component of photosynthesis, and its content is significantly
linked to the rate of photosynthesis and organic matter accumulation. A diverse range of
enzymes catalyzes chlorophyll biosynthesis, and their activity reduction leads to its inhibition
[38]. Earlier studies have revealed that under unfavorable conditions such as drought, the
expression of enzymes involved in porphyrin and chlorophyll biosynthesis is down-regulated,
which ultimately leads to a decrease in chlorophyll content [38-40].

Several genes, including protoporphyrinogen oxidase (PPO), glutamyl-tRNA reductase, and
magnesium chelatase subunit, which are involved in porphyrin metabolism, are regulated
under stressful conditions to enhance drought tolerance in plants [40]. In porphyrin biosyn-
thesis, glutamate-1-semialdehyde and 5-aminolevulinic acid (ALA) are formed from glutamyl-
tRNA, then catalyzed by glutamyl-tRNA reductase (encoded by the HEMA gene) and GSA,
ultimately forming porphyrins through a variety of reactions. PPO as the last enzyme in the
tetrapyrrole biosynthetic pathway is crucial for the biosynthesis of chlorophyll and heme. ferro-
chelatase (FC) and magnesium chelatase (composed of three subunits CHLD, CHLH, and
CHLI) convert the PPO product (protoporphyrin IX (Proto IX)) into Fe-Proto IX and Mg-
Proto IX, respectively [41].

In this study, drought treatment in C3 and C4 plants by down-regulation of genes encoding
important enzymes of porphyrin and chlorophyll biosynthesis and up-regulation of genes
involved in chlorophyll degradation may lead to inhibition of porphyrin and chlorophyll bio-
synthesis and ultimately reduces chlorophyll content. The decrease in chlorophyll biosynthesis
pathway is a defense mechanism to avoid accumulation of singlet oxygen generating tetrapyr-
roles in the early stages of the stress response [42]. Porphyrin intermediates can produce pho-
totoxic molecules such as singlet oxygen, so they are quickly utilized to form chlorophyll and/
or heme. During stress, the reduction of chlorophyll production causes the accumulation of
these intermediates along with ROS. It has been suggested that ROS, which are generated by
porphyrin mediators, act as signaling molecules in the stress response pathway. Their levels
increase, activating the stress response network, ultimately leading to the down-regulation of

PLOS ONE | https://doi.org/10.1371/journal.pone.0287761 June 27, 2023 14/28


https://doi.org/10.1371/journal.pone.0287761

PLOS ONE

Comparison of plants with different photosynthetic pathways by meta-analysis under drought stress

genes involved in porphyrin metabolism [41]. On the other hand, the accumulation of ROS
under stress leads to lipid peroxidation and consequently the destruction of chlorophyll.
Reducing the rate of photosynthesis can also can cause a reduction in the abundance of pro-
teins related to chlorophyll metabolism. Therefore, inhibiting porphyrin and chlorophyll
metabolism may lead to more efficient energy saving in plants to defend against drought stress.
Furthermore, the shift in leaf color from green to yellow due to chlorophyll reduction can
increase radiation reflection, which serves as a protective mechanism for the photosynthetic
system against stress [43].

In general, based on our results, the down-regulation of a wide range of genes involved in
the photosynthesis pathway (light reactions and carbon fixation pathways), which leads to a
lower photosynthesis and disturbance in the carbon fixation process, shows that the photosyn-
thesis process in both groups of plants has been severely affected by drought.

Carbohydrate metabolism. Drought-induced water deficiency in plants results in
decreased carbon fixation, attributed to stomatal closure in leaves and inhibition of photosyn-
thetic activity, which in turn altered the carbohydrate metabolic balance. Additionally, plants
accumulate a large amount of soluble carbohydrates such as glucose, fructose, sucrose, raffi-
nose, mannitol, and pinitol under drought stress [44]. The expression of genes related to car-
bohydrate metabolism, including SuS, SPS, TPS, trehalase, BAM, iso amylase, raffinose
synthase and galactinol synthase, was altered by drought stress in both plant groups in our
study. SPS and SusS are key enzymes of sucrose metabolism in plants. SPS is required as the
central enzyme in sucrose synthesis to produce sucrose-6-phosphate [45]. Drought stress
affects SPS expression levels. Improvement of SPS activity changes the distribution of carbon
and thus increases the content of soluble sugars and sucrose, which are important for regulat-
ing cell osmotic pressure to tolerate drought stress [40]. The reversible reaction between
sucrose and fructose is catalyzed by SuS [45]. It seems that the up-regulation of SuS is activated
in drought conditions for providing metabolic mediators, regulating osmotic potential, or res-
piration [46].

Starch is the main storage carbohydrate in plants, which plays a role in the response to abi-
otic stress in plants. Under drought conditions, the breakdown of starch in the chloroplast
results in an increase in the levels of soluble sugars such as sucrose, glucose, and fructose [47].
Starch degradation is enhanced by increasing the expression of some key genes, including
ISA3, AMY3, and BAM9 [48]. The up-regulation of genes involved in the starch degradation
pathway might help in allocating sugar energy during drought stress by promoting the conver-
sion of starch into glucose [46]. The level of soluble sugar and sucrose increased while the level
of starch decreased in soybean leaves under drought stress, possibly due to alterations in the
activity of sugar metabolism enzymes and expression of genes such as GmSuS, GmSPS,
GmA-INV, GmC-INV, GmAMY3, and GmBAMI [47].

Previous research has indicated the activation of genes involved in the galactose metabolism
pathway, in addition to sucrose and starch metabolism [49]. In our study, an increase in the
expression of genes involved in the galactose pathway was observed, such as the up-regulation
of two raffinose synthase genes. Raffinose family oligosaccharides (RFOs) are known to accu-
mulate in plants under abiotic stresses and act as osmolytes or antioxidants, as well as playing
arole in carbon storage and transport [50]. Furthermore, galactinol synthase, which catalyzes
the galactinol biosynthesis reaction, was only up-regulated in C3 plants. Galactinol is an
important molecule in plant defense and acts as a galactosyl donor to generate larger RFOs
[50].

We observed that drought stress caused changes in the expression of genes related to the
glycolysis/glycogenesis pathway and the TCA cycle. Specifically, citrate synthase and aconitase
were regulated in both groups of plants, while pyruvate dehydrogenase was only regulated in
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C3 plants. Increased glycolysis can cause the accumulation of acetyl CoA in the TCA cycle and
the production of more ATP, which could help plants withstand drought stress [51]. There-
fore, increased glycolysis and TCA may be a strategy for energy supplying during the activa-
tion of the plant defense system against stress [52]. The PPP is another important mechanism
of glucose degradation. Its main function is the production of substrates for the synthesis of
other metabolites, particularly other monosaccharides [51]. PPP, as an important carbohydrate
metabolic pathway, plays a key role in plant growth and stress response [53]. According to Shu
etal [51], the down-regulation of PPP in rice under drought stress is thought to be related to
the reduction of ribose, erythrose, shikimic acid, and arabinitol synthesis. This reduced synthe-
sis may decrease unnecessary energy consumption under stress [51]. In contrast to C3 plants,
up-regulation of important genes in PPP was observed in C4 plants, including the genes
encoding glucose-6-phosphate dehydrogenase (G6PDH: AT5G40760), glucose-6-phosphate
isomerase (AT4G24620) and transketolase (AT3G60750) (Fig 7). G6PDH is the essential
enzyme responsible for the production of NADPH in the oxidative pentose phosphate pathway
(OPPP) and has a vital function in modulating redox homeostasis and stress response [53].
OPPP produces a large amount of intermediate metabolites and NADPH, which are crucial
for various metabolic processes such as fatty acid, nucleotide, and amino acid synthesis, carbon
fixation, and nitrogen assimilation [54]. Furthermore, OPPP is a key mechanism in helping
plants to cope with abiotic stress like salinity and drought [52, 53, 55]. It appears that NAD(P)
H plays a crucial role in maintaining the activity of PSI when cells are under stress by serving
as an electron source for PSI [56].

Transgenic soybean plants that overexpress GmG6PDH?2 exhibit greater resistance to salin-
ity stress, likely due to the coordination with the redox states of ascorbic acid and glutathione
pool to inhibit ROS production [53]. The induction of transketolase and NADPH indicates the
operation of the PPP in plant cells under salt stress [57]. Under combined drought stress and
heat shock, the expression of genes such as GGPDH increases the flow of sugars through these
pathways, possibly to produce reducing energy, like NAD(P)H, when photosynthesis is not
occurring [58].

Ribosome. Plants use various mechanisms at the transcriptional and translational level to
adapt to environmental changes. Ribosomes, due to their essential role in the process of trans-
lation and protein synthesis, can be very important in the plant’s response to different environ-
mental conditions [59]. According to previous research, many genes encoding ribosomal
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proteins (RPL and RPS) were differentially regulated by various stress conditions which
directly affect plant growth and transcriptional regulation of RP genes, ultimately leading to
ribosome biogenesis [60]. In Prosopis juliflora various RP genes are commonly down-regulated
under drought and salinity stress, indicating the start of the response to stress through a
decrease in the rate of protein synthesis [61]. On the other hand, in rice some RP genes such as
RPLI0, RPL6, RPL7, RPL23A, RPL24, RPL31 and RPS10, RPS4 and 18RPS were up-regulated
when subjected to water stress [60]. Furthermore, studies on mutants of RP genes have also
shown physiological defects in mutant plants. The reduction in RP function can affect protein
synthesis, which may be one of the reasons for developmental abnormalities. These defects
could suggest the extra-ribosomal and regulatory roles of RP [62]. The stress tolerance of
transgenic plants can be improved through the expression of ribosome-related genes such as
RPL23A [60].

The response of Haloxylon salicornicum to salinity stress involves an increase in the expres-
sion of proteins related to the ribosomal pathway, such as elongation factor-Tu (EF-Tu),
which leads to an increase in protein synthesis [63]. The ability to renew proteins is one of the
main protective mechanisms of plants in response to drought stress [59]. In our study, drought
stress in C3 plants caused the up-regulation of genes encoding elongation factor EF-Tu pro-
teins such as S20e, S3e, L23Ae, L8e, L3e, L4e, and S2e, but no significant change was observed
in C4 plants. EF-Tu plays a crucial role in abiotic stress and has been reported to be up-regu-
lated in plants under heat stress. The expression of maize EF-Tu gene in Escherichia coli found
to induces heat tolerance. Knock-out EF-Tu mutants have shown lower EF-Tu protein levels
and heat tolerance compared to wild-type plants. On the other hand, overexpression of an
EF-Tu gene has improved heat tolerance [64]. Our study revealed a significant number of RP
genes as hub genes (11 common genes (Fig 4), 14 genes in C3, and 12 genes in C4 (S2 and S3
Figs)), suggesting that RP genes play an important role in regulating the response to drought
stress at the transcriptional level. Besides, the up-regulation of EF-Tu genes in C3 plants may
indicate an increase in protein synthesis to restore damaged proteins during stress.

Amino acid metabolism. The initial response of plants to water deficiency is osmotic
adjustment [51], which involves increasing the levels of certain amino acids to enhance stress
tolerance. These amino acids serve as osmolytes, ROS scavengers, precursors of energy-related
metabolites and signaling molecules. Studies on gene expression have demonstrated that vari-
ous genes involved in amino acid metabolism, like proline, are regulated under drought stress
[65]. In this study, the genes involved in amino acid metabolism were identified. Proline is one
of the most important amino acids that accumulate in plants in response to stress and acts as
an osmoprotectant and free radical scavenger [65]. It is mainly synthesized from glutamate in
a sequential process involving y-glutamyl kinase (y-GK), pyrroline-5-carboxylate synthetase
(P5CS), and P5C reductase (P5CR). Alternatively, it can be synthesized from ornithine
through the action of ornithine-8-aminotransferase (OAT), following the conversion of argi-
nine to ornithine by arginase [66, 67]. Our research found that the expression of P5CS, OAT,
and arginase were up-regulated in C3 and C4 plant groups. Previous studies have suggested
that the up-regulation of P5CS gene expression leads to an increase in proline content in
response to water stress [51]. The accumulation of proline under stress can be the result of
stimulation of proline synthesis or the inhibition of proline degradation [67]. Our study also
revealed that the proline dehydrogenase (PDH) gene (AT5G38710), which catabolizes proline
to P5C in the process of proline degradation, was down-regulated exclusively in C3 group
[68]. It has been reported that PDH activity decreases under stress [69]. The amino acids argi-
nine and ornithine are precursors in the biosynthesis of polyamines (mainly spermidine, sper-
mine and putrescine), which are ROS scavengers and can enhance plant tolerance to abiotic
stresses. Therefore, it seems that arginine plays a role in plants response to abiotic stresses [70,
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71]. Increased gene expression and protein accumulation of spermidine synthase (SPDS) and
polyamine oxidase (PAO) induces polyamine biosynthesis in response to PEG stress [72]. We
also observed the up-regulation of genes encoding SPDS (AT5G53120) in C3 plants and PAO
(AT1G65840 and AT5G13700) in C4 plants. In maize under drought stress increase in the
expression and activity of PAQO in back-conversion of spermidine and Spermine to putrescine
(acts as a protectant for the photosynthetic apparatus), as well as the elevated antioxidant activ-
ity have been reported. These results may contribute to the higher efficiency of the photosyn-
thetic process and stress tolerance [73]. Therefore, it seems that the polyamine biosynthesis
pathway may act through spermidine accumulation in C3 plants and putrescine in C4 plants
in response to drought stress.

Glutamate, the main substrate of proline, can be produced through the saccharopine path-
way as one of the lysine catabolism pathways. Abiotic stress or the induction of the aspartate
pathway for lysine biosynthesis in the chloroplast can result in an increase in the cellular con-
centration of free lysine. Lysine biosynthesis in chloroplast requires a transporter such as
LHT1 in order to transport the amino acid to the cytosol and other organelles to be metabo-
lized effectively. LHT1 is induced under abiotic stress and can connect lysine biosynthesis to
its catabolism. As lysine accumulates, the metabolic flux from lysine to a-aminoadipate
increases via the saccharopine pathway [74]. Degradation of lysine through the saccharopine
pathway is catalyzed by the bifunctional enzyme LKR/SDH and aminoadipic semialdehyde
dehydrogenase (AASADH), which is encoded by the ALDH7BI gene in plants [65]. In both
C3 and C4 plant groups, we observed an increase in expression of these genes involved in
lysine metabolism in response to drought stress. Up-regulation of LKR/SDH and AASADH
genes under drought stress in tolerant and susceptible sesame genotypes also has been reported
[65]. The expression of LKR/SDH was up-regulated in response to stress-regulating hormones
such as ABA and jasmonic acid [75]. In Arabidopsis and tobacco plants, ectopically expression
of the GmALDH?7 gene enhanced tolerance to drought, salinity, and oxidative stress [76]. The
up-regulation of genes involved in lysine degradation suggests that the activation of the sac-
charopin pathway under stress, through the production of osmoprotectants and the reduction
of toxic aldehydes, contributes to stress tolerance in both plant groups.

In addition to proline, other amino acids especially branched chain amino acids (BCAAs)
such as leucine, isoleucine, and valine also accumulate under abiotic stress. The accumulation
level of BCAAs under stress are often higher or comparable to proline [77]. Water deficit has
been shown to increase the levels of BCAAs in various species including Arabidopsis, barley,
maize, and tomato [78]. While high-abundant amino acids like proline are synthesized in
response to stress, low-abundant amino acids tend to accumulate due to increased protein
turnover from proteolysis [79]. The accumulation of low-abundant BCAAs during stress due
to increased protein degradation have been reported [77, 80]. The degradation of proteins
increases in response to conditions that cause carbohydrate depletion, such as dehydration,
salt stress, and extended periods of darkness. This process is essential to remove damaged pro-
teins and to provide amino acids as a source of energy for the production of ATP, as well as to
mobilize reduced nitrogen and sulfur [79].

The activation of the BCAA degradation pathway under stress conditions can provide an
alternative source of respiratory substrates for the TCA cycle, as well as a detoxification mecha-
nism by maintaining a free-branched amino acids pool at a compatible level with cellular
homeostasis [81]. Our study has identified genes involved in BCAA degradation that are up-
regulated under stress (Fig 8). Interestingly, we observed that genes in the BCAA biosynthesis
pathway are exclusively down-regulated in C4 plants. Batista-Silva et al. [82] showed that dur-
ing both drought and salinity stress, the biosynthesis pathways of low-abundant amino acids,
including BCAAs and lysine, are down-regulated, while their degradation pathways are
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https://doi.org/10.1371/journal.pone.0287761.9008

strongly induced [82]. Degradation pathways of BCAA and lysine have previously been identi-
fied as essential factors for dehydration tolerance in Arabidopsis [83]. Wu et al. [84] also
proved that BCAA degradation may be an important mechanism for drought resistance in
sunflowers.

Our results can generally indicate the importance of the amino acid metabolism pathway in
response to stress in both groups of plants, particularly the biosynthesis of proline and the deg-
radation of BCAA and lysine. These pathways may help plants cope with stress by producing
compatible osmolytes, supplying an alternative source of ATP, and detoxifying the harmful
compounds. Another important pathway identified in our study is cysteine and methionine
metabolism. Among the genes regulated in this pathway, we can mention methionine synthase
3 and S-adenosyl-L-homocysteine hydrolase, which are key enzymes in the S-adenosyl-L-methi-
onine cycle. Metabolites in this cycle have an important role in methylation of DNA, proteins,
and other metabolites that control gene expression, cell wall metabolism, and polyamine and
ethylene biosynthesis to enhance stress tolerance [85].

Membrane transporters and channels. Plants have developed complex strategies to
adapt to the effects of changes in water status in the environment [86]. Membrane transport
proteins are key targets for improving the efficiency of water and nutrient uptake and thus
controlling drought tolerance in plants, they are also essential for transporting sucrose to
where it is needed [86]. In this study, in addition to the identified important pathways, we
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found expression of several genes encoding channels and membrane transporters such as ABC
transporters, potassium transporter, VHAs, and sugar and amino acid transporters. ABC
transporters are a type of primary active membrane transport protein found in the plasma
membrane [87]. ABC proteins are categorized into several, ABCA-G and ABCI, subfamilies.
ABC transporters translocate diverse molecules across a variety of biological membranes [88].
The ABCG subfamily as the largest known subfamily of ABC transporters in plants, can partic-
ipate in various physiological processes [87]. This study identified three ABCG genes
(ABCGI12, ABCG22 and ABCG25) that were up-regulated under drought stress. The role of
ABCG22 and ABCG25 in stomatal regulation has been reported in Arabidopsis. AtABCG22
and AtABCG25 act in ABA influx into guard cells. Overexpression of ABCG25 in Arabidopsis
results in reduced water loss from leaves by transferring ABA to guard cells. AtABCG22
mutant plants exhibit increased water transpiration and sensitivity to drought stress [89, 90].

VHA s are another group of up-regulated genes under drought stress in C3 group in our
study. They are plant proton pumps which associated with oxidative phosphorylation and
have a significant impact on plant growth and stress tolerance. The role of VHAs in response
to abiotic stress have been widely investigated. For example, over-expression of the apple
VHA-A gene in transgenic tobacco seedlings improved the activity of VHA and drought toler-
ance [91]. By overexpressing GhVHA-A in tobacco, it was discovered that this gene plays a cru-
cial role in improving dehydration tolerance by enhancing osmotic adjustment and
detoxifying ROS [92]. The differential expression of VHA genes in our study indicated their
essential functions in response to stress in C3 plants, so drought may have a greater impact on
oxidative phosphorylation in C3 plants than in C4.

Sugars are an important energy source and signaling molecule in plants [93]. Under
drought stress, more efficient synthesis and movement of sugars within plant cells can be the
main mechanism of drought tolerance due to the limitation of carbon absorption caused by
stomatal closure and reduction of carbohydrates through respiratory processes [46]. The trans-
port of sucrose through the apoplastic pathway in the plant phloem depends on the participa-
tion of SUC and SWEET families. The expression levels of genes encoding SUC and SWEET
transporters are related to the capacity of sucrose transport [94]. Sugar transporters such as
SWEET have a role in response to biotic and abiotic stresses. For example, MdASWEET17 in
transgenic tomatoes leads to higher tolerance to drought stress and more accumulation of
fructose [93]. In our research, we observed the up-regulation of genes encoding various sugar
transporters under drought stress, such as SWEET6 (AT1G66770) in both groups of plants
and SUC4 (AT1G09960) only in C4 plants. The up-regulation of SWEET and SUC in soybean
under drought stress can enhance the capacity of leaves to load sucrose and roots to discharge
it [94]. In addition, increasing their expression in Arabidopsis leaves also increases carbon
export from leaves to roots to maintain an efficient root system under stress [95]. Therefore, it
is possible that the increase in the expression of sugar transporters in our study also indicates
an increase in carbon flux from leaves to roots, especially in C4 plants due to their higher num-
ber of meta-DEGs encoding sugar transporters.

Several enzymes and transporters, which are involved in the biosynthesis of amino acids,
are regulated under different environmental conditions. Amino acid transporters are the main
mediators of nitrogen distribution in the plant and are necessary for maintaining growth and
development. Environmental stresses such as salinity, light, and drought also affect the expres-
sion of amino acid transporters [96]. Our study showed an increase in the expression of amino
acid transporters, including PROT3, LHT-likel, and AVTs, under drought stress. PROTs and
LHTs are two types of amino acid transporters known to be involved in proline transport.

[97]. PROTs are transporters that are mainly involved in the transport of proline, glycine, and
y-aminobutyric acid (GABA), while LHT transport a wide range of neutral and acidic amino
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acid substrates [96]. The AVTs are a group of proteins that are located on the vacuole mem-
brane and are responsible for ATP-dependent transport of several amino acids, like proline,
from the vacuole [98]. Previous studies on AVT1B knockdown mutants (avtlb-1 and avt1b-2)
indicated lower glycine levels in the mutant plants compared to the control group. In addition,
AVTIB expression is strongly suppressed in darkness. Therefore, AVT1B as a vacuolar glycine
transporter acts in the negative regulation of glycine and can increase glycine storage [99].

Aldehyde dehydrogenase family member. Abiotic and biotic stresses cause the formation
of ROS, which induce over-accumulation of aldehydes in cells [100]. Aldehydes are intermedi-
ate molecules in numerous cellular pathways, including amino acid, carbohydrate, protein,
lipid, and steroid metabolism. However, excessive amounts of aldehydes have adverse effects
on plant metabolism and can cause cellular damage [101]. To deal with harmful aldehydes,
ALDHs oxidize a wide range of aldehyde molecules to their corresponding carboxylic acids
[100]. Research conducted on transgenic Arabidopsis plants demonstrated that constitutive or
stress-inducible expression of ALDH3I1 and ALDH7B4 genes causes high tolerance to osmotic
and oxidative stress, which was associated with the decrease in the accumulation of ROS and
malondialdehyde [101]. In our research, we observed that ALDH3I and ALDH7B were up-reg-
ulated in both the C3 and C4 groups under drought stress. We also identified other genes, such
as ALDHI2A and ALDH2B that showed increased expression. The increase in the expression
of SSALDHI12A1, StALDH7A1, and StALDH2B6, in response to abiotic stresses, including dehy-
dration, salinity, and heat has been reported [102]. ALDH12A1 plays a crucial role in prevent-
ing proline toxicity by degrading the toxic intermediate P5C [103]. Genes encoding ALDH5F1
and ALDH10 were also up-regulated in our study. ALDH5F1 catalyzes the conversion of suc-
cinic semialdehyde to GABA, a non-protein amino acid that accumulates in plants in response
to abiotic stresses [104]. ALDH10 enzymes are related to polyamine catabolism and the biosyn-
thesis of osmoprotectants. ALDH10 enzymes produce glycine betaine by oxidizing betaine
aldehyde. Glycine betaine accumulates as an osmolyte in plants under osmotic stress [100].
These results may suggest that ALDHs may contribute to C3 and C4 plants coping with abiotic
stresses through the elimination of toxic aldehydes by enhancing the antioxidant defense as
well as their role in the metabolism of amino acids as an osmolyte.

The main limitation of this study was the number of species selected for meta-analysis due
to the orthology definition. A limited species dataset may not fully cover the detailed growth
and development stages challenged by drought. Therefore, we tried to select datasets related to
important agricultural species. On the other hand, to validate the results of the meta-analysis
through RT-qPCR and to generalize the results to C3 and C4 plants, different plant species
(sunflower and Artemisia) were selected.

Conclusion

Photosynthesis is one of the main plant processes that are affected by drought stress. Plants
have different photosynthetic mechanisms including C3, C4, and CAM. This study aimed to
investigate and compare the changes in the transcriptional profile of two groups of plants with
different photosynthetic pathways (C3 and C4) in response to drought stress through RNA-
seq meta-analysis. The accuracy of the meta-analysis results was confirmed by RT-qPCR. In
total, 693 and 528 meta-DEGs were identified in C3 and C4 plants, respectively, and 276 of
these genes had the preserved expression pattern in both groups. The identification of exclu-
sive meta-DEGs of each group suggests that each plant group has a specific response to
drought stress. The higher number of meta-DEGs in the C3 group implies that these plants are
more affected by drought stress and have regulated the expression of more genes in different
biological pathways to deal with stress. The analysis of putative miRNAs targeting DEGs
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revealed that miR5021 and miR5658 were the most abundant groups. The functional enrich-
ment analysis of these DEGs indicated that energy, carbohydrate, amino acid, and ribosome
metabolism pathways were highly enriched in both C3 and C4 plant groups. Additionally, it
was shown that ALDH and amino acid and sugar transporters also participate in stress
response. Considering the expression changes observed in energy-related pathways, improving
energy supply sources may be a promising strategy for enhancing drought tolerance in plants.
The identification of common genes and pathways in both groups provides a comprehensive
insight into the shared mechanism of stress response in plants.
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