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Abstract

The rapid spread and evolving nature of COVID-19 variants have raised concerns regarding

their competitive dynamics and coinfection scenarios. In this study, we assess the competi-

tive interactions between the Omicron variant and other prominent variants (Alpha, Beta and

Delta) on a social network, considering both single infection and coinfection states. Using the

SIRS model, we simulate the progression of these variants and analyze their impact on infec-

tion rates, mortality and overall disease burden. Our findings demonstrate that the Alpha and

Beta strains exhibit comparable contagion levels, with the Alpha strain displaying higher

infection and mortality rates. Moreover, the Delta strain emerges as the most prevalent and

virulent strain, surpassing the other variants. When introduced alongside the less virulent

Omicron strain, the Delta strain results in higher infection and mortality rates. However, the

Omicron strain’s dominance leads to an overall increase in disease statistics. Remarkably,

our study highlights the efficacy of the Omicron variant in supplanting more virulent strains

and its potential role in mitigating the spread of infectious diseases. The Omicron strain dem-

onstrates a competitive advantage over the other variants, suggesting its potential to reduce

the severity of the disease and alleviate the burden on healthcare systems. These findings

underscore the importance of monitoring and understanding the dynamics of COVID-19 vari-

ants, as they can inform effective prevention and mitigation strategies, particularly with the

emergence of variants that possess a relative advantage in controlling disease transmission.

Introduction

The understanding of epidemics plays a crucial role in comprehending disease spread models

and developing effective strategies to prevent the over-infection of populations. In this context,

the significance of mathematical models cannot be overlooked in the field of epidemiology.

The virulence of a pathogen refers to the mortality rate caused by the disease [1]. Virulence

and disease transmissibility are key factors in the investigation of disease models.

Multi-infection models encompass the simultaneous spread of several independent viruses

within a community. The various types of multiple infections include single infection,
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coinfection and superinfection. In the case of single infection, when a strain spreads indepen-

dently among a population of susceptible individuals, an infected person will only harbor that

specific strain until recovery, without contracting another strain. This scenario is termed single

infection. Superinfection models account for the possibility of an infected individual being sus-

ceptible to multiple strains of the disease simultaneously, with a more virulent strain potentially

replacing a less virulent strain through a process akin to hostile takeover [2, 3]. Coinfection

models involve individuals sustaining infections with multiple pathogen strains concurrently [4,

5], although typically, susceptible individuals do not contract more than one infection at a time.

In recent years, the COVID-19 epidemic has witnessed the emergence of various variants

[6] as reported by the World Health Organization (WHO). A change in the genetic sequence

of a virus is referred to as a mutation and variants are genomes that differ from each other in

terms of their genetic sequence, often resulting from one or more mutations [7]. As a single-

stranded RNA virus [8], SARS-CoV-2 has undergone numerous mutations. While most muta-

tions do not significantly impact the virus’s spread and mortality, several mutations have

raised global concerns. Hence, it is crucial to develop a better understanding of the transmis-

sion of these new coronavirus variants and effective methods to mitigate their spread [9, 10].

Compared to the original lineage, new coronavirus variants exhibit higher transmissibility and

increased resistance to antibodies [11].

To prioritize surveillance and research on these variants, the WHO has categorized

COVID-19 strains into three groups: variants of interest (VOI), variants of concern (VOC)

and variants under monitoring (VUM). The classification of variants may vary across different

countries [12]. The four previous VOCs include Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1)

and Delta (B.1.617.2). All of these variants have triggered new waves of epidemics worldwide.

On November 26, 2021, the WHO designated a new variant called Omicron (B.1.1.529) as the

fifth VOC, instantly sparking global concerns [6]. The term “Wild type” refers to a virus or

background strain that does not possess any major mutations [13]. In other words, it repre-

sents the natural, non-mutated strain of the virus [14]. The transmission and virulence rates

for the main strain, referred to as the Wild type, are based on reference [15].

The main concerns regarding SARS-CoV-2 VOCs encompass viral transmission, disease

severity and their effects on vaccine efficacy [16]. The Wild type virus of COVID-19 is more

susceptible to neutralization compared to newer variants [17]. According to a study, the Alpha

strain exhibited a 43% to 90% higher transmissibility than the Wild type [18]. Additionally, the

Alpha lineage demonstrated a 71% higher transmission rate compared to the original lineage

[19]. Generally, the Delta and Omicron variants are more transmissible than the Alpha, Beta

and Gamma variants [17].

Quantitatively speaking, the Delta variant posed a 108% increased risk of hospitalization, a

235% increased risk of ICU admission and a 133% higher risk of death compared to the origi-

nal variant [20]. Another study reported that the Delta strain was 60% more transmissible than

the Alpha strain, becoming the dominant strain as of August 2021 [21]. Analysis by Bolze et al.

revealed that the Delta variant exhibited, on average, 1.7 times higher viral load compared to

the Alpha variant [22]. Furthermore, according to another report, the transmissibility of the

Delta strain is usually 60% higher than that of the Alpha strain, making it the most infectious

variant to date and 97% more contagious than the original strain [23]. Similarly, the Beta strain

is 50% more transmissible than the Wild type [24]. Data also indicate that the Delta variant has

a higher transmission rate than the Gamma variant [25], with the estimated transmission capa-

bility of the Gamma variant being 2.6 times higher than that of the Wild type, according to ref-

erence [26]. A report from Public Health England on June 11 indicated a significantly higher

risk of hospitalization associated with the Delta variant compared to the Alpha variant [27]. In

short, the Delta strain exhibits highly transmissible characteristics and greater invasiveness
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[28]. Another study highlighted that the infection rates of the Omicron variant were four times

higher than the Wild type and twice as high as the Delta variant [29]. Reference [30] estimates

that the Omicron variant is 36.5% more transmissible than the Delta variant. Moreover, a

study conducted in Southern California demonstrated that the Omicron strain had a 91%

lower fatality rate than the Delta strain and a 51% reduced likelihood of hospitalization [31].

All the VOCs, including Alpha, Beta, Gamma and Delta variants present higher risks of

hospitalization, ICU admission and mortality compared to the Wild type virus. Beta and Delta

variants pose a higher risk than Alpha and Gamma variants [16]. Alpha, Beta, Gamma and

Delta variants had 1.7, 3.6, 2.6 and 2.08 times increased risk of hospitalization, respectively and

2.3, 3.3, 2.2 and 3.35 times increased risk of ICU admission, respectively [16, 32]. These vari-

ants also exhibit mortality risks of 1.37, 1.50, 1.06 and 2.33, respectively [16]. The mortality

rate of the Alpha strain, as referenced in [33], is reported as 0.005. Qualitatively estimating the

transmission and virulence rates for this variant aligns with this reference. Fig 1 illustrates the

outcome of our research aimed at investigating the factors influencing the infection, transmis-

sion and virulence of COVID-19 variants. All values have been qualitatively investigated, col-

lected and estimated, thus the disease transmission and virulence rates depicted in Fig 1 will be

referred to as qualitative rates.

Newer VOCs have largely displaced other circulating SARS-CoV-2 variants. Delta

accounted for nearly 90% of all viral sequences submitted to GISAID by October 2021 and

Omicron has now become the dominant strain circulating worldwide, representing more than

98% of shared viral sequences in GISAID since February 2022 [34].

The simultaneous circulation of multiple variants in the same location can lead to coinfec-

tion with different strains of SARS-CoV-2. Yaqing He et al. reported the identification of an

individual co-infected with two worrisome SARS-CoV-2 variants, Beta and Delta [35]. Addi-

tionally, Deltacron, involving both Delta and Omicron variants, was first detected in January

2022 and rapidly spread in Cyprus [36]. Several recombination events between the main sub-

variants of Omicron (BA.1 and BA.2) and other variants of concern (VOCs) and variants of

interest (VOIs) have been observed [37].

Mathematical models are essential tools for studying the spread of COVID-19 in social net-

works. Manotosh Mandal et al. introduced the SEQIR model, which considers susceptible (S),

Fig 1. Qualitative plot of different VOC variants of the disease of Covid-19.

https://doi.org/10.1371/journal.pone.0287623.g001
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exposed (E), infected in hospital (Q), quarantined (I) and recovered or eliminated (R) individ-

uals [38]. Joe Pharaon and Chris T compared the dynamics of a two-strain SIRX compartmen-

tal epidemic model with and without adaptive social behavior, where susceptible individuals

(S) can be infected by a resident strain (I1) or a mutant strain (I2). The proportion of individu-

als adopting preventive behaviors is represented by X, referred to as protective behavior [39].

Cleo Anastassopoulou et al. proposed the SIRD model to estimate parameters and predict the

spread of the COVID-19 epidemic in Hubei Province, China, using real data [40]. Verónica

Miró Pina et al. developed models based on Erdős-Rényi and a power-law degree distribution,

which capture the role of heterogeneity and connectivity and can be extended to make hypoth-

eses about demographic characteristics. They demonstrated that changes in the number of

contacts in a population impact the effectiveness of public health interventions such as quaran-

tine or vaccination strategies [41]. Pilar Hernández et al. utilized the SEIR model and pre-

sented two types of agent-based model simulations: a homogeneous spatial simulation where

contamination occurs through proximity and a model in a scale-free network with different

clustering characteristics, where contamination occurs between any two agents through their

link, if any [42]. Mosquera and Adler established consistency conditions on the parameters of

a mathematical model for coinfection states, including superinfection as a limit of the coinfec-

tion model and a special single infection state [43].

In this manuscript, we present the SIRS model as an extension of the framework developed

by Mosquera and Adler. Our study entails a comprehensive analysis and discussion of simula-

tions conducted on a social network, incorporating both single infection and coinfection

states. With a specific emphasis on the emerging variants of COVID-19, we explore the intri-

cate dynamics of strain competition within the contexts of single infection, coinfection and

delayed states. Furthermore, we thoroughly investigate the influence of network topology on

the overall progression of the epidemic.

Model

We investigate the scenario of multiple infections by considering a simplified case where only

one or two infectious diseases can occur concurrently within the population. In the context of

the SIRS model applied to the network, we mathematically describe the dynamics of the epi-

demic. Consequently, the network consists of four distinct agent types: susceptible individuals

(S), individuals infected with virus strain 1 (I1), individuals infected with virus strain 2 (I2) and

individuals simultaneously infected with both strains (I12). Notably, the susceptible class is fur-

ther categorized into two groups: susceptible individuals 1 (S1) who have not been infected

and are susceptible to receiving the infection and susceptible individuals 2 (S2) who have previ-

ously experienced an infectious disease but remain susceptible with a lower probability.

Examining the impact of mask usage on COVID-19 transmission, a study directly analyzed

its effect within the community. The findings revealed that if face masks were universally worn

within a household before symptom onset, they effectively reduced transmission by 79% [44].

Masks play a crucial role in preventing the spread of droplets and aerosols emitted by infected

individuals [45]. Correct usage of surgical masks can significantly decrease virus transmission

by approximately 95% providing around 85% protection against infection for non-infected

individuals [46]. Furthermore, another study identified mental health status and social media

as factors influencing adherence to social distancing measures. The high compliance rate of

social distancing measures was reported by the majority of respondents (95.6%) [47]. Thus,

assuming adherence to health protocols such as mask-wearing, social distancing and other

preventive measures against COVID-19 transmission, we define the protection parameter (p)
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as the reduction in the probability of infection transmission. In light of the aforementioned

cases, we set the protection parameter to p = 0.9.

Coinfection model

In order to define the coinfection model, we make the following assumptions:

1. The mortality rate of individuals due to non-disease factors during the simulation interval

can be neglected.

2. Infected individuals with strain i recover at a rate of γi and have a mortality rate of δi attrib-

uted to the infection. They are then classified as removed (R).

3. Individuals infected with both strains simultaneously experience a disease-related mortality

rate of δ12. These individuals recover from strain 1 viral disease at a rate of γ21, while co-

infected individuals recover from strain 2 viral disease at a rate of γ12.

4. Susceptible individuals become infected by individuals infected with strains 1 and 2 at rates

of β1 and β2, respectively.

5. The transmissibility rate for individuals co-infected with both strains can differ from the

rate for individuals infected with strains 1 and 2 separately. Specifically, if the reduced infec-

tiousness of co-infected individuals acting as strain i is denoted by εi, the rate at which sus-

ceptible individuals acquire strain i from co-infected individuals will be εiβi I12, where εi
belongs to the range [0, 1]. This means that when a susceptible individual interacts with a

co-infected individual, the transmission of either I1 or I2 disease (depending on the compe-

tition between strains) occurs at a lower rate.

6. If there is reduced susceptibility to the other strain when infected with strain i, denoted by

ai, the infection rate of I1 individuals by strain 2 is less than the infection rate of susceptible

individuals by a factor of a2. Similarly, the infection rate of I2 individuals by strain 1 is equal

to a1β1 I1 + a1ε1β1 I12.

7. In the case of reinfection, susceptible individuals 2 (S2) contract strain i at a much lower

transmission rate of αβi.

Based on these assumptions, the coinfection model follows the set of equations below,

where the total number of individuals in the network is denoted as N = S1+S2+I1+I2+I12+R:

dS1

dt
¼ � ð1 � pÞfb1I1S1 þ b2I2S1 þ ε1b1I12S1 þ ε2b2I12S1g

dS2

dt
¼ � að1 � pÞfb1I1S2 þ b2I2S2 þ ε1b1I12S2 þ ε2b2I12S2g þ g1I1 þ g2I2

dI1

dt
¼ ð1 � pÞb1ðS1 þ aS2ÞðI1 þ ε1I12Þ � ðd1 þ g1ÞI1 � a2b2I1I2 þ g12I12 � ε2a2b2I1I12

dI2

dt
¼ ð1 � pÞb2ðS1 þ aS2ÞðI2 þ ε2I12Þ � ðd2 þ g2ÞI2 � a1b1I1I2 þ g21I12 � ε1a1b1I2I12

dI12

dt
¼ ða1b1 þ a2b2ÞI1I2 þ ðε2a2b2I1 þ ε1a1b1I2ÞI12 � ðg12 þ g21 þ d12ÞI12

dR
dt
¼ d1I1 þ d2I2 þ d12I12

ð1Þ

Generally, Fig 2 illustrates the set of Eq (1) that represent the coinfection model:
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Single infection model

In the single infection model, infected individuals are not susceptible to further infection. By

setting the coinfection coefficient equal to zero (a1 = a2 = 0), which implies that I12 = 0, the

dynamic terms of the coinfection model are simplified, resulting in the follow- ing model:

dS1

dt
¼ � ð1 � pÞfb1I1S1 þ b2I2S1g

dS2

dt
¼ � að1 � pÞfb1I1S2 þ b2I2S2g þ g1I1 þ g2I2

dI1

dt
¼ ð1 � pÞb1ðS1 þ aS2ÞI1 � ðd1 þ g1ÞI1

dI2

dt
¼ ð1 � pÞb2ðS1 þ aS2ÞI2 � ðd2 þ g2ÞI2

dR
dt
¼ d1I1 þ d2I2

ð2Þ

Fig 2. Schematic diagram illustrating the interaction between two different strains in the coinfection model. Susceptible individuals S1

can become infected by interacting with infectious individuals I1 and I12 at rates β1 and ε1β1, respectively. If they have protection, they are

transferred to the I1 class with a coefficient of (1-p). Infectious individuals I1 can transition to the I12 class by interacting with infectious

individuals I2 and I12 at rates a2β2 and ε2 a2β2, respectively. Individuals in the I1 class are removed at a rate of δ1 and recover at a rate of γ1,

transitioning to the S2 class. The process is similar for susceptible individuals S2, but at a much lower rate. The same interactions and

transitions apply to individuals in the I2 class as well.

https://doi.org/10.1371/journal.pone.0287623.g002
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For the model implementation, we adopt an Erdős–Rényi random network with a total of

N = 10,000 nodes and an average degree of k = 10. The simulation is conducted for a specified

time interval T and each run is repeated 50 times for reliable results.

To examine the competition and coinfection dynamics between different strains, we con-

sider the rates associated with the Covid-19 epidemic. It is important to note that in each simu-

lation, the presence of two strain types in the community is taken into account. Table 1

presents the parameter values for various models of Covid-19, which are derived from ten dif-

ferent references [15, 39, 48–55]. Notably, the units in the table are given in terms of per day

(day−1). To incorporate real-world data, we refer to reference [15] for the parameters related to

the Wild type of the virus.

Results and discussion

In our study, we focused on the variants of Covid-19, specifically the Alpha, Beta, Delta and

Omicron strains. By utilizing the findings of our research, we conducted simulations to exam-

ine the dynamics of these strains.

Investigating the competition between covid-19 variants with strain rates

We began by considering the single infection state for the four VOC strains and observed their

dynamic changes during the epidemic, as shown in Fig 3. The contagion of the Alpha and Beta

strains was relatively similar, with the Alpha strain exhibiting approximately 5% more cases

than the Beta strain. However, compared to the Wild type, the Alpha strain had a peak infec-

tion and mortality rate almost twice as high. Furthermore, the Delta strain exhibited a higher

prevalence of disease and mortality compared to the other three strains. We also examined the

competition between strains in the following scenarios:

1. Competition between the Wild type and the Alpha variant

2. Competition between the Alpha and the Beta variants

3. Competition between the Delta and the Omicron variants

Initially, we evaluated the Wild type and the Alpha mutant variant in a society with a size of

N = 10,000. As depicted in Fig 4a, the number of infected individuals for the main strain and

the Alpha strain reached their maximum values after t = 59 days (I1max=109) and t = 73 days

(I2max=2199), respectively. By t = 200 days, the number of infected individuals for the main

Table 1. Values of parameters of various models of Covid-19.

Models β γ δ References

SIR 0.4 0.2 0.05 [39]

SIRD 0.21542 0.017129 0.011832 [48]

SIRD 0.257 0.0315 0.0032 [15]

SAIU 0.274 - - [49]

SIQR 0.13 0.15 0.038 [50]

SEIR - - 0.0018 [51]

SEIR 0.29 0.09722 - [52]

SEAIR - 0.13978 0.015 [53]

SEIAHRD 0.38974 0.1428 0.015 [54]

SEAIQHR 1.11525 0.01496 0.04142 [55]

https://doi.org/10.1371/journal.pone.0287623.t001
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strain decreased to 4, while for the Alpha strain, it was 167. It is worth noting that the mutated

Alpha strain had a wider epidemic range and resulted in a significantly higher number of

infections compared to the original strain. The number of individuals who experienced either

the main strain or the Alpha strain at least once was 3.21% and 68.50%, respectively.

In Fig 4b, the total number of Covid-19 cases through the Alpha strain was nearly 2.8 times

higher than that of the Beta strain. The key difference between Fig 4a and 4b is that the Beta

strain replaced the main strain and the overall number of infected individuals was distributed

in a ratio of 3 to 1. An important concern arises when two highly transmissible strains enter

the community. Thus, we introduced the more virulent Delta variant and the less virulent

Omicron variant into the network and their interaction among nodes yielded the dynamics of

infected individuals as shown in Fig 4c.

The total number of infections for the Delta and Omicron strains was 11.54% and 89.96%,

respectively. The mortality rate due to the disease was higher for the Delta strain, as its viru-

lence was 91% greater than that of the Omicron strain. Even though the recovery rates were

assumed to be the same for both strains, the number of deaths through the Delta and Omicron

strains was 24.3% and 20.8%, respectively. It is important to note that the majority of deaths

occurred as a result of the Delta strain.

If we consider the time to reach the peak of the disease (tmax), we observe that it is almost

half the time in Fig 4c compared to Fig 4a and 4b. This is the reason why these strains are of

concern to the World Health Organization (WHO). Due to their higher prevalence, a greater

number of susceptible individuals are affected by the disease in a shorter period of time,

Fig 3. Dynamic changes of the SIRS model in the single infection state. (a) Outbreak of the Wild type. (b) Outbreak of the Alpha

variant. (c) Outbreak of the Beta variant. (d) Outbreak of the Delta variant in the Erdős–Rényi network.

https://doi.org/10.1371/journal.pone.0287623.g003
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resulting in a 28.33% increase in the number of infected individuals compared to the previous

scenario. The dynamic curve of susceptible individuals in the competition between wt and α
strains with α and β strains is similar. However, as depicted in Fig 4d, when competing Delta

and Omicron strains are involved, a larger number of susceptible individuals are affected by

the disease. The difference in the minimum points between the previous two cases and the

third case is 17.04%. This suggests that the virulence of both strains was higher in the previous

two cases, but over time, the equilibrium point of susceptible individuals in the third case is

5.6% lower than that in the other two cases. Table 2 provides detailed information on these

three cases for the competition of Covid-19 strains.

Fig 4. Dynamic changes of the SIRS model in the competition between strains. (a) Competition between the Wild type and Alpha

mutant strain. (b) Competition between Alpha and Beta strains. (c) Competition between Delta and Omicron strains. (d) Dynamics

changes of susceptible individuals.

https://doi.org/10.1371/journal.pone.0287623.g004

Table 2. Statistics of the results obtained for the SIRS model, in the state of competition different strains of Covid-19.

Quantity Description State1 State2 State3

I1max Peak domain of dynamics of infected individuals to strain 1 109 1692 513

I2max Peak domain of dynamics of infected individuals to strain 2 2199 606 3735

I1avg The total mean of dynamics of infected individuals to strain 1 19 365 70

I2avg The total mean of dynamics of infected individuals to strain 2 3790 126 685

Smin The minimum value of dynamics of susceptible individuals at the peak of the disease 7346 7345 5642

TotalInfected The total stats of infected individuals to disease 7369 7317 10150

TotalRecovered The total stats of recovered individuals from disease 6384 6306 9698

TotalRemovedduetoinfection The total stats of removed individuals from disease 985 1010 451

https://doi.org/10.1371/journal.pone.0287623.t002
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Based on the findings from Figs 3 and 4, we can conclude that even if the transmissibility of

a strain is approximately 70% higher than the other strain, most of the disease statistics in the

society will often be attributed to the strain with the higher transmission rate (as seen in Fig 4a

and 4b). Additionally, due to the higher transmission and virulence rates of the Delta strain

compared to the Wild type, Alpha and Beta strains, the introduction of the Omicron strain,

despite its lower virulence, resulted in more disease statistics compared to all the other strains.

Therefore, this situation is a cause for concern in terms of increasing the overall disease bur-

den, but it could also be seen as a positive scenario for the removal of a more dangerous strain

from the society.

The delayed state of competition of Covid-19 strains

In this section, we explore the competition between the Wild type-Omicron and Alpha-Omi-

cron strains in a delayed state. In this scenario, the main strain initially spreads in the network

and after a certain period, the second strain is introduced. Fig 3a and 3b depict the outbreak of

the disease through the main and Alpha strains, respectively. The Alpha strain exhibits twice

the mortality rate and peak infection level compared to the main strain. Our goal is to intro-

duce a strain with a higher transmission rate into the network with a delay.

In Fig 5a, we introduce the less virulent Omicron strain when the main strain is in its maxi-

mum growth trend (maximum slope). In Fig 5c, we insert the second strain before the maxi-

mum slope of the first strain. As observed in Fig 5a and 5c, the addition of the less virulent

Omicron strain, with a higher prevalence compared to the main and Alpha strains (4.6 and 4.8

Fig 5. Delay state diagram depicting the dynamic changes of the SIRS model during the competition between the Wild type, Alpha

and Omicron strains. The colored hachure in the peak of the curves represents the error bars for 50 times experiments in each run.

https://doi.org/10.1371/journal.pone.0287623.g005
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times, respectively), results in a greater number of disease cases. In other words, the Omicron

strain effectively suppresses the more virulent strains, acting as a vaccine-like agent. This pro-

cess continues until the end of the epidemic. Consequently, as shown in Fig 5, the dynamics of

deaths are significantly lower in parts a and c, primarily due to the predominance of the Omi-

cron strain.

It is noteworthy that the second strain must have a higher transmission rate to effectively

counteract the more virulent strains. Some experts suggest that Omicron may act as a natural

vaccine since it shares certain similarities with weakened live vaccines [56]. Studies have

shown that individuals infected with Omicron exhibit a significant immune response that can

neutralize not only Omicron but also other variants of concern, including the prevalent Delta

variant [57].

If we introduce the second strain during the peak of infected individuals with the Alpha

strain, as shown in Fig 5b and 5d, the Omicron strain fails to surpass the previous strain with

higher transmissibility. The Wild type and Alpha strain, which are more contagious and fatal

than the Omicron strain, result in 1.7 and 55 times more disease cases, respectively. Since the

Alpha strain has infected a larger portion of the population, leading to more individuals enter-

ing the S2 class, the Omicron strain struggles to infect these individuals effectively. Conse-

quently, the dynamics of infected individuals to the second strain appear almost as a straight

line.

Overall, the delayed introduction of the less virulent Omicron strain can significantly

reduce the disease burden caused by more virulent strains, highlighting its potential role as a

protective factor against the spread of highly contagious variants.

Investigating coinfection between covid-19 variants

In this section, we examine the coinfection dynamics between the Delta and Omicron strains,

collectively referred to as Deltacron, by analyzing the behavior of co-infected individuals for

different values of parameter a, specifically a = 0.1, 0.5, 1 and 2.

When considering values of a < 1 (see Fig 6), which correspond to lower levels of coinfec-

tion, we observe that the dynamics of infected individuals for the Delta strain reaches its peak

10 days earlier than that of the Omicron strain. This can be attributed to the weaker co-infec-

tious conversion between infected individuals of the Omicron and Delta strains, resulting in a

lower rate of conversion and the earlier peak for the Delta strain due to its higher virulence.

There are two noteworthy observations in this scenario. Firstly, the slope reduction between

the interval [50, 100] for the Delta strain dynamics is more significant for a = 0.1 compared to

a = 0.5. This reduction becomes smoother as the presence of co-infected individuals increases

and they transition to classes I1 and I2. For example, the slope decreases from -5.6 for a = 0.1 to

-3.8 for a = 0.5 in this interval.

Secondly, as the coefficient a increases, the dynamics of co-infected individuals show an

overall increase. Despite the Omicron strain being dominant, the shape of the Delta strain

dynamics differs before reaching its peak (see Fig 5c and 5d). For instance, when a = 1 in the

interval [10, 20], all three dynamics initially exhibit an increasing trend, with the share of coin-

fection through the Delta strain being approximately 20% higher than that of Omicron. This is

due to the random network structure and the interaction between infected individuals of both

strains, where the Delta strain has a higher chance of selection for coinfection. Over time, as

the Omicron strain becomes more prevalent, it gradually surpasses the Delta strain, reaching

its peak at t = 32. In the interval [20, 32], the share of coinfection through the Omicron strain

becomes greater than that of Delta, leading to a gradual decrease in the dynamics of Delta-

infected individuals with a slope of -2. Meanwhile, the dynamics of individuals in class I1
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continue to increase until they reach their peak at t = 51. Moreover, in [32, 51], the Omicron

strain is involved in coinfection nearly 60% more than the Delta strain. As the dynamics of

class I2 decline and the dynamics of class I1 culminate, the dynamics of coinfection align with

that of class I1. From t = 51 onwards, all three dynamics exhibit a decreasing trend. Conse-

quently, higher values of a lead to an earlier peak in the dynamics of infected individuals for

the Omicron strain compared to the Delta strain and coinfection. Subsequently, all three

curves gradually decline, signifying the end of the epidemic after approximately 250 days.

In general, if individuals in the coinfection class (I12) are rapidly removed, the I12 class

decreases to zero. The total number of removals, as indicated by relation (1) [43], is given by Γ
= γ12 + γ21 + δ12. Thus, the reduction of co-infected individuals is approximated by the rapid

elimination of these individuals through rapid recovery from either strain or by an increase in

mortality due to double infection itself. Table 3 provides the results for the four aforemen-

tioned cases. It is worth noting that although the network size is N = 104, the numbers in

Table 3 appear larger. For instance, in the case of a = 2, the total number of patients is 23,459,

implying that individuals who have had the disease and recovered remain susceptible to rein-

fection. For this specific case, the number of individuals infected with the Delta, Omicron and

Deltacron strains at least once is 2,203, 7,680 and 4,997, respectively.

With an increase in the coefficient ai, a remarkable rise in the dynamics of the coinfection

class is observed. Additionally, the dynamics of susceptible individuals decrease, as illustrated

in Fig 7.

Fig 6. Dynamic changes diagram of the SIRS model illustrating the competition between different variants of Covid-19 for

different coefficients of a in the coinfection state.

https://doi.org/10.1371/journal.pone.0287623.g006
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The impact of topology

This section explores the influence of network topology on the dynamics of infection spread-

ing. In addition to the previously discussed Erdős-Rényi (ER) network, we now investigate the

Barabási-Albert (BA) and Watts-Strogatz (WS) networks to understand the competition

between the Omicron and Delta variants, as well as the coinfection state involving these two

strains.

We examine the performance of the model on the WS network with different rewiring

probabilities: P = 0 (representing the regular state), P = 0.1 (exhibiting small-world features)

and P = 1 (representing the random state). This analysis encompasses both the single infection

and coinfection models.

Table 3. Statistics of SIRS model results, for four coinfection state of Deltacron.

Quantity Description a = 0.1 a = 0.5 a = 1 a = 2

I1max Peak domain of dynamics of infected individuals to strain 1 562 476 385 529

I2max Peak domain of dynamics of infected individuals to strain 2 3611 3400 3208 2640

I12max Peak domain of dynamics of co-infected individuals to strain 12 145 644 1177 2181

I1avg The total mean of dynamics of infected individuals to strain 1 80 92 108 159

I2avg The total mean of dynamics of infected individuals to strain 2 672 642 598 487

I12avg The total mean of dynamics of co-infected individuals to strain 12 20 104 218 445

Smin The minimum value of dynamics of susceptible individuals at the peak of the disease 5569 5390 5232 4777

TotalInfected The total stats of infected individuals to disease 10744 13294 16737 23459

TotalRecovered The total stats of recovered individuals from disease 10137 12083 14694 19779

TotalRemovedduetoinfection The total stats of removed individuals from disease 5490 864 1304 2206

https://doi.org/10.1371/journal.pone.0287623.t003

Fig 7. Dynamic changes of susceptible individuals in four different scenarios of Deltacron outbreak.

https://doi.org/10.1371/journal.pone.0287623.g007
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Despite the heterogeneity and the presence of a hub in the BA network (due to the limited

network size), the results associated with this network structure align with those observed in

the ER random network and the WS random state. Fig 8 illustrates that no significant differ-

ences are discernible, with the average total disease proportion in parts c and d being equal to

7.55%. The average ratio of the clustering coefficient to the average path length in parts a, b

and c is 0.001, 0.08 and 0.0002, respectively. Furthermore, the average total disease proportions

for cases a, b and c are 0.64%, 7.47% and 7.55%, respectively. The larger average path length in

case a contributes to a mortality rate that is 3.2 times higher than that observed in the other

two cases. By comparing these three states, we find that the regular state of the WS network

exhibits a smaller disease prevalence throughout the epidemic.

The primary distinction between states b and c lies in the infection peak time for each

strain. Although the curves in these two states are almost identical, the small-world feature

causes infections to occur later. The formation of clusters in the network leads to a higher

prevalence of single-strain infections compared to coinfections. Conversely, in the random

state, the occurrence of two-strain infections is more widespread, resulting in earlier infections

among nodes. As depicted in Fig 9, the difference in the trough point of susceptible individuals

dynamics for part b compared to the WS random network is 5.38% and this drop occurs 22

days later than in the random state.

All three states b, c and d exhibit similar disease prevalence. Therefore, at the end of the epi-

demic, they converge to the same equilibrium point in Fig 9. Compared to the regular case, the

difference in the equilibrium state is approximately 3%, indicating that the number of removed

Fig 8. Dynamic changes of the SIRS model depicting the competition between Delta and Omicron strains in the Barabasi-Albert

(BA) and Watts-Strogatz (WS) network structures.

https://doi.org/10.1371/journal.pone.0287623.g008
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individuals is around 300 higher in the random network than in the regular network (refer to

Table 4).

The coinfection state of the four aforementioned network structures is depicted in Fig 10. It

is evident that the average number of dynamically co-infected individuals in the WS network

with P = 0 is negligible compared to the other structures. In part b (representing the small-

world network), the average total disease prevalence is approximately 0.2% higher than in the

two random cases, c and d. However, the average coinfection rate in part b is only half of that

observed in the random cases. This reduced occurrence of strain coexistence represents the

main difference between part b and the random states, c and d (refer to Table 5).

Fig 9. Dynamic changes of susceptible individuals in the Watts-Strogatz (WS) and Barabasi-Albert (BA) network

structures for three different states.

https://doi.org/10.1371/journal.pone.0287623.g009

Table 4. Summary statistics from the SIRS model showcasing the competition between various strains of Covid-19 across different network structures.

Quantity Description WS(P = 0) WS(P = 0.1) WS(P = 1) ER BA

I1max Peak domain of dynamics of infected individuals to strain 1 91 463 587 513 571

I2max Peak domain of dynamics of infected individuals to strain 2 204 3212 3677 3735 3674

I1avg The total mean of dynamics of infected individuals to strain1 13 81 80 70 79

I2avg The total mean of dynamics of infected individuals to strain 2 51 665 676 685 671

Smin The minimum value of dynamics of susceptible individuals at the peak of the

disease

9660 6156 5618 5642 5637

tmax(δ) The time of culminated dynamics of infected individuals to Delta strain 40 51 30 30 30

tmax(o) The time of culminated dynamics of infected individuals to Omicron strain 66 59 37 37 37

TotalInfected The total stats of infected individuals to disease 2175 10049 10156 10150 10097

TotalRecovered The total stats of recovered individuals from disease 2025 9565 9677 9698 9622

TotalRemovedduetoinfection The total stats of removed individuals from disease 150 482 479 451 474

https://doi.org/10.1371/journal.pone.0287623.t004
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As shown in Fig 10b, 10c and 10d, the mortality caused by Deltacron is higher than that

caused by both the Delta and Omicron strains. Additionally, the mortality resulting from coin-

fection in part b is roughly half of that observed in the random states. Recent explanations

indicate that Deltacron exhibits significantly higher virulence.

Fig 10. Temporal evolution of the SIRS model in the coinfection state of Delta and Omicron strains, comparing the network

structures of Barabasi-Albert (BA) and Watts-Strogatz (WS).

https://doi.org/10.1371/journal.pone.0287623.g010

Table 5. Summary statistics of the results obtained from the SIRS model for the coinfection strain Deltacron across different network structures.

Quantity Description WS(P = 0) WS(P = 0.1) WS(P = 1) ER BA

I1max Peak domain of dynamics of infected individuals to strain 1 125 409 416 385 398

I2max Peak domain of dynamics of infected individuals to strain 2 324 3006 3098 3208 3167

I12max Peak domain of dynamics of co-infected individuals to strain 12 26 506 1269 1177 1159

I1avg The total mean of dynamics of infected individuals to strain1 17 89 118 108 112

I2avg The total mean of dynamics of infected individuals to strain 2 77 636 584 598 592

I12avg The total mean of dynamics of co-infected individuals to strain 12 2 100 235 218 215

Smin The minimum value of dynamics of susceptible individuals at the peak of the

disease

9452 5923 5178 5232 5240

tmax(δ) The time of culminated dynamics of infected individuals to Delta strain 44 42 51 51 51

tmax(o) The time of culminated dynamics of infected individuals to Omicron strain 76 54 31 32 32

tmax(Deltacron) The time of culminated dynamics of infected individuals to Deltacron 35 68 48 49 49

TotalInfected The total stats of infected individuals to disease 3414 13085 17258 16737 16631

TotalRecovered The total stats of recovered individuals from disease 3172 11907 15075 14694 14606

TotalRemovedduetoinfection The total stats of removed individuals from disease 201 843 1385 1304 1301

https://doi.org/10.1371/journal.pone.0287623.t005
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In accordance with Fig 3d, the Delta strain, known for its high severity and wide range of

diseases and mortality, diminishes from the epidemic scene when the Omicron strain is pres-

ent. This disappearance of the dangerous Delta and Deltacron strains occurs within approxi-

mately 250 days, resulting in a reduced disease prevalence.

The abundance of infected individuals to the Delta and Omicron strains for their first, sec-

ond, third and fourth occurrences is displayed in Fig 11. As the Omicron strain exhibits domi-

nance, the number of engagements with this strain surpasses that of the Delta strain and spans

a wider range. In the WS network with a rewiring probability of P = 0.1 (small-world feature),

the prevalence domain of the Delta strain is nearly equivalent to that of the random networks

for the first occurrence of infection, while it doubles for the second occurrence. This difference

can be attributed to the substantial clustering observed in the small-world network.

In the coinfection model (refer to Fig 12), the Omicron strain exhibits progression up to the

third occurrence and during the second and third occurrences, the WS network with a rewir-

ing probability of P = 0.1 generates a larger domain compared to the random networks. More-

over, the prevalence of the coinfection state in this network is significantly lower than in

random networks. This discrepancy arises from the fact that networks with a small-world fea-

ture exhibit a higher average ratio of clustering coefficient to average path length compared to

random networks. Consequently, numerous clusters form within the small-world network,

resulting in a higher prevalence of single infections within these clusters. As a result, individu-

als infected with one strain are less likely to encounter the second strain within their local

neighborhood, leading to a lower incidence of coinfection. In random networks, however, the

distribution of both strains is more random throughout the network, promoting a more

Fig 11. Bar plot depicting the cumulative count of individuals experiencing multiple infections by the Delta and Omicron strains in

the competitive model.

https://doi.org/10.1371/journal.pone.0287623.g011
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widespread occurrence of coinfection in the homogeneous Erdős-Rényi network (character-

ized by greater randomness) and the heterogeneous Barabasi-Albert network (featuring the

presence of hubs).

Conclusion

This study comprehensively investigated two epidemic models, focusing on single infection

and coinfection scenarios to examine the dynamics of multi-infectious models. The Alpha and

Beta strains, characterized by higher transmissibility, contributed to a larger epidemic range.

Moreover, the Delta strain emerged as significantly more virulent and invasive than previous

strains, warranting major concern.

Among the Variants of Concern (Omicron, Alpha, Beta, Gamma and Delta), the relatively

less virulent Omicron strain assumed a dominant role and became the primary focus of inves-

tigation. Its interactions with other Variants of Concern were explored across random net-

works and various social network structures. In each case, Omicron exhibited superior

competitive advantage, leading to its widespread prevalence in society. By effectively displacing

the more virulent strains, Omicron prevented further transmission of infections and facilitated

the transition of infected individuals into the removed class.

This dominance of the Omicron strain is prominently evident in the delayed state, where

its introduction as the secondary strain gradually diminished the prevalence of more virulent

strains. Remarkably, Omicron acted akin to a vaccine by swiftly suppressing the dangerous

strain within the population.

Fig 12. Bar chart illustrating the cumulative count of individuals infected multiple times by the Delta, Omicron and Deltacron

strains in the coinfection model.

https://doi.org/10.1371/journal.pone.0287623.g012
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Furthermore, in the coinfection state within the Erdős-Rényi (ER) network, an increase in

the coinfection coefficient (a) corresponded to an escalation in the dynamics of coinfection

individuals, while the dynamics of infected individuals to the Delta strain diminished over

time. When analyzing the impact of network topology, it became apparent that the high ratio

of average clustering coefficient to average path length in the Watts Strogatz (WS) network

with small-world features, in comparison to random and Barabasi-Albert (BA) networks,

resulted in a reduced occurrence of coinfection. This can be attributed to the formation of

clusters predominantly hosting single infections and having fewer neighboring individuals

infected with the second strain within their adjacency.

In summary, this research sheds light on the dynamics of epidemic models, highlighting

the dominance of the Omicron strain as a less virulent yet highly competitive variant. The

findings underscore the efficacy of Omicron in supplanting more virulent strains and its

potential role in mitigating the spread of infectious diseases. The study also emphasizes the

influence of network topology on the occurrence of coinfection, with the small-world structure

exhibiting distinct characteristics that limit the prevalence of simultaneous infections. These

insights contribute to our understanding of epidemic dynamics and can inform strategies for

disease control and prevention.
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