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Abstract

Phytophthora sojae is a soil-borne oomycete and the causal agent of Phytophthora root and

stem rot (PRR) in soybean (Glycine max [L.] Merrill). Yield losses attributed to P. sojae are

devastating in disease-conducive environments, with global estimates surpassing 1.1 mil-

lion tonnes annually. Historically, management of PRR has entailed host genetic resistance

(both vertical and horizontal) complemented by disease-suppressive cultural practices (e.g.,

oomicide application). However, the vast expansion of complex and/or diverse P. sojae

pathotypes necessitates developing novel technologies to attenuate PRR in field environ-

ments. Therefore, the objective of the present study was to couple high-throughput

sequencing data and deep learning to elucidate molecular features in soybean following

infection by P. sojae. In doing so, we generated transcriptomes to identify differentially

expressed genes (DEGs) during compatible and incompatible interactions with P. sojae and

a mock inoculation. The expression data were then used to select two defense-related tran-

scription factors (TFs) belonging to WRKY and RAV families. DNA Affinity Purification and

sequencing (DAP-seq) data were obtained for each TF, providing putative DNA binding

sites in the soybean genome. These bound sites were used to train Deep Neural Networks

with convolutional and recurrent layers to predict new target sites of WRKY and RAV family

members in the DEG set. Moreover, we leveraged publicly available Arabidopsis (Arabidop-

sis thaliana) DAP-seq data for five TF families enriched in our transcriptome analysis to train

similar models. These Arabidopsis data-based models were used for cross-species TF bind-

ing site prediction on soybean. Finally, we created a gene regulatory network depicting TF-

target gene interactions that orchestrate an immune response against P. sojae. Information

herein provides novel insight into molecular plant-pathogen interaction and may prove use-

ful in developing soybean cultivars with more durable resistance to P. sojae.
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Introduction

Phytophthora sojae Kaufmann and Gerdemann is a hemibiotrophic, homothallic oomycete

that renders significant yield losses in soybean (Glycine max [L.] Merrill). The pathogen can

infect host plants at any developmental stage and is denoted by damping-off in seedlings (early

season) as well as root rot and subsequent chlorosis/necrosis in aboveground tissue (late sea-

son) [1]. In addition, P. sojae oospores can persist in a production environment for several

years, limiting the efficacy of most cultural management strategies [2, 3]. Thus, the most eco-

nomical and environmentally benign method to manage the pathogen is the deployment of

horizontal and/or vertical host genetic resistance [4]. Horizontal resistance is quantitatively

inherited and provides some level of protection against all P. sojae pathotypes. However, early-

season efficiency is reliant upon complementation with cultural practices [3] as it is only active

after the first true leaf stage. Moreover, the polygenic character of horizontal resistance hinders

introgression into germplasm [5, 6]. Alternatively, vertical resistance (i.e., incompatibility)

embodies the classic gene-for-gene concept and renders complete protection against specific

pathotypes in a monogenic manner [7]. The selective pressures imposed by vertically resistant

soybean have increased the virulence profile of P. sojae populations, restricting the use of culti-

vars with a specific Resistance to P. sojae (Rps) gene to 8–15 years [2, 8]. Therefore, a deeper

understanding of the molecular mechanisms governing soybean defense against P. sojae is

needed to overcome pathogen evolution and ultimately attenuate disease.

During a compatible (virulent) soybean-P. sojae interaction, the host plant perceives

microbe-associated molecular patterns (MAMPs)/pathogen-associated molecular patterns

(PAMPs) and elicits PAMP-triggered immunity (PTI), a basal immune response effective

against non-adapted pathogens [9]. Conversely, P. sojae secretes Avirulence (Avr) gene-

encoded effector proteins that suppress components of PTI and promote disease. During

incompatibility, a receptor encoded by an Rps gene recognizes the cognate Avr gene product

and activates effector-triggered immunity (ETI), a hypersensitive immune response that

potentiates PTI and confers resistance to P. sojae [7, 9, 10]. The combined efforts of PTI and

ETI to mitigate disease during incompatibility exemplify the zig-zag model of Jones and Dangl

[11] and portray PTI and ETI as distinct events that occur consecutively. A growing body of

evidence obscures these boundaries, particularly in plant-Phytophthora interactions, instead

suggesting that plant defense spans a PTI:ETI continuum [12, 13]. For these reasons, Wang

et al. [14] proposed a three-layered model of plant immunity comprising a recognition layer, a

signal-integration layer, and a defense-action layer. In the context of soybean-P. sojae interac-

tion, our understanding of the signal-integration layer remains the most fragmented.

Intra- and/or extracellular pathogen perception triggers a dynamic, highly sophisticated sig-

naling network that balances primary and specialized metabolic activity in a manner preserva-

tive of host fitness [15]. Signal integration and convergence accompanying this coordinated

stress response are mediated by transcription factors (TFs) and transcriptional cofactors that

comprise sensory regulatory networks embedded within phytohormone signaling pathways

[16, 17]. Dynamism and amplification of such networks are determined by physical interaction

between TFs and nucleocytoplasmic receptors [18, 19], TF phosphorylation by mitogen-acti-

vated protein kinase (MAPK) cascades [20], and feedback regulation of Ca2+ signaling, among

other mechanisms [17]. While the abundance and diversity of TFs required for immunity vary

across plant species and pathosystems [21], elucidated sensory regulatory networks tend to

possess members of the bHLH, bZIP, ERF, MYB, NAC, and WRKY families [17, 22, 23] that

collectively direct transcriptional reprogramming of downstream target genes [16]. Isolated

studies have evidenced transcriptional reprogramming in soybean upon infection by P. sojae
[24–27] and have identified various TFs associated with defense [28–37]; yet mechanistic
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insight regarding TF-target gene interactions and their organization within larger hierarchical

networks is lacking [38]. This systems-level information can be unraveled using gene regula-

tory networks (GRNs) [38, 39], and regulatory hubs identified subsequently through analyses

of network tunability and redundancy [21].

In a simplistic model of gene regulation, TFs bind to regulatory DNA motifs in target genes

to modulate transcriptional activity [40]. GRNs can be used to discern static and spatiotempo-

ral interactions between TFs and DNA motifs as well as interaction abundance, topology, and

influence on target gene expression [41, 42]. Various experimental and computational meth-

ods have been developed to study gene regulation and function for a phenomenon of interest

(e.g., disease resistance) [39]. As an example, TF-DNA interactome approaches such as chro-

matin immunoprecipitation followed by sequencing (ChIP-seq) and DNA-affinity purification

and sequencing (DAP-seq) allow the identification of many TF binding sites (TFBS) at once

and can be used to validate interactions inferred by gene expression analysis [42, 43]. However,

these methodologies are technically- and economically-demanding and are thus difficult to

deploy at genome-scale.

Contrarily, in silico exploration of TF-target interactions is easily scalable. The majority of

such methods leverage guilt-by-association approaches that cannot necessarily predict causal-

ity and are thus limited in terms of elucidating regulatory pathways [44]. One can overcome

this by using a bottom-up approach to identify cis-regulatory elements (CREs), which modu-

late gene expression by recruiting TFs, as a means to presume TF-target gene interactions. The

most popular approach for finding CREs is to employ a supervised motif method using a posi-

tion-specific score matrix (i.e., position weight matrix) and map CREs to a promoter [45].

However, given that CREs are often degenerate and short, this method suffers from high false

positive rates. Improvement can be made by considering the evolutionary conservation of

CREs (albeit all functional CREs are not necessarily evolutionarily conserved) or gene co-regu-

lation. More recently, Deep Neural Network (DNN)-based methods were developed to detect

TFBS [46, 47]. The DNN-based techniques are deemed superior to others given their ability to

accept minor CRE variation and sequence context surrounding TFBS and thus transfer across

species [48]. For instance, leveraging Arabidopsis (Arabidopsis thaliana) cistrome datasets,

Akagi et al. [49] constructed convolutional neural network (CNN)-based DNN models for

cross-species prediction of TFBS in tomato (Solanum lycopersicum). Likewise, Bang et al. [50]

used CNN models to predict TFBS in both maize (Zea mays) and soybean using maize DAP-

seq data. Although high false positive rates were observed by cross-species prediction in the lat-

ter study [50], these advances demonstrate the value of DNN-based methods for TFBS predic-

tion within and across plant species.

In the present study, we coupled transcriptomics, in vitro TF-DNA interaction profiling,

and deep learning to construct a GRN underlying the soybean defense response to P. sojae
infection (Fig 1). We first inoculated hypocotyls of soybean variety Williams 82 (possesses

Rps1k) with mycelial slurries from P. sojae Races 1 or 25, rendering incompatible and compati-

ble interactions, respectively. Transcriptomes were generated from the hypocotyls, and differ-

ential gene expression analysis was performed with expression profiles from a mock

inoculation serving as a baseline. Following RNA capture-based validation of the experimental

design, we assessed TF representation in the differentially expressed gene (DEG) set. The bio-

logical significance of overrepresented TF families was inferred by clustering DEGs, assigning

functional annotations to each cluster, and observing TF family representation across defense-

related clusters. Next, using DAP-seq data for WRKY and RAV TFs differentially expressed in

our DEG set, we obtained promoter-localized TFBS to train DNN models for the prediction of

novel WRKY and RAV targets. Furthermore, cross-species target prediction was performed

for MYB, WRKY, NAC, ERF, and bHLH TF families using DNN models trained with available
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Arabidopsis DAP-seq data. We observed the representation of predicted targets in our DEG

set and used highly confident TF-target predictions to reconstruct a GRN. Findings in this

study provide insight into the regulatory mechanisms governing defense against P. sojae and

provide new/novel avenues for the molecular breeding of soybean.

Results

Transcriptome analysis and virulence screening

To identify candidate genes involved in the defense response against P. sojae, seeds of soybean

variety Williams 82 were grown in germination paper and seedling hypocotyls inoculated with

a mycelial slurry from a Race 1 isolate (R1; incompatible interaction), a Race 25 isolate (R25;

compatible interaction), or sterile media (Mock) following the procedure of Dorrance et al.

[51]. At 24 hrs post-infection (hpi), the hypocotyls were collected and used to generate 13

RNA-seq libraries (4 Mock, 4 R1, and 5 R25) spanning two independent inoculations, RNA

isolations, and sequencing runs. Additional seedlings were maintained seven days post-infec-

tion (dpi) to compare disease development across treatments (Fig 2A) [51]. Collectively, the

RNA-seq samples comprised over 560 million 100-bp paired-end reads with a mean mapping

rate of 95% (S1 Table). Principal Component Analysis demonstrated that samples clustered

according to treatment and sequencing event (data not shown). To circumvent the latter, we

used ComBat-seq [52], a negative binomial regression model, to correct batch effects. We then

performed differential gene expression analysis and removed genes with expression that had

changed significantly between the two batches (False Discovery Rate < 0.05). Furthermore, we

checked the expression of six genes that displayed stable expression in soybean upon various

biotic stresses (Glyma.20G141600, Glyma.12G020500, Glyma.12G051100, Glyma.20G136000,

Fig 1. Schematic overview of the study design. (a) Soybean plants harboring Rps1k were inoculated with a Race 1 P. sojae isolate, Race 25 isolate, or sterile

media. Inoculated hypocotyls were used for RNA-seq. Capture-seq was performed subsequently to validate the RNA-seq data. (b) Overrepresented TF families

were identified from the RNA-seq analysis. DAP-seq data was generated/obtained for the families most represented by total abundance and percentage of

genome-wide proportion. (c) DL models were trained using DAP-seq binding site data. The capacity of some models to generalize across a given TF family was

performed intra- and interspecifically. For several TF families of interest, soybean- or Arabidopsis-based DNNs were trained and used to predict TFBS. (d)

DNN predictions were overlapped with FIMO motif scans, and the highly confident targets were used to construct a GRN.

https://doi.org/10.1371/journal.pone.0287590.g001
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Glyma.12G024700, and Glyma.08G182200) [53] and a gene possessing a P. sojae-inducible

promoter (GmaPPO12; Glyma.04G121700) [54]. The defined reference genes showed no sig-

nificant differences among treatments in the present study, while GmaPPO12 showed strong

induction due to P. sojae infection (S1 Data). Cooperatively, all R1-inoculated hypocotyls dis-

played a localized hypersensitive response, while those inoculated with R25 were demarcated

by expansive necrotic lesions (Fig 2A).

There were 6,042 DEGs (adjusted p-value < 0.05) between R1 and R25 treatments com-

pared to the Mock inoculation (S1 Data). Among them, 2,298 (38.0%) overlapped between R1

and R25, whereas 172 (2.8%) and 3,454 (57.2%) DEGs were present only in R1 or R25 treat-

ments, respectively (Fig 2B). To validate and contextualize our findings, we isolated total RNA

from R1-, R25-, and Mock-inoculated hypocotyls (independent experiments from those used

for RNA-seq), generated adapter-ligated cDNA libraries, and performed RNA hybridization-

based enrichment followed by high-throughput sequencing (i.e., Capture-seq). The RNA

hybridization was performed with biotinylated RNA baits designed for seven genes that

showed elevated expression upon P. sojae infection (Glyma.02G028100, Glyma.19G011700,

Glyma.18G177000, Glyma.16G195600, Glyma.04G131100, Glyma.02G268200, and Gly-
ma.02G028600) across all NILs reported in Lin et al. [27] as well as both interaction types in

our RNA-seq dataset. Baits were incorporated for the six aforementioned reference genes as an

internal standard. We recovered 100% of our capture library. Further, all pathogen-induced

genes showed significantly elevated expression in inoculated vs Mock samples, while all refer-

ence genes showed stable expression across treatments (S1a, S1b Fig, S2 Table).

Fig 2. Pathogenicity testing and transcriptome analysis. (a) Disease development in Race 25- (top) and Race 1-treated (bottom) hypocotyls at seven days

post-infection. (b) Venn diagram of DEGs between different treatments. (c) TF representation among DEGs from RNA-seq. WRKY was the most represented

TF family by total abundance and RAV by the percentage of genome-wide proportion. (d) K-means clustering of DEGs. DEGs were assigned to nine co-

expression clusters. Of these, seven displayed increased expression (log2FC [FC]>0) in infected vs Mock treatments, while two demonstrated decreased

expression (FC<0). (e) Functional enrichment and TF representation for gene co-expression clusters. (left panel) Top five GO categories by adjusted p-value

(�0.05; data available in S7 Data). (middle panel) Top five KEGG terms by adjusted p-value (�0.05). (right panel) top 3 TF families (abundance) for each

cluster.

https://doi.org/10.1371/journal.pone.0287590.g002
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Identification of defense-related TF families

Following transcriptome validation by Capture-seq, we used PlantTFDB [55] to identify TF-

annotated genes in our DEG set (genes differentially expressed in at least one interaction). We

found 447 (7.3% of DEGs) distributed across 43 TF families. Among these families, WRKY

was the most represented by total abundance (n = 65 encoding DEGs), followed by ERF

(n = 56), bHLH (n = 44), MYB (n = 37), and C2H2 (n = 31) (Fig 2C). The RAV TF family was

most represented by the percentage of genome-wide proportion (60%) (Fig 2C). Moreover,

proportions of WRKY, ERF, HSF, CAMTA, and RAV TF-encoding genes were significantly

enriched in the DEG set (hypergeometric p-value < 0.05).

To predict functions of the defined TF families in the present pathosystem, DEGs were seg-

regated into nine co-expression clusters via K-means clustering. In clusters 3 and 6 (hereafter

“down-regulated clusters’’), both compatible and incompatible interactions showed reduced

expression in comparison to Mock, with mean expression higher in the incompatible interac-

tion than in the compatible (Fig 2D). A reciprocal pattern was observed in clusters 1, 2, 4, 5, 7,

8, and 9 (hereafter “up-regulated clusters’’), wherein the majority of genes were up-regulated

Fig 3. DAP-seq identification of GmWRKY30 and GmRAV TFBS. (a) Distribution of DAP-seq peaks across genomic features. (b) Distance of peaks

from the TSS.

https://doi.org/10.1371/journal.pone.0287590.g003
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compared to the Mock, and the compatible interaction displayed the highest mean expression

(Fig 2D). We explored these trends by assigning functional annotations to each gene cluster

with GO term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analyses [56, 57]. Interestingly, up-regulated clusters displayed enrichment for specialized

metabolism and signaling-related KEGG terms, particularly those inferring MAPK signal

transduction (DEGs/Total genes: 57/229), phenylpropanoid biosynthesis (48/214), flavonoid

biosynthesis (23/67), and plant-pathogen interaction (64/280) (Fig 2E; S1 Data). Most genes

corresponding to these terms were differentially expressed in both compatible and incompati-

ble interactions compared to Mock, except for plant-pathogen interaction and MAPK-related

pathways, where 27 and 35 genes, respectively, were differentially expressed exclusively during

the compatible interaction. Down-regulated clusters were enriched with GO and KEGG terms

related to primary metabolism (e.g., photosynthesis) (Fig 2E; S1 Data), which likely reflected a

reallocation of cellular energy to defense [58].

Next, we examined TF representation in the co-expression clusters involved in the signaling

and specialized metabolic responses to P. sojae (i.e., up-regulated clusters). WRKY was the most

abundant TF family for four clusters (4, 7, 8, and 9), ERF for two clusters (1 and 5), and C2H2

for cluster 2 (Fig 2E). Furthermore, four TF families were represented in more than half of the

up-regulated clusters, with ERF present in 7/7, WRKY in 6/7, C2H2 in 4/7, and MYB in 4/7.

Comprehensive identification of TFBS

Transcriptome analysis prompted the identification of TFBS (and thereby target genes) for

defense-related TF families. To this end, we performed DAP-seq for GmWRKY30, whose cor-

responding gene (Glyma.06G125600) was differentially expressed by RNA-seq. In addition,

GmWRKY30 homologs promoted resistance to hemibiotrophic and necrotrophic fungi in rice

(Oryza sativa) [59] and to Cucumber mosaic virus in Arabidopsis [60]. Treatments were pre-

pared for DAP-seq by inoculating soybean hypocotyls with an R1 P. sojae isolate (sample here-

after referred to as “WRKY30_P1”) or sterile media (hereafter “WRKY30_M1”) (see

“Materials and Methods” for full details). WRKY30_P1 and WRKY30_M1 displayed 6,415 and

2,083 peak regions, respectively, corresponding to various genomic features (Fig 3; S3 Data;

S3 Table). Motif enrichment analysis was then performed with MEME-ChIP [61] and demon-

strated that bound regions present in both samples were statistically enriched for the WRKY

TF binding site, W-box (TTTGAC/T), implicating that these regions were indeed bound by a

WRKY TF. To establish regulatory roles of GmWRKY30 during P. sojae infection, we obtained

the peaks annotated as promoters (defined as 1,000 bp up- and downstream of the transcrip-

tion start site [TSS]) and retained the regions shared by WRKY30_P1 and WRKY30_M1 (235

promoters) as well as those found exclusively in WRKY30_P1 (1,110 promoters). Of these, 212

promoters corresponded to genes in our DEG set. Interestingly, 174/212 were present exclu-

sively in the WRKY30_P1 sample (S3 Data). Given that the only difference between

WRKY30_P1 and WRKY30_M1 samples was DNA methylation marks, this observation sug-

gested that the soybean genome undergoes differential methylation during P. sojae infection,

perhaps as a mechanism to prevent autoimmunity [16]. Moreover, 35/212 target genes were

annotated as TFs, indicating putative auto- and cross-regulatory activity of GmWRKY30 dur-

ing the immune response. Thirteen of the 35 TF-encoding DEGs belonged to the WRKY TF

family, and all were present in the up-regulated clusters (S1 and S3 Datas). Furthermore,

KEGG functional annotation revealed that eight GmWRKY30 targets were part of the MAPK

or plant-pathogen interaction pathways described above (S1 and S3 Datas). These data con-

comitantly suggest that GmWRKY30 regulates the expression of other TFs and signaling com-

ponents during soybean-P. sojae interaction.
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RAV was the most abundant TF family by a percentage of genome-wide proportion in our

DEG set; therefore, we obtained DAP-seq data for a GmRAV TF from Wang et al. [62]. The

corresponding gene (Glyma.10G204400) was significantly up-regulated in both compatible

and incompatible interactions compared to Mock and displayed similar expression dynamics

in Lin et al. [27] upon P. sojae infection. In the present analysis, GmRAV was bound to 3,409

promoters corresponding to 389 genes in our DEG set (S1 and S4 Datas). Of these, 29

encoded TFs. One hundred seventy-six of the 389 targets (45%) were present in either cluster

3 or 6 (down-regulated clusters) (S1 and S4 Datas). Cooperatively, functional enrichment

demonstrated that GmRAV targets included genes relevant to photosynthesis and carbon

metabolism (S1 and S4 Datas), indicating that GmRAV may repress primary metabolic activ-

ity during pathogen infection.

DNN prediction of TFBS

While TFs in a structural family have the capacity to function distinctly in vivo, they often

share intrinsic CRE preference [63–65]. Therefore, we hypothesized that binding sites

obtained for a single TF could be used to predict binding sites for other members of the same

family. To test this hypothesis, we trained Convolutional Recurrent Neural Networks

(CRNNs), which couple CNN and bi-directional long short-term memory layer architecture

[66] (Fig 4), using peak summits of WRKY30_P1 and WRKY30_M1 samples with either 32-

or 201-bp peak regions (S2 Fig). The CRNN with a 201-bp region outperformed the CRNN

with a 32-bp peak region and displayed an 89% validation accuracy, 90% test accuracy, and a

false positive rate of less than 3% (Table 1). We trained a similar model for GmRAV, which

had an 89% validation accuracy, 89% test accuracy, and a less than 3.5% false positive rate

(Table 1). Moreover, for both GmWRKY30 and GmRAV CRNN models, the area under the

receiver operating characteristic (auROC) curve was beyond 0.88, and the area under the

Fig 4. Schematic illustration of CRNN architecture and TFBS prediction.

https://doi.org/10.1371/journal.pone.0287590.g004
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precision-recall curve (auPRC) beyond 0.81 (S3 Fig). To determine if a CRNN model trained

for one TF could generalize to members of the same family intraspecifically, we generated

AmpDAP-seq data for GmWRKY2 (homologous to AtWRKY2 and encoded by Gly-
ma.06G320700). For this sample, we first observed peak distribution across genomic features

(S4 Fig; S5 Data) and used MEME-ChIP to verify statistical enrichment of the W-box CRE

within peak regions. We then used peak regions to test if the GmWRKY30 CRNN could pre-

dict GmWRKY2-bound sites. The prediction accuracy was above 82%, with a false positive

rate of less than 6% (Fig 5A). Furthermore, we explored the interspecific generalization capac-

ity of the GmWRKY30 CRNN by performing a cross-species prediction on AtWRKY30

(encoded by AT5G24110; homologous to GmWRKY30) DAP-seq data (generated by O’Malley

et al. [67] and reanalyzed by Song et al. [68]). For this analysis, the prediction accuracy was

above 84% with a false positive rate of less than 7% (Fig 5A).

Yet, it remained unclear whether these patterns would recur within/across TF families.

Therefore, we utilized DAP-seq data for AtWRKY30, AtMYB62, AtMYB108, AtMYB119,

AtNAC031, AtNAC053, and AtNAC057 [67, 68] to train additional CRNNs. The AtWRKY30

model validation accuracy was 97%, test accuracy 97.33%, and false positive rate 0.13%

(Table 2). The model was used subsequently to predict binding sites for 17 other AtWRKY

TFs with available DAP-seq data [67, 68] and presented a mean prediction accuracy of 89%

Table 1. Summary of GmWRKY and GmRAV CRNN models. TPR: True Positive Rate; TNR: True Negative Rate; FPR: False Positive Rate; FNR: False Negative Rate.

Model Train Acc. (%) Val Acc. (%) Test Acc. (%) TPR (%) TNR (%) FPR (%) FNR (%)

WRKY 90.97 89.77 90 33.67 56.21 2.71 7.41

RAV 89.09 89.2 89 44.88 45.33 3.49 6.3

https://doi.org/10.1371/journal.pone.0287590.t001

Fig 5. Generalization testing for soybean and Arabidopsis CRNNs and schematic illustration of TFBS prediction for defense-related TF families. (a) The

GmWRKY30 CRNN was used to predict TFBS interspecifically with AtWRKY30 DAP-seq data (left barplot) and intraspecifically with GmWRKY2 AmpDAP-

seq data (right barplot). (b) AtWRKY, AtMYB, and AtNAC CRNNs were trained with available DAP-seq data and used to predict binding sites for other

members of their respective families. (c) The Arabidopsis-based models, along with the GmWRKY30 and GmRAV models, were used to predict TFBS in our

DEG set. These predictions were overlaid with FIMO scans to elucidate TF-target gene interactions.

https://doi.org/10.1371/journal.pone.0287590.g005
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with a mean false positive rate under 1% (Fig 5B; S6 Data). The three AtMYB models had 92–

98% validation accuracies, 91–98% test accuracies, and 0.8–2.76% false positive rates (Table 2)

and were used to predict binding sites for 5 AtMYB TFs [67, 68], presenting a mean prediction

accuracy of 64.92% and a mean false positive rate of 1.53% (Fig 5B; S6 Data). Similarly, the

three AtNAC models posed validation accuracies between 95.5–98%, test accuracies between

95–98%, and a false positive rate ranging between 0.6–1.79% (Table 2). These models were

used for predicting binding sites for 15 other AtNAC TFs [67, 68] with a mean prediction

accuracy of 79.6% and a mean false positive rate of 1.09% (Fig 5B; S6 Data). These findings indi-

cated that a model trained using the TFBS of one family member could predict the TFBS of

another member with reasonable accuracy. Therefore, GmWRKY30 and GmRAV models were

used to predict TFBS on promoters of the DEGs from the transcriptome analysis (Fig 5C). To

further reduce false positives, we scanned the same promoter regions using Find Individual

Motif Occurrences (FIMO) [69] with motifs obtained from the JASPAR database [70] to find

CREs. The results from the FIMO scan were overlapped with our predicted sites to get a highly

confident set of TFBS. From this, we obtained 3,298 GmWRKY targets with 267 corresponding

to TF-encoding genes (60% of TFs in the DEG list). Similarly, GmRAV-predicted targets

included 1,925 genes, 121 of which encoded TFs (27% of TFs in the DEG list) (S1 Data).

Cross-species prediction of soybean TFBS

Based upon the interspecies generalization capacity of the GmWRKY30 model, we wanted to

further leverage the homology between Arabidopsis and soybean to build CRNNs and conduct

cross-species predictions for other defense-related TF families. In doing so, we built CRNNs

for AtERF, AtbHLH, AtC2H2, AtRAV, AtWRKY, AtMYB, and AtNAC TF families by com-

bining available DAP-seq data for each family. With the exception of the AtRAV and AtC2H2

models, the training, validation, and testing accuracies were above 90%, and false positive rates

less than 1.2% for all models (Table 3). Both AtRAV and AtC2H2 models had training,

Table 2. Summary of Arabidopsis data-based CRNN models used for generalization tests. TPR: True Positive Rate; TNR: True Negative Rate; FPR: False Positive

Rate; FNR: False Negative Rate.

Model Common names Val Acc. (%) Test Acc. (%) FPR (%) TPR (%) TNR (%) FNR (%)

AT1G68320 AtMYB62 97.47 97 0.84 48 49.1 2.06

AT3G06490 AtMYB108 92.02 91 2.76 43.71 47.24 6.29

AT5G58850 AtMYB119 98.09 98 0.76 50.09 48.22 0.93

AT5G24110 AtWRKY30 97 97.33 0.13 47.41 49.89 2.57

AT1G76420 AtNAC031 95.52 95 1.79 47.6 47.34 3.26

AT3G17730 AtNAC057 97.33 97 0.98 48.31 49.16 1.54

AT3G10500 AtNAC053 98.15 98 0.6 48.96 48.72 1.73

https://doi.org/10.1371/journal.pone.0287590.t002

Table 3. Summary of Arabidopsis data-based CRNN models used for cross-species predictions. TPR: True Positive Rate; TNR: True Negative Rate; FPR: False Positive

Rate; FNR: False Negative Rate.

Model Train Acc. (%) Val Acc. (%) Test Acc. (%) TPR (%) TNR (%) FPR (%) FNR (%)

WRKY 97.79 98.12 98.00 48.94 49.83 0.63 0.60

MYB 93.23 92.22 92.00 41.93 50.16 1.04 6.88

ERF 96.10 95.85 95.76 46.14 49.62 0.43 3.80

NAC 92.34 92.11 92.00 41.69 49.68 1.20 7.42

BHLH 96.80 96.00 96.22 47.45 48.77 0.76 3.03

RAV 74.57 75.00 73.00 22.26 50.74 0.89 26.11

C2H2 85.20 85.00 84.60 36.42 48.18 1.22 14.18

https://doi.org/10.1371/journal.pone.0287590.t003
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validation, and testing accuracies of less than 86% with increased false negative rates and were

thus not used for subsequent analyses (Table 3). Next, we generated AmpDAP-seq data for

GmMYB61 (encoded by Glyma.10G142200) (S4 Fig; S5 Data) and used AtWRKY and

AtMYB CRNNs to perform cross-species predictions on GmWRKY30 DAP- and GmMYB61

AmpDAP-seq data, respectively. Both predictions demonstrated modest accuracies (approxi-

mately 61%), yet less than 1% false positive rates (Table 4). We posited that, while Arabidop-

sis-to-soybean predictions would likely miss some true TFBS, we could have confidence in

those classified as bound. Therefore, we used AtMYB, AtERF, AtNAC, and AtbHLH CRNNs

to predict TFBS for promoter regions of our DEGs (Fig 5C). Consistent with soybean CRNNs,

all of the predicted TFBS were overlapped with FIMO predictions to get a highly confident set

of targets.

GRN inference underpinning host defense

The combination of soybean and Arabidopsis CRNNs allowed the prediction of TFBS corre-

sponding to 5,505 genes in the DEG set (Fig 6A). Global and family-level GRNs were thereby

constructed with TFs represented by nodes and target genes by edges (Fig 6B; S5 Fig). We

then examined TF-level TFBS to prioritize nodes in the global GRN. To be considered, nodes

had to possess statistically enriched binding motifs (q-value < 0.05) compared to a randomly

shuffled input sequence (determined by the Simple Enrichment Analysis algorithm of Bailey

and Grant [71]) and had to have corresponding genes expressed in the transcriptome analysis

(Fig 6D). The 118 nodes meeting these criteria were prioritized by degree centrality, TF co-

occurrence, and the expression pattern of corresponding genes. Degree centrality was deter-

mined from outdegree (number of edges directed to each node) and cumulative indegree

(indegree = number of nodes to which an edge is directed; cumulative indegree = combined

indegree for all edges of a node). Both measures were scale-free and displayed a power-law dis-

tribution (Fig 6D) as expected of GRN architecture [72]. Furthermore, TF cooperativity/co-

occurrence metrics are required to effectively model causal GRNs [73]. We assessed putative

TF co-occurrence with TF-COMB (Transcription Factor Co-Occurrence using Market Basket

analysis) [74] and selected cosine association score as the objective similarity measure for co-

occurring TF pairs (Fig 6C). Cumulative cosine (total cosine association score across all co-

occurrences) was determined for each node. Lastly, we calculated the mean |log2FC| for node-

corresponding genes across both interactions (R1 vs Mock and R25 vs Mock; n = 306) for fur-

ther prioritization. Nodes/node-corresponding genes present in the upper quartile for all four

parameters were considered hubs (Fig 6D). A reciprocal approach prioritized edges by inde-

gree, cumulative outdegree (combined outdegree of all nodes to which an edge is directed),

sum cumulative cosine (combined cumulative cosine of all nodes to which an edge is directed),

and mean |log2FC| across both interactions (S6 Fig).

Hub nodes corresponded to 13 genes encoding 14 TFs, all of which belonged to ERF and

WRKY families (Fig 6D, 6E). Twelve hub genes were differentially expressed in the transcrip-

tome analysis and were present in co-expression clusters 1, 4, 5, and 8 (up-regulated clusters

with defense-related functional annotations). Furthermore, we assessed KEGG annotations for

Table 4. Arabidopsis-to-soybean cross-species prediction results. TPR: True Positive Rate; TNR: True Negative

Rate; FPR: False Positive Rate; FNR: False Negative Rate.

Model Cross Pred. Acc. (%) TPR (%) TNR (%) FPR (%) FNR (%)

WRKY 61.16 5.81 55.35 0.52 38.32

MYB 60.81 10.92 49.89 0.90 38.29

https://doi.org/10.1371/journal.pone.0287590.t004
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putative hub node targets (n = 2,059), and 216 targets were annotated to one or more func-

tions. Interestingly, 62% (134/216) of the targets possessed evident primary metabolic terms

(e.g., carbon metabolism and glycolysis/gluconeogenesis), whereas 36% (78/216) possessed

terms related to defense/specialized metabolism (e.g., phenylpropanoid biosynthesis, MAPK

signaling, and plant-pathogen interaction). The remaining targets posed functional annotation

indicating the maintenance of cellular redox homeostasis (e.g., ascorbate and aldarate metabo-

lism). It is therefore reasonable to hypothesize that these hub nodes are core components of

the defense-growth tradeoff in soybean by regulating transcriptional reprogramming.

Discussion

P. sojae is a yield-devastating soybean pathogen subject to rapid genetic diversification and

expansion within and across production environments. To unravel regulatory signatures of

host defense during P. sojae infection, we coupled multi-omic and computational analyses to

identify TF-target gene interactions at 24 hpi. In doing so, we conducted the first comparative

transcriptomic study for compatible and incompatible soybean-P. sojae interactions within a

single host genotype. Similar gene expression profiles were observed across the interaction

types, implicating significant overlap between PTI- and PTI + ETI-mediated defense at 24 hpi.

Enkerli et al. [75] revealed ultrastructural differences between compatible and incompatible

Fig 6. GRN inference at 24 hpi. (a) (left) log2FC (FC) of DEGs across interaction types, (middle) WRKY and RAV binding site representation in the DEG set

derived from DAP-seq, and (right) binding site representation for each TF family in the DEG set derived from CRNN + FIMO prediction. The bar plot shows

the total number of target genes for each family, as well as the number of TF-encoding target genes (blue). (b) Hairball of the global GRN. Nodes and edges

represent TFs and target genes, respectively. Node size corresponds to outdegree. (c) Scatterplot of the top co-occurring TF pairs by cosine association score

identified with TF-COMB. The datapoint color reflects the total number of shared targets for a given TF pair. (d) Prioritization of nodes. Nodes that were

statistically enriched by Simple Enrichment Analysis and were represented in the transcriptome analysis (n = 118) were prioritized by outdegree, cumulative

indegree, cumulative cosine, and mean |log2FC| (Mean |FC|). Blue polygons represent the upper quartile for each parameter. Thirteen genes/14 TFs were in the

upper quarter for all four parameters. (e) Hairball of the hub nodes. Node size corresponds to outdegree.

https://doi.org/10.1371/journal.pone.0287590.g006
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soybean-P. sojae interactions at 4 hpi, with programmed cell death and impedance of hyphal

growth evident in the incompatible interaction by 15 hpi. Thus, it is likely that maximal

expression of PTI-potentiating transcripts during incompatibility precludes or at least pre-

cedes the P. sojae transition from biotrophy to necrotrophy (12–24 hpi [76, 77]), and succedent

activity reflects a reduction in hypersensitivity required to offset fitness costs of induced resis-

tance. This concept draws parallels to other pathosystems in which compatible and incompati-

ble interactions displayed consistent trends in gene expression, with the incompatible

interaction eliciting a heightened, more immediate immune response [78–80]. A complemen-

tary explanation is that PTI/ETI convergence is attributed to the P. sojae arsenal present during

both compatible and incompatible interactions, including MAMPs and a conserved suite of

effectors [81]. Moreover, overlapping expression profiles may correspond primarily to PTI sig-

natures not targeted by Avr-encoded effectors. Nevertheless, findings herein necessitate the

investigation of compatible and incompatible interactions in tandem to elucidate Rps gene-

exclusive defense mechanisms.

Plant immune signaling is remarkably tunable yet robust, allowing the coordination of

defense and growth in a manner that maximizes host fitness [21, 82, 83]. Prior studies suggest

signal integration underpinning the defense-growth trade-off is imposed by TF regulatory net-

works that modulate immune responses through transcriptional reprogramming [17]. In the

present study, K-means clustering of DEGs rendered nine gene co-expression clusters, seven

of which were up-regulated and corresponded to defense-related functional annotations (e.g.,

MAPK signaling and specialized metabolism). Cooperatively, these clusters were enriched

with statistically overrepresented TF families (i.e., MYB, WRKY, NAC, ERF, and C2H2)

known to regulate plant specialized metabolism [22, 23] and reported in prior soybean-P. sojae
studies [29, 30, 32–35, 37, 84]. Furthermore, WRKY and ERF were the most abundant TF fam-

ilies across the seven clusters. This is consistent with findings in Arabidopsis where

MAPK-WRKY and MAPK-ERF complexes regulated core immune signaling through tran-

scriptional reprogramming [17, 20, 85]. The remaining gene co-expression clusters were

down-regulated and demarcated by growth and reproductive functional terms. Interestingly,

DAP-seq suggested that gene targets of RAV (the most represented TF family in the DEG set

by a percentage of genome-wide proportion) were enriched in these two clusters. This finding

is consistent with prior studies wherein GmRAV has been reported to play a role in photosyn-

thesis, senescence, abiotic stress tolerance, and phytohormone-mediated signaling [86–88]

and act as a transcriptional repressor to delay flowering [62]. To our knowledge, the present

study is the first to propose a function for GmRAV during immunity, where it acts as a repres-

sor of primary metabolism. Thus, our transcriptome analysis evidences transcriptional repro-

gramming governing the defense-growth trade-off in soybean upon P. sojae infection.

DAP-seq data were generated/obtained for the most represented TF families by total abun-

dance and percentage of genome-wide proportion in the transcriptome analysis, and pro-

moter-localized DAP-seq peaks were used to train CRNNs (DNNs composed of convolutional

and recurrent layers) for the prediction of novel TFBS. We leveraged CRNNs for their capacity

to learn randomly composite, predictive sequence patterns [48]. Previous studies suggest that

binding site motifs, along with nearby sequence features and their organization in the genome,

play a vital role in TF binding. The convolutional filters in CRNNs can capture and train these

binding site motifs and nearby sequence features, while recurrent layers can learn their multi-

dimensional organization [48]. In addition, such hybrid model architecture has been used suc-

cessfully to predict TF-target interactions with human data [66, 89, 90]. Here, our CRNN

models were capable of predicting TFBS for the selected TF families in soybean and Arabidop-

sis with ~90% accuracy. The exclusive use of DEG promoters for binding site prediction

increased the likelihood that targets were biologically valid, as the correlation between stable

PLOS ONE Plant immunity and gene regulatory networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0287590 July 7, 2023 13 / 28

https://doi.org/10.1371/journal.pone.0287590


TF binding and TF regulation is vastly inconsistent and oftentimes poor [73, 91, 92]. More-

over, CRNNs trained for one TF could find TFBS for other members of the same family. We

supported this notion in soybean by generating binding site data for a second WRKY TF and

using the pre-existing WRKY CRNN to predict its targets. We validated our findings in

another species by training additional CRNNs with Arabidopsis DAP-seq data for WRKY,

MYB, and NAC TFs and predicting TFBS for various members of the respective families. In

every instance, CRNNs were capable of generalizing with acceptable accuracy, posing signifi-

cant potential as an alternative to wet lab-based TFBS assays. Altogether, findings herein reflect

the ability to train highly accurate CRNNs for the prediction of TFBS in plants.

The DNA sequence preference of TFs is largely conserved across phylogenetically-related

species, leading to the advent of deep learning-based approaches for cross-species TFBS pre-

diction [48, 65, 92]. However, recent attempts at mouse-to-human/human-to-mouse and

maize-to-soybean cross-species predictions suffered from high false positive rates [48, 50]. We

hypothesized that we could overcome such limitations due to the evolutionary proximity of

soybean and Arabidopsis (two diploid, dicotyledonous species). In the present study, Arabi-

dopsis-to-soybean predictions had moderate accuracy (approximately 60%) with low false pos-

itive rates (less than 1%). Interestingly, soybean-to-Arabidopsis predictions displayed a higher

accuracy than the Arabidopsis-to-soybean. Nitta et al. [93] investigated TFBS conservation

between Drosophila and mammals, finding that novel binding site specificities could arise via

gene duplication and subsequent divergence. Perhaps the lower Arabidopsis-to-soybean pre-

diction accuracies reflect the expansion of WRKY and MYB families in soybean, rendering

soybean-specific CRE preferences. Furthermore, the lower prediction accuracies may indicate

contributions to TF genomic occupancy beyond DNA sequence affinity (e.g., chromatin state;

presence of cofactors), which have been demonstrated to significantly influence immunity-

related transcriptional dynamics in plants [16]. Thus, the integration of complementary infor-

mation (e.g., ATAC-seq data) into existing CRNN frameworks will allow for more accurate

model training in the future.

We predicted TFBS for WRKY, RAV, NAC, ERF, bHLH, and MYB TF families with soy-

bean- and Arabidopsis-based CRNNs, overlaid CRNN predictions with FIMO scans, and con-

structed global and family-level GRNs. Within a GRN, some TFs act as hubs to regulate many

genes, while target genes are typically regulated by multiple TFs [73]. Therefore, we identified

hub nodes, which presumably have an inordinate effect on phenotype [94], by integrating

motif enrichment analysis, degree centrality, TF co-occurrence, and gene expression metrics.

Interestingly, all hub-corresponding genes encoded WRKY or ERF TFs, suggesting these fami-

lies are central components of the host immune response at 24 hpi. One could attribute this in

part to the use of intraspecies prediction for WRKY and RAV and cross-species prediction for

the other TF families, the latter of which was prone to high false negative rates that likely influ-

enced degree centrality. Yet, WRKY and ERF were the most represented TF families in

defense-related DEG clusters derived from the transcriptome analysis, which, when coupled

with functional annotations of hub node targets, reinforced the pertinence of the two families

for host defense. Moreover, the majority of hub genes identified here demonstrated differential

expression in soybean upon various biotic and abiotic stresses (Fig 6D) [27, 95–103]. Addi-

tional efforts must be used to functionally validate TF-target predictions, which remains a bot-

tleneck in GRN research [73, 104].

Nevertheless, this research poses limitations that must be considered. First, the inoculation

procedure of Dorrance et al. [51] was used in the present study: hypocotyl wounding occurred

prior to the placement of a mycelial slurry (sterile media for Mock tissues). It is possible that

mechanical tissue disruption increased damage-associated molecular pattern (DAMP)-related

signaling, and that DAMP + MAMP perception triggered PTI beyond what occurs in situ
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[105]. Second, the existing network lacks the temporal resolution required to fully elucidate

dynamic phenomena such as plant-pathogen interactions [73]. Thus, future experiments will

include more natural inoculation procedures, the integration of time-series expression and

epigenomic data into CRNN frameworks, the evaluation of additional defense-relevant TF

families, and the molecular investigation of P. sojae effector targets.

Conclusions

In summary, TF families emphasized in this study (particularly ERF, WRKY, and RAV) are

likely core components of sensory regulatory networks required for the balance of primary and

specialized metabolic responses to P. sojae infection. Interactions predicted here shed light on

convergent and discrete transcriptional complexes during host immunity and provide a frame-

work for data integration, functional validation, and the prediction of novel regulatory compo-

nents for disease resistance [21]. We also provide a framework for improved TFBS prediction

by coupling high-throughput sequencing data and CRNNs. Consequently, the information

herein may prove useful for the circumvention of P. sojae pathogenicity through the modulation

of defense-related pathways and the resultant derivation of disease-resistant soybean genotypes.

Materials and methods

Biological materials, pathogenicity testing, and RNA isolation

For all experiments, soybean and P. sojae materials were generated at Iowa State University in

the lab of Dr. Alison Robertson. Axenic-grown P. sojae isolates were transferred from a 20%

clarified vegetable juice (V8) medium onto a soft-diluted V8 medium and incubated at 25˚C

in the dark as defined by Dorrance et al. [51]. Concomitantly, seeds of soybean varieties Wil-

liams 82 (Rps1k) and Williams (Rps) were grown on moistened germination paper at 25˚C, 16

h d−1 light, and 90% relative humidity. On day 7 of plant growth, seedling hypocotyls were

incised 1 cm below the cotyledonary node with a sterile razor blade and inoculated with 0.1

mL mycelial slurry of a P. sojae Race 1 isolate (avirulent on Rps1k), a Race 25 isolate (virulent

on Rps1k), or sterile media. At 24 hpi, the mycelial slurries were washed off with deionized

water, and a 2 cm fragment of each hypocotyl was cut and immediately frozen in liquid

nitrogen.

For each inoculation, 10 or more seedlings per treatment were kept 7 d to monitor disease

development. Seedlings were scored as asymptomatic or symptomatic depending on the

absence/presence of lesions and necrotic tissue in at least 90% of replicates. For an inoculation

to be successful, Williams seedlings displayed disease symptoms when infected with either P.

sojae pathotype. Williams 82 seedlings displayed hypersensitivity upon inoculation with Race

1 and were symptomatic upon infection with Race 25. Moreover, mock inoculations rendered

asymptomatic, clean wounds for both varieties.

Total RNA was isolated from frozen Williams 82 hypocotyls with the NEB Monarch Total

RNA Miniprep Kit (Cat #T2010S) and quantified using a Qubit fluorometer paired with the

RNA high-sensitivity assay kit (Cat #Q32852). RNA purity was estimated from A260/A280

and A260/A230 ratios using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scien-

tific) and further assessed by gel electrophoresis (1% agarose gel at 120V for 40 min). Samples

were stored at −80˚C until use.

RNA-seq

Total RNA was sent to Novogene Corporation (Sacramento, CA, USA) for library preparation

and sequencing. RNA purity was assessed using a NanoPhotometer1 spectrophotometer
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(Implen, Westlake Village, CA, USA). RNA integrity and quantitation were monitored with

the RNA Nano 6000 Assay Kit (Cat #5067–1511) of the Agilent Bioanalyzer 2100 system (Agi-

lent Technologies, CA, USA). Following quality control, cDNA libraries were prepared from

1 μg total RNA using the NEBNext Ultra™ II RNA Library Prep Kit for Illumina (Cat #E7770S)

paired with the NEBNext Poly(A) mRNA Magnetic Isolation Module (Cat #E7490) following

manufacturer’s instructions. Library quality was assessed on the Agilent Bioanalyzer 2100 sys-

tem, and libraries were sequenced on an Illumina platform.

Resultant short reads were processed using fastp software (v0.20.1) [106] for the removal of

adapter sequences and low-quality reads (Phred <33). Clean reads were then mapped to the

soybean reference genome (Gmax_508_v4.0.softmasked) with HISAT2 (v2.0.5) [107]. Feature-

Counts (v1.5.0-p3) [108] was used to summarize read counts per gene. Only the genes that had

a mean count> 20 across all samples were considered for further analyses to improve the sen-

sitivity for differential gene expression analysis. The batch-level bias was removed using Com-

bat-Seq in the Bioconductor R package sva (v3.44.0) [52], and differential gene expression

analysis was performed using the DESeq2 package (v1.34.0) [109]. Genes with expression sig-

nificantly changed in the R1 and R25 treatments compared to the Mock treatment (adjusted p-

value �0.05) were deemed DEGs. Furthermore, we used two experimental batches as a factor

for the DESeq2 model, and any genes with an adjusted p-value �0.05 between the two batches

were removed from further analyses.

The 6,042 genes in our DEG set were clustered using the Bioconductor R package coseq

(v1.17.2) [110, 111]. The batch effect-corrected count data were used as the input for the coseqR

and centered log-ratio-transformation and trimmed means of M values normalization were

performed to normalize the counts. Genes assigned to each cluster were used for visualization

and GO and KEGG enrichment analyses. For GO enrichment analysis, GO terms were down-

loaded from the Gene Ontology Meta Annotator for Plants (GOMAP) database [112], and the

enrichment analysis was performed for each co-expression cluster using the runTest functions

(algorithm = "elim", statistic = "fisher") in the TopGO Bioconductor package (v2.48.0) [113]. p-

values were corrected for multiple hypothesis testing using the p.adjust function in R using the

Benjamini-Hochberg procedure. GO terms with an adjusted p-value �0.05 were considered

enriched terms. Similarly, for the KEGG enrichment analysis, terms were downloaded from the

KEGG database, and enrichment analysis was performed using the clusterProfiler Bioconductor

package (v4.4.4) [114]. KEGG pathways with an adjusted p-value �0.05 were considered over-

represented. Genes encoding putative TFs were annotated using PlantTFDB [55]. To calculate

the statistical significance between observed TF abundance in our DEG set and their genome-

wide proportions, we conducted a proportion test using the prop.test function in RStudio

(v3.6.3) [115]. Data visualization was performed using ggplot2 (v3.3.6) [116].

Capture-seq

Capture-seq was used to validate the expression of pathogen-induced genes and internal stan-

dards (n = 13 genes). Hypocotyl inoculation and RNA isolation were performed as described

above. Adapter-ligated cDNA libraries were then prepared from total RNA using the NEBNext

Ultra™ II RNA Library Prep Kit for Illumina (Cat #E7770S) following appendix modifications

for size selection of 300 nt inserts (420 nt final library size). In doing so, mRNA was frag-

mented using First-Strand Synthesis Reaction Buffer and Random Primer Mix (2X) at 94˚C

for 10 min (compared to 15 min in the protocol). Moreover, the incubation time during first-

strand cDNA synthesis was increased from 15 to 50 min at 42˚C. Size selection of libraries was

performed using 25 and then 10 μl of Agencourt AMPure XP beads (Beckman Coulter, Brea,

CA, USA, Cat #A63880). All libraries were quantified with a Qubit fluorometer using the
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dsDNA high-sensitivity assay kit (Cat #Q32851) and visualized by gel electrophoresis (2% aga-

rose gel at 100V for 60 min).

120-nt biotinylated RNA baits were designed by Integrated DNA Technologies (IDT, Cor-

alville, IA, USA) and encoded the sense strand of the genes of interest. Sequence capture was

then performed as described in the xGen hybridization protocol from IDT (http://sfvideo.

blob.core.windows.net/sitefinity/docs/default-source/protocol/xgen-hybridization-capture-of-

dna-libraries.pdf?sfvrsn=ab880a07_6) with modifications. 500 ng of each barcoded Illumina

library was pooled into a single 1.5 mL low-bind microcentrifuge tube and combined with

5 μg of salmon sperm DNA (Cat #15632011) and 2 μl of xGen Universal BlockersTS Mix (Cat

#1075474) to prevent bait hybridization with repetitive elements/adapter sequences. Samples

were dried for ~90 min in an ISS110 SpeedVac System (Thermo Fisher Scientific). Pelleted

material was resuspended in 8.5 μl of 2X hybridization buffer, 2.7 μl of Hybridization Buffer

Enhancer, 4 μl of a working bait stock (100 attomoles/bait/μl), and 1.8 μl of nuclease-free

water to a final volume of 17 μl. A hybridization reaction was then performed with an initial

denaturation at 95˚C for 30 s followed by a 16-hr incubation at 65˚C. M-270 Streptavidin

beads were equilibrated, pelleted by a magnet, and mixed with the hybridization product for

another 45-min incubation at 65˚C. Heated and room temperature washes were performed as

recommended and 20 μl of nuclease-free water was added to the beads. Post-capture PCR was

then performed by adding the following components to the capture product: 1.25 μl of xGen

library amplification primer, 10 μl of 5X Phusion HF Buffer, 1 μl of 10 mM dNTP, 0.5 μl Phu-

sion High-Fidelity DNA Polymerase (Cat #M0530S), and 17.25 μl of nuclease-free water to a

final volume of 50 μl. Amplification settings included polymerase activation at 98˚C for 45 s fol-

lowed by 10 cycles of denaturation at 98˚C for 15 s, annealing at 60˚C for 30 s, extension at

72˚C for 30 s for each cycle, and a final extension at 72˚C for 1 min. PCR fragments were puri-

fied using Agencourt AMPure XP beads (Cat #A63880) and eluted using 0.1X Tris-Ethylenedia-

mine Tetraacetic Acid. Captured libraries were quantified with a Qubit fluorometer using the

dsDNA high-sensitivity assay kit (Cat #Q32851). Library quality was assessed on the Agilent

Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA) at Novogene Corpora-

tion. Samples were then sequenced on an Illumina platform with 150-bp paired-end reads.

The resultant short reads were preprocessed to remove poor-quality reads/sequencing arti-

facts using Cutadapt (3.0) [117] and BBDuk (https://sourceforge.net/projects/bbmap/) (Phred

<30). The preprocessed short reads were aligned to soybean primary transcripts

(Gmax_508_Wm82.a4.v1.transcript_primaryTranscriptOnly.fa) obtained from Phytozome

[118] using Kallisto pseudoaligner (v0.46.1) [119] with default parameters. Differential gene

expression analysis and further data processing were performed in RStudio (v3.6.3) [115] as

described for the RNA-seq analysis.

DAP- and AmpDAP-seq

DAP- and AmpDAP-seq experiments were conducted as described previously [43]. The open

reading frame of each TF was cloned independently into a Gateway-compatible pIX-HALO

expression vector containing an N-terminal HaloTag (Arabidopsis Biological Resource Center,

stock #CD3-1742). Protein complexes were then expressed in vitro using the TNT SP6 Cou-

pled Wheat Germ Extract System (Promega, Madison, WI, USA, Cat #L4130) and purified

using Magne HaloTag Beads (Cat #G7282). To prepare DAP-seq samples, hypocotyls were

inoculated with a mycelial slurry from a P. sojae Race 1 isolate or sterile media as described

above. Tissues were collected at 24 hpi, and genomic DNA was isolated using the Zymo

Research Quick-DNA Plant/Seed Miniprep kit (Cat #D6020, Irvine, CA, USA) with the addi-

tion of 2-mercaptoethanol. Three replicates per treatment were pooled to minimize biological
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variation, and ~5 μg DNA per pool was fragmented and ligated with modified Illumina adapt-

ers. Adapter-ligated fragments were then incubated with an immobilized HALO-tagged TF

protein. For AmpDAP-seq, fragments were PCR-amplified prior to incubation with a TF com-

plex, permitting binding in the absence of secondary modifications. In both instances, bound

DNA was eluted and indexed using unique barcoded primers during PCR enrichment.

Indexed libraries were quantified with a Qubit fluorometer paired with a dsDNA high-sensi-

tivity assay kit (Cat #Q32851). Following quantification, libraries were sequenced on an Illu-

mina platform with 150-bp paired-end reads at the University of Arkansas for Medical

Sciences (Little Rock, AR, USA).

Short reads were aligned to the soybean reference genome Williams 82 Assembly 4 Annota-

tion 1 (Gmax_508_v4.0.softmasked) using Burrows-Wheeler Alignment tool (v0.7.17-r1188)

[120] and duplicated reads were removed using sambamba (v0.6.8) [121]. DAP-seq peaks were

called using the Model-based Analysis of ChIP-Seq peak caller (v2.2.7.1) [122] with empty vec-

tor samples as the background control. Bioconductor packages ChIPQC (v1.8.2) [123] and

ChIPseeker (v1.32.0) [124] were used to assess the DAP-seq data quality and peak annotation,

respectively. The peak annotation was performed using Williams 82 Assembly 4 Annotation 1

(Gmax_508_v4.0.softmasked) genome annotation.

Data preprocessing for CRNNs

To predict TFBS, CRNNs were trained with the aforementioned GmWRKY DAP-seq data.

We combined the peak regions from both samples using pandas (v1.4.0) [125] and pybedtools

(v0.9.0) [126] to obtain a non-redundant set of peak regions. Similarly, we obtained DAP-seq

data for GmRAV from Wang et al. [62] and performed peak calling as mentioned above. The

two biological replicates from the latter study were pooled together to get a non-redundant list

of peaks. Sequences corresponding to 201-bp peak summit regions were obtained using the

soybean reference genome with soft masked (Gmax_508_v4.0.softmasked obtained from Phy-

tozome) and the same genome assembly version used for all other processing and annotations.

A negative data set was created from the shuffle tool from BEDTools (v2.30.0) [127], excluding

positive binding site regions equal to an exact number of positive binding sites with an identi-

cal bp length. The masked regions and low-intensity sequences were removed from the

FASTA files. S2 Fig illustrates the selection of 201-bp bound and unbound sites. The bound

sites were given the label “1” (Positive), and unbound sites were labeled “0” (Negative). Both

positive and negative data sets were combined to obtain the complete data set for each TF.

Next, the sequences were converted into one-hot encoded binary information. In the one-hot

encoding process, we consider the DNA sequence as a one-dimensional sequence represented

by 4 binary channels. The encoding was conducted as follows: A = (1 0 0 0), C = (0 1 0 0), G =

(0 0 10), and T = (0 0 0 1). The input for each TF was (n, 201, 4) three-dimensional array

where n is the number of sequences for each data set.

For Arabidopsis, Song et al. [68] reanalyzed the DAP-seq data from O’Malley et al. [67],

and we obtained the 32-bp peak summit regions from the reanalyzed dataset. Based on Akagi

et al. [49], 32-bp summit peak regions perform the best for Arabidopsis DNN models. There-

fore, similar to soybean, 32-bp sequences corresponding to positive and negative sets were

obtained from the Arabidopsis genome sequences (genome version: TAIR 10; downloaded

from The Arabidopsis Information Resource; TAIR) [128].

Model architecture, training, and testing

We used CRNN architecture for both soybean and Arabidopsis models. The input to the

CRNN network was the one-hot encoded 201-bp window of DNA sequence, which was passed
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through a convolutional layer with 256 20-bp filters with a Rectified Linear Unit (ReLU) acti-

vation. The next layer was a convolutional layer with 64 8-bp filters with ReLU activation. This

was followed by a 128-node time-distributed layer with ReLU activation. Next was a bi-direc-

tional long short-term memory network with 64 internal nodes, followed by a 50% Dropout

layer. The final layer was a single sigmoid-activated neuron. See Fig 4 for full architecture.

For the model training, data sets were split into 70% training, 15% validation, and 15% test-

ing. The training was conducted with Keras v2.8 [129] with backend TensorFlow (v2.8) [130]

using the Adam optimizer with a 0.001 learning rate. The training ran for 100 epochs. Early

stopping with a patience of 20 was used to prevent overfitting. The models were trained with a

batch size of 256.

Testing the capacity of models to generalize across TF families

We wanted to test the ability of a model trained using binding site data for one TF to predict

binding sites across the TF family. First, we obtained AmpDAP-seq data for GmWRKY2 and

obtained 201-bp peak summit regions and their corresponding DNA sequences as described

above. Next, we used these as input for the model trained using GmWRKY30. Model accuracy

was calculated based on the number of correct predictions/number of bound sites X 100.

Given the limited amount of soybean binding site data, we used Arabidopsis DAP-seq data

to further verify model generalization capacity. We trained models using Arabidopsis DAP-

seq data for AtWRKY30 (AT5G24110), AtMYB62 (AT1G68320), AtMYB108 (AT5G58850),

AtMYB119 (AT3G06490), AtNAC031 (AT1G76420), AtNAC053 (AT3G10500), and

AtNAC057 (AT3G17730) [67, 68] using the methods described above. Similar to soybean,

201-bp peak summit regions for 17 WRKY family members, 15 NAC family members, and

five MYB family members were used as input for each model. Model predictions were

recorded for each family member and model accuracy was calculated as described above.

Cross-species predictions using the Arabidopsis DAP-seq data

We built models for AtWRKY, AtMYB, AtERF, AtNAC, AtBHLH, and AtC2H2 TF families using

Arabidopsis DAP-seq peaks. Akagai et al. [49] used 32-bp peak summit regions to train models

with combined DAP-seq data to conduct cross-species prediction. Therefore, we adopted a similar

approach and created a combined data set for each TF family to train models using 32-bp peak

summit regions (with the exception of AtRAV, for which we obtained data from the ReMap data-

base [131]). In total, we combined DAP-seq data from 24 WRKY, 19 MYB, 17 NAC, 13 ERF, 4

C2H2, and 3 bHLH to create family-level datasets. Further, we trained models using 201- and

32-bp peak regions. Both model types showed high accuracies and low false positive rates. How-

ever, since Akagai et al. [49] used 32-bp peak summit regions to train models to conduct cross-spe-

cies predictions with success, we opted for this window size for our cross-species prediction.

Nevertheless, our model architecture remained the same as the 201-bp models that were used for

soybean DAP-seq data, while the convolution layer filter lengths were different (in the first CONV

layer, filter length [Kernel] was 20 for soybean models and ten Arabidopsis models).

To test the ability of Arabidopsis models to successfully predict soybean binding targets, we

used AtWRKY- and AtMYB-trained models and 201-bp summit peak sequences obtained from

soybean DAP-seq (GmWRKY30) or AmpDAP data (GmMYB2) as the input for each model.

Model prediction was compared with true TFBS to get cross-species prediction accuracies.

Predicting new gene targets

For the target prediction, we selected 1,000 bp regions on both sides of the TSS (Fig 4), as it

has been shown that binding sites can reside on either side of the TSS [68]. Next, we obtained
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predictions on n bp (201- or 32-bp) sliding windows throughout the 2-kb sequence. Then,

based on widow predictions, we determined if the gene is a potential target gene for a specific

TF. If at least one window had a positive prediction, we considered that a potential target.

When obtaining predictions on the target gene, the biggest challenge is finding the optimal

stride length for the sliding window. For soybean models, we tested three stride lengths: 10,

100, and 150 bp. To evaluate the best stride, we obtained predictions on 201-bp sliding win-

dows throughout the 2-kb sequence using each stride for genes with GmWRKY30 and

GmRAV binding sites on the promoter regions. We then calculated the model prediction with

true bindings to get the best stride (Fig 4). In both models, the 10-bp stride has the highest

true positive counts. Therefore, we selected the 10 bp as the optimal stride with a 201-bp win-

dow region. Leveraging the optimal stride length, we predicted binding sites using

GmWRKY30 and GmRAV models for all 6,042 DEGs. If at least one window had a positive

prediction, we considered the gene a potential target of the TF. Similarly, we used AtMYB,

AtNAC, AtERF, and AtbHLH models to predict binding sites for their respective families in

soybean.

The window regions that were predicted to contain TF binding sites were scanned using

FIMO software [69] from the MEME suite (v5.0.5) [132] using the default parameters. To

retrieve matches, we obtained MEME core plants position frequency matrix files from the JAS-

PAR database [70], and any motif with a q-value (Benjamini–Hochberg corrected p-value)

<0.01 was used for the overlap analyses. We used pybedtools (v0.9.0) (with options:

a_and_b = a.intersect(b,wb = True)) [126] to get the overlaps between FIMO-predicted and

CRNN-predicted binding sites. Then, we annotated the overlapped binding sites using their

Arabidopsis trans-acting factor information obtained from the JASPAR database. Global and

family-level GRNs were visualized using Cytoscape (v3.9.1) [133].

Motif enrichment analysis

Sequences corresponding to TFBS were used as input for Simple Enrichment Analysis (v5.4.1)

[71] to find statistically enriched motifs with a randomly shuffled input sequence used as the

background. Soybean homologs for the Arabidopsis TFs were derived from the gene families

of the PANTHER classification system [134].

TF co-occurrence

Motif co-occurrence analysis was performed with Transcription Factor Co-Occurrence using

Market Basket analysis (TF-COMB) Python module [74] with default parameters (except for

the count_within() function where default options were changed to max_dist = 50,

binarize = True, max_overlap = 1).

Supporting information

S1 Fig. Capture-seq validation of RNA-seq data. (a) Heatmap of reference gene expression

in RNA- and Capture-seq. (b) Heatmap of pathogen-induced gene expression.

(TIF)

S2 Fig. Selection of 201-bp bound (peak regions) and unbound sites (negative dataset) dur-

ing model training.

(TIF)

S3 Fig. auROC and auPRC curves for soybean data-trained models. (a) auROC curve for

GmWRKY30 CRNN. (b) auROC curve for GmRAV CRNN. (c) auPRC curve for
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GmWRKY30 CRNN. (d) auPRC curve for GmRAV CRNN.

(TIF)

S4 Fig. AmpDAP-seq data for GmMYB61 and GmWRKY2. (a) Heatmap of DAP peak bind-

ing within 1,000 bp of the TSS region. (b) Distribution of DAP peaks across genomic features.

(TIF)

S5 Fig. GRNs for defense-related TF families. (a) bHLH GRN. (b) ERF GRN. (c) MYB GRN.

(d) NAC GRN. (e) RAV GRN. (f) WRKY GRN.

(TIF)

S6 Fig. Prioritization of target genes. (a) Density plots of indegree, cumulative outdegree,

sum cumulative cosine, and mean |log2FC| (Mean |FC|) for target genes. Red polygons repre-

sent the upper quartile for each parameter. Furthermore, 254 targets were in the upper quarter

for all four parameters. (b) Heatmap depicting the log2FC (FC) of prioritized target genes

across both interactions.

(TIF)

S1 Table. RNA-seq mapping statistics.

(PDF)

S2 Table. Capture-seq mapping statistics.

(PDF)

S3 Table. DAP- and AmpDAP-seq mapping statistics.

(PDF)

S1 Data. DEGs from RNA-seq, corresponding co-expression cluster assignments, func-

tional annotations, and target gene assignments.

(XLSX)

S2 Data. Capture-seq gene list and expression data.

(XLSX)

S3 Data. GmWRKY30 DAP-seq binding site data.

(XLSX)

S4 Data. GmRAV DAP-seq binding site data.

(XLSX)

S5 Data. GmMYB61 and GmWRKY2 AmpDAP-seq binding site data.

(XLSX)

S6 Data. Arabidopsis generalization prediction accuracies.

(XLSX)

S7 Data. Gene Ontology enrichment analysis for DEGs.

(XLSX)

S1 File.

(PDF)
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