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Abstract

Lichens are known to produce many novel bioactive metabolites. To date, approximately

1,000 secondary metabolites have been discovered, which are predominantly produced by

the lichen mycobionts. However, despite the extensive studies on production of lichen sec-

ondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs).

Here, we identified a putative BGC that is implicated in production of a red pigment, crista-

zarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was

shown to be specifically induced in growth media containing fructose as a sole carbon

source. Thus, we performed transcriptome analysis of C. metacorallifera growing on differ-

ent carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyke-

tide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS

(coined crz7) was highly expressed in growth media containing either fructose or glucose.

The borders of a cristazarin gene cluster were delimited by co-expression patterns of neigh-

boring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in

C. borealis and C. macilenta, indicating that these related species also have metabolic

potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to

fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of

melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions

of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this

study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a

naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under induc-

ing and non-inducing conditions is an effective strategy for linking metabolites of interest to

biosynthetic genes.

Introduction

Lichen-forming fungi, with about 20,000 known species, form symbiotic relationships with

algae and/or cyanobacteria [1]. Lichen thalli contain many bioactive compounds with
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pharmacological properties including antimicrobial, anti-proliferative, cytotoxic, and antioxi-

dant activities [2–6], which are mainly produced by lichen-forming fungi, called mycobiont

[4]. Secondary metabolites in lichens include the structurally diverse aromatic polyketides,

which are biosynthesized through the successive condensation of acetyl units derived from

malonyl-CoA [7–9]. The biosynthetic enzymes involved in the synthesis of aromatic polyke-

tides, such as depsides and depsidones, are non-reducing polyketide synthases [9–12].

Cultivated mycobionts isolated from Cladonia cristatella and C. metacorallifera biosynthe-

size aromatic polyketides, cristazarin and 6-methylcristazarin, which are naphthazarin deriva-

tives [13, 14]. Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) is derived from

naphthoquinone through replacement of two hydrogen atoms with hydroxyl groups.

Naphthazarin is a naturally occurring 1,4-naphthoquinone derivative, and is biosynthesized by

bacteria, fungi and many plants including several species of Bignoniaceae, Boraginaceae, Dro-

seraceae, Juglandaceae, and Plumbaginaceae [15]. A naphthazarin derivative, cristazarin,

exhibited significant biological properties, including antibacterial, antitumor, and anticancer

activities [13, 14]. Based on the genome sequence of C. metacorallifera, a total of 30 iterative

type I polyketide synthase (PKS) genes were predicted [16]. However, the required biosyn-

thetic gene cluster (BGC) for the biosynthesis of cristazarin is uncharacterized and the precise

biological pathway still needs to be elucidated.

Due to the increasing availability of genomic resources [17, 18], and natural product data-

bases in fungi [19], in silico approaches for linking secondary metabolites with their respective

BGCs are becoming more common [20–25]. BGCs are a locally clustered group of genes that

together encode a biosynthetic pathway for a compound [26, 27]. A BGC may include genes

encoding biosynthetic enzymes, regulatory factors, and transporters. The core biosynthetic

enzyme, such as PKS, synthesizes the backbone of the molecule, which is subsequently modi-

fied by various tailoring enzymes to produce the final products [4, 26, 28]. Major classes of

core biosynthetic enzymes in fungal BGCs are non-ribosomal peptide synthetases, PKS, and

terpene synthases [4, 26, 29]. These enzymes are known to biosynthesize a variety of antibiotics

and immunosuppressants with pharmaceutical potential. Thus, they have become popular tar-

gets for natural product discovery [29–31].

The investigations of BGCs confirmed the presence of diverse untapped fungal natural prod-

ucts [32–34]. As a growing number of lichen genomes increased, the identification of BGCs

linked to the biosynthesis of lichen natural products also increased. To date, BGCs for atranorin

[12] and lecanoric acid [9] were identified and validated by heterologous expression. The BGCs

of biruloquinone [21], grayanic acid [10], and usnic acid [35, 36] were identified with transcrip-

tional evidences. In addition, the BGCs for gyrophoric acid [37], olivetoric acid/ physodic acid

[38] were tentatively assigned via phylogenetic analysis. Despite a great deal of natural products

from fungal lineages [2, 26, 39, 40], BGCs responsible for the biosynthesis of major lichen

metabolites are still unknown [41] due to extremely slow growth rate of mycobionts in culture

[8] and limited molecular tools for manipulating mycobionts recalcitrant to genetic transforma-

tion [12]. To overcome these hurdles in studying on biosynthetic genes in lichens, the expres-

sion levels of biosynthetic genes were correlated with the amount of produced metabolites of

interest [10, 21, 42]. Genome-guided gene discovery and metatranscriptomic analysis have

aided the identification of BGCs for metabolite of interest in lichens, indicating that the number

of BGCs found in fungal genomes outnumber the known fungal products they produce [7, 22,

28, 35, 36]. In this study, we performed transcriptome analysis of C. metacorallifera growing on

growth media containing different carbon sources and singled out a candidate biosynthetic

gene cluster linked to cristazarin production. A polyketide pathway for the biosynthesis of a

naphthazarin derivative, cristazarin, was proposed based on putative function of tailoring

enzymes and phylogenetic placement of the polyketide synthase in the cristazarin BGC.
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Materials and methods

Fungal isolate and growth conditions

Cladonia metacorallifera KoLRI002260 was obtained from the Korean Lichen and Allied Bior-

esource Center (KOLABIC) of the Korean Lichen Research Institute (KoLRI) at Sunchon

National University, Korea [16]. The fungal isolate was grown in malt-yeast agar medium

(MYA; BD Biosciences, Baltimore, MD, USA) for about 2 months, and agar plugs containing

mycelia were gently crushed using a sterile mortar and a pestle. One hundred microliter of

homogenized fungal suspension was inoculated onto MYA or Lilly and Barnett’s (LB) liquid

medium (10 g carbon sources, either glucose, fructose, ribitol, or sorbitol; 2 g asparagine; 1 g

KH2PO4; 0.5 g MgSO4�7H2O; 0.2 mg Fe(NO3)3�9H2O; 0.2 mg ZnSO4�7H2O; 0.1 mg

MnSO4�4H2O; 0.1 mg thiamine; and 5 μg biotin in 1 L of distilled water) [43], which were

overlaid with a sterilized 0.45 μm pore cellulose nitrate membrane (Whatman, Cytiva, Marl-

borough, MA, USA). The cultures were incubated at 15 ˚C under fluorescent light (6500 k, 18

wattages).

Genome annotation and biosynthetic gene cluster identification

The genome assembly of C. metacorallifera was annotated using the GenSAS (v.6.0) annota-

tion pipeline [44]. In brief, low-complexity regions and repeats were masked using RepeatMo-

deler (v1.0.11) and RepeatMasker (v4.0.7), setting the DNA source to ‘Fungi’. A masked

consensus sequence was generated, on which ab initio gene prediction was performed using

the following tools: (i) Augustus (v3.3.1), selecting A. nidulans as a trained organism; (ii) Gene-

Mark-ES (v4.33); (iii) Genscan (v1.0), using a parameter setting for Human and other verte-

brates; and (iv) GlimmerM (v2.5.1), selecting Aspergillus as a trained organism. For homology-

based predictions, the NCBI reference transcript and protein databases for Fungi were

searched, using (v) BLAST+ (v2.7.1) and (vi) DIAMOND (v0.9.22), respectively. For the con-

sensus gene model prediction using EVidenceModeler (v06-25-2012), the above-mentioned

standalone gene predictions were weighted as follows: (i) five, (ii) ten, (iii) one, (iv) one, (v)

five, and (vi) five. A total of 10,828 open reading frames were predicted in the current genome

annotation (S1 Table). For BGC identification, the genome assembly and gene annotation files

of C. metacorallifera were processed by the antiSMASH program (v5.01), with the parameter

setting “–minimal” [45].

Identification of syntenic gene clusters

Genome assemblies of Cladonia species were downloaded from the Joint Genome Institute

(JGI) or the National Center for Biotechnology Information (NCBI): C. borealis (NCBI acces-

sion: JAFEKC000000000), C. grayi (JGI accession: Cgr/DA2myc/ss v2.0), C. macilenta (NCBI

accession: GCA_000444155.1), C. rangiferina (NCBI accession: GCA_006146055.1), and C.

uncialis (NCBI accession: GCA_002927785.1). The genome assemblies were annotated using

the GenSAS pipeline, and BGCs were mined from the five related Cladonia spp., using anti-

SMASH, as described above. To search for homologous BGCs in the six Cladonia spp., we

used the BiG-SCAPE program which is useful for investigating the conservation and variation

of BGCs in related species. Based on the Jaccard index of domain types, domain sequence sim-

ilarity, and domain adjacency index, the BiG-SCAPE program calculates a similarity matrix

between pairwise combinations of clusters where smaller values indicate greater BGC similar-

ity. A cutoff value of 0.5 was used to identify homologous gene clusters.
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RNA extraction for RNA-seq

Red pigment produced by C. metacorallifera was observed in LB media containing either glu-

cose or fructose 3 weeks after the incubation. Mycelia were harvested by scraping fungal mass

growing on the membranes with a razor blade, and ground to a fine powder in liquid nitrogen.

Total RNA was extracted using an easy-spin total RNA extraction kit (iNtRON Biotechnology,

Seoul, Korea). cDNA libraries were constructed, using the TruSeq RNA library preparation kit

(San Diego, CA, USA), and sequenced on the HiSeq2000 platform at Macrogen Inc. (Seoul,

Korea). Raw reads (paired-end, 100 bp) were further processed and filtered, using the TrimGa-

lore (v0.6.6) (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Filtered

reads were mapped to the genome sequence of C. metacorallifera, using the HISAT2 program

(v2.1.0). Mapped reads on genomic features, such as exon and intron, were calculated, using

the htseq-count program. Gene expression levels in reads per kilobase per million mapped

reads (RPKM) values were computed and normalized by effective library size estimated by

trimmed mean of M values, using the edgeR R package (v3.26.8).

Phylogenetic analysis

Protein sequences for 54 PKS genes related to melanin biosynthesis were downloaded from

National Center for Biotechnology Information (NCBI) (S2 Table). The KS domain sequences

of the 54 PKS were extracted in the NaPDoS webserver [46, 47], and were aligned using

MAFFT (v7.310) [48] with the ‘auto’ setting (S3 Table). Poorly aligned regions of the resulting

multiple sequence alignment were trimmed, using the Trimal program, with the parameter

setting “–gappyout” [49]. A maximum likelihood tree was constructed using the RAxML pro-

gram (v8.2) [50] and annotated using iTOL (v5.7) [51]. Nodal supports were evaluated by

1,000 bootstrap replications.

Ethical statement

This research did not involve human participants and/or animals.

Results

Gene expression profiling of PKS genes in Cladonia metacorallifera
The mycobiont isolated from C. metacorallifera exhibited carbon source dependency in its

chemical profile, producing cristazarin on fructose, but not on sugar alcohols and other carbon

sources [14]. This prompted us to examine PKS expression profiles in the mycobiont growing

on different carbon sources to identify a BGC involved in cristazarin production. First, we

identified PKS genes present in the genome of the C. metacorallifera mycobiont. Compared to

the previous annotation [16], the newly annotated genome contained 10,818 protein-coding

genes, among which 39 genes encode iterative type I PKS. The PKS genes included PKS1,

PKS2, PKS3, PKS5, PKS7, PKS10, PKS11, PKS13, PKS15, and PKS16, which were originally

described in an earlier study on the Cladonia chlorophaea species complex [52]. Among these

previously annotated PKSs, PKS1 was predicted to be involved in depside- and depsidone-

class metabolites derived from 3-methylorsellinic acid [12, 53]. Also, PKS13 and PKS15 were

phylogenetically related to PKS genes involved in melanin production [12]. Notably, PKS8,

PKS16, and PKS21 were previously connected to the biosynthesis of usnic acid [29, 35], graya-

nic acid [10], gyrophoric acid [37], lecanoric acid [9], olivetoric acid, physodic acid [38], and

biruloquinone [21]. However, there were still many undescribed PKS genes in the genome of

the C. metacorallifera mycobiont.
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Previously, production of cristazarin was induced when the C. metacorallifera mycobiont is

grown on media containing fructose as a sole carbon source after 3 weeks of incubation [14].

Therefore, expression levels of PKS genes in the C. metacorallifera mycobiont grown in culture

media containing different sugars as a sole carbon source were compared to identify a PKS

gene responsible for cristazarin production at 3 weeks after incubation. Among 39 iterative

type I PKS genes, only PKS22 was highly upregulated in growth media containing fructose,

and, to a lesser extent, it was also upregulated in a glucose-containing media (Fig 1). On the

other hand, expression levels of PKS22 remained basal in MYA and growth media containing

sugar alcohols, such as ribitol and sorbitol (Fig 1), with which C. metacorallifera was not able

to produce cristazarin [14]. This indicated that PKS22 is likely involved in the biosynthesis of

cristazarin.

Demarcation of boundaries for the cristazarin BGC

To delimit the BGC borders and identify genes responsible for the whole biosynthetic pathway

of cristazarin, mapped RNA-seq reads was visualized on a genomic locus harboring PKS22.

We identified several biosynthetic genes and transcription factor-like genes, which were co-

expressed with PKS22 in C. metacorallifera (Fig 2A). As with PKS22, these genes were specifi-

cally induced in growth media containing fructose or glucose as a sole carbon source, suggest-

ing their involvement in the biosynthesis of cristazarin. These co-expressed genes included

two O-methyltransferase genes (crz1 and crz2), a gene encoding NmrA-like family (crz3), a

gene harboring a conserved domain of unknown function 1722 (crz4), a tetrahydroxynaphtha-

lene reductase-like gene (crz5), a fungal-specific transcription factor (crz6), a FAD-dependent

oxidoreductase gene (crz8), and a short chain dehydrogenase gene (crz9) (Table 1; S4 Table).

PKS22 (hereafter referred to as crz7) homologs can be found in related Cladonia spp., such

as C. borealis, C. macilenta and C. uncialis [12]. Thus, we searched for homologous BGCs in

available genomes. BGCs highly syntenic to the cristazarin BGC in C. metacorallifera were

Fig 1. Identification of polyketide synthase for the biosynthesis of cristazarin. PKS gene expression profiles of the Cladonia metacorallifera mycobiont

grown on culture media containing either fructose, glucose, ribitol or sorbitol as a single carbon source and on malt extract agar (MYA). Expression values

(Log2-transformed (RPKM+1)) are shown as heat maps for 39 PKS genes in C. metacorallifera.

https://doi.org/10.1371/journal.pone.0287559.g001
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found in the genomes of C. borealis and C. macilenta (Fig 2B). All the co-expressed genes were

found in C. borealis and C. macilenta, suggesting genetic potentials to produce cristazarin in

these closely-related species. Although there is a crz7 homolog in the genome of C. uncialis, it

was found in a very short contig including no additional gene, indicating that C. uncialis may

have lost the ability to produce cristazarin. To investigate the presence of a PKS22 homolog in

other lichen species, we blasted the amino acid sequence of PKS22 in C. metacorallifera against

the NCBI database. Although there are many genome sequences of Lecanorales available in

NCBI database, the best hits for PKS22 were PKSs found in the Teloschistales, which showed

protein sequence identities ranging from 59–68% to the PKS22. In the current database

(accessed on June 05, 2023), we were unable to detect a PKS22 homolog in the Lecanorales, to

which the genus Cladonia belong.

Fig 2. Demarcation of the cristazarin BGC boundaries by mapped reads of RNA-seq. (A) Mapped reads of five RNA-seq samples of the C. metacorallifera
mycobiont growing on different carbon sources were shown for a genomic locus harboring the PKS22 (crz7; gene ID: Cmt_01711). RNA-seq reads mapped on

the C. metacorallifera reference genome were subsampled to 60 million reads for visual comparison of expression levels between samples. Arrows on the x-axis

indicate genes (Cmt_01704–Cmt_01717). The numbers on the y-axis are per-base coverage of mapped reads. (B) Synteny of the cristazarin BGCs in Cladonia
species: C. metacorallifera (top), C. macilenta (middle), and C. borealis (bottom). Arrows indicate open reading frames (ORFs) found in the BGCs, and

homologous genes were represented with different colors. Numbers above the arrows indicate crz1–crz9.

https://doi.org/10.1371/journal.pone.0287559.g002

Table 1. Annotation of the cristazarin biosynthetic gene cluster in Cladonia metacorallifera.

Gene ID (Cmt) Gene name Conserved domain (accession) E-value

01705 crz1 O-methyltransferase (PF00891) 7.35e–17

01706 crz2 O-methyltransferase (PF00891) 1.72e–12

01707 crz3 a transcriptional regulator NmrA-like family (PF05368) 7.50e–17

01708 crz4 Domain of unknown function 1772 (PF08592) 4.75e–21

01709 crz5 Enoyl-(acyl carrier protein) reductase (PF13561) 2.33e–50

01710 crz6 GAL4-like fungal Zn2-Cys6 binuclear cluster domain (PF00172) 1.78e–08

01711 crz7 Polyketide synthase, PKS22 (SAT-KS-AT-PT-ACP-ACP-TE)a N/A

01712 crz8 FAD-dependent oxidoreductase (COG0654) 5.75e–27

01713 crz9 Short chain dehydrogenase (PF00106) 2.84e–24

aThe polyketide synthase domain architecture of PKS22. SAT, starter unit ACP transacylase; KS, keto synthase; AT, acyl transferase; PT, product template; ACP, acyl-

carrier protein; TE, thioesterase. N/A = not applicable.

https://doi.org/10.1371/journal.pone.0287559.t001
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Phylogenetic dereplication of the biosynthetic pathway for cristazarin

Crz7 is closely related to the non-reducing PKS (NR-PKS) group II [12], in which many PKSs

are known to be involved in the biosynthesis of 1,3,6,8-tetrahydoxynaphthalene (T4HN) or

2-acetyl-1,3,6,8-tetrahydoxynaphthalene (AT4HN) that are further processed to dihydroxy-

naphthalene (DHN) and polymerized to melanin pigment [54–58]. To predict the polyketide

scaffold biosynthesized by Crz7, we reconstructed a phylogenetic tree of many previously char-

acterized group II NR-PKSs, as well as NR-PKSs belonging to groups III, V, and XI that form

outgroups to group II (S2 Table) [12, 59].

Although phylogenetic relationships between the subclades of NR-PKS group II were

uncertain with low bootstrap supports, the PKS22 family including the Crz7 formed a highly-

supported clade distinct from, but closely-related to the NR-PKS group II-a (Fig 3). The newly

Fig 3. Phylogenetic dereplication of polyketide synthases related to melanin production. A maximum likelihood phylogenetic tree of non-reducing

polyketide synthases (NR-PKSs). Colored strips on the right side of leaves indicate polyketide backbones produced by the functionally characterized NR-PKSs.

Clades of the previously described NR-PKS groups (Kim et al., 2021; Mosunova et al., 2022) were shaded with different colors (see inset). Arrows indicate

clades of the Cladonia PKS families, PKS13, PKS14, PKS15, and PKS22, that belong to group II NR-PKS (Kim et al., 2021). Leaves highlighted in red are lichen

NR-PKSs. Crz7 in C. metacorallifera was denoted by a red asterisk. An NR-PKS in Aspergillus fumigatus (EDP55264) that produce melanin pigment using

YWA as a precursor was set as an outgroup. Bootstrap values of greater than 75% were shown. Branch lengths are proportional to the inferred amount of

evolutionary change, and the scale represents 0.1 amino acid sequence substitutions per site. T4HN, 1,3,6,8-tetrahydroxynaphthalene; AT4HN, 2-acetyl-

1,3,6,8-tetrahydroxynaphthalene.

https://doi.org/10.1371/journal.pone.0287559.g003
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described NR-PKS group XI involved in the biosynthesis of naphthalenone formed a distinct

clade sister to the NR-PKS group V involved in the biosynthesis of anthraquinone-class metab-

olites (e.g. asperthecin, emodin, and endocrocin). It has been shown that most of the groups

II-a and XI NR-PKSs biosynthesize hexaketide products, AT4HN and T4HN [54, 59–63].

Given the close phylogenetic distance of Crz7 to group II-a PKS producing AT4HN and

T4HN, predicted product of Crz7 is likely AT4HN or T4HN. The PKS15 family in Cladonia
spp. is placed sister to the NR-PKS group II-a that are known to be able to directly biosynthe-

size T4HN as a precursor for melanin production through their deacetylase activity [55], while

the NR-PKSs placed sister to the PKS13 family in Cladonia spp. are known to first biosynthe-

size AT4HN and also require an additional hydrolase activity (Ayg1) to biosynthesize T4HN

for melanin production [56, 64] (Fig 3). These two functionally-related PKSs, PKS13 and

PKS15 in C. metacorallifera showed protein sequence identity of 47%, and the Crz1 (PKS22)

exhibited 50% sequence identity to PKS13 and PKS15 (S2 Table).

A proposed biosynthetic pathway for cristazarin

The phylogenetic placement of Crz7 proximal to PKSs known to produce AT4HN and T4HN

suggested that the polyketide product of Crz7 is likely AT4HN, from which a probable biosyn-

thetic route of cristazarin can be deduced (Fig 4). In many fungi, melanin pigment is also bio-

synthesized using AT4HN or YWA (a naphthopyrone compound) that is further processed by

a hydrolase (such as Ayg1 in Aspergillus fumigatus), resulting in T4HN [54, 56]. Some group II

NR-PKSs have a deacetylase activity, and are able to produce T4HN without the aid of a hydro-

lase [55]. The presence of two O-methyltransferase (crz1 and crz2), a enoyl reductase (crz5), an

oxidase (crz8), and a short-chain dehydrogenase (crz9) encoded in the cristazarin BGC is con-

sistent with methylation of a hydroxyl group, addition of two hydroxyl groups to the naphtha-

lene core ring, and reduction of the acetyl side chain (Fig 4). The crz4 encoding a conserved

domain of unknown function showed a co-expression pattern with the other biosynthetic

genes (Fig 2). The proposed biosynthetic route of cristazarin is analogous to, with a minor dif-

ference, that of naphthalenones whose biosynthetic gene cluster was recently identified in A.

parvulus [59] (Fig 4).

Fig 4. Divergent biosynthetic routes of cristazarin. A proposed biosynthetic pathway of cristazarin from a polyketide precursor, 2-acetyl-

1,3,6,8-tetrahydoxynaphthalene (AT4HN), can be deduced from putative function of tailoring enzymes in the cristazarin gene cluster (red). Note that a

biosynthetic pathway for 6-O-methylasparvenone (a naphthalenone) is analogous to that for cristazarin, involving several biosynthetic genes in the

naphthalenone BGC (blue) in Aspergillus parvulus (Mosunova et al. 2022). ACP, acyl carrier protein domain.

https://doi.org/10.1371/journal.pone.0287559.g004
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Discussions

Lichen-forming fungi are known to produce a large number of secondary metabolites [36, 65].

To date, only the two BGCs for atranorin [12] and lecanoric acid [9] were identified by heterol-

ogous expression. In addition, a few lichen natural products have been connected to BGCs

including biruloquinone [21], grayanic acid [10], and usnic acid [35, 36] with transcriptional

evidence. The BGCs of gyrophoric acid [37], olivetoric acid/ physodic acid [38] were tenta-

tively assigned via phylogenetic analysis. antiSMASH, BiG-SCAPE, BiG-FAM, and MiBiG,

assisted the in silico identification of candidate BGCs for the production of lichen metabolites

[19, 22, 27, 45, 66]. Although putative lichen BGCs have been identified using these programs

and databases, heterologous expression validates gene function as seen in atranorin [12] and

lecanoric acid [9].

The lichen-derived red pigment, cristazarin, was first discovered from in vitro culture of C.

cristatella [13]. Other naphthazarin derivatives structurally-related to cristazarin were an

orange pigment, squamarone, and its derivatives isolated from a lichen Squamarina cartilagi-
nea [67]. It is noteworthy that there are multiple methoxy groups in the core naphthazarin

ring of squamarone, which are likely catalysed by more than one O-methyltransferase. The

degree of methylation in hydroxyl groups of the core naphthazarin ring appears to account for

the colour difference of cristazarin (red) and squamarone (orange), similar to what is observed

in antocyanins [68]. Despite only one methoxy group in cristazarin, there are two O-methyl-

transferase (crz1 and crz2) present in the cristazarin BGC, indicating that the two genes play a

redundant function or one of them is non-functional. Although no BGC has been reported in

Squamarina cartilaginea, one can predict that the as-yet-unknown squamarone BGC has mul-

tiple functional O-methyltransferases. Identification and functional characterization of such

O-methyltransferases may enable production of customized colorants derived from a naphtha-

zarin backbone.

Jeong et al (2021) determined growth condition that produce cristazarin in axenic culture

of the mycobiont and performed expression analysis of candidate PKS genes [14]. In this

study, we performed RNA-seq to obtain global gene expression profiles in different nutrient

conditions and singled out a PKS that is most likely involved in the biosynthesis of cristazarin.

The combining transcriptome analysis and chemical profiling in inducing- and non-inducing

conditions identified the cristazarin BGC in C. metacorallifera. Crz7 was highly upregulated in

growth media containing fructose or glucose. The second most upregulated gene was PKS21,

an ortholog of the brq5 involved in the biosynthesis of biruloquinone, a rare phenanthraqui-

none-class metabolite, which we previously identified in C. macilenta [21]. However, birulo-

quinone has never been detected in culture extracts of C. metacorallifera, indicating a high

level of PKS gene expression is required to produce final polyketide products above the detec-

tion limit of analytical devices [69–71]. The highly oxygenated bicyclic core of cristazarin sug-

gested that the cognate PKS should be an NR-PKS. Thus, we can rule out 22 reducing type

PKS, including PKS48 that showed slight upregulation in fructose- and glucose-containing

media. Also, PKS15 is upregulated in fructose- and glucose-containing media. The BGCs

including PKS15 and PKS13 contain both scytalone dehydratase and T4HN reductase. The

two hallmark enzymes for melanin production and close phylogenetic relationships of PKS15
to other previously characterized melanin PKSs enabled us to rule out PKS15 as a candidate

for cristazarin PKS.

The proposed biosynthetic pathway of cristazarin seems to be analogous to that of naphtha-

lenone. However, a reciprocal best hit BLAST analysis indicated that none of the crz genes

encoding tailoring enzymes are best hits of the apr genes in the naphthalenone BGC, and vice

versa (S5 Table). Apr2 and Apr7 have a protein domain COG0277 (FAD/FMN-containing
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dehydrogenase), while Crz8 has a protein domain COG0654 (an UbiH domain related to

FAD-dependent oxidoreductase). It is conceivable that these enzymes are involved in oxida-

tion of the AT4HN backbone, albeit they seem not related to each other, showing low sequence

identify. In the naphthalenone biosynthetic pathway, Apr8, an aldo-keto reductase, was

hypothesized to play a role in reduction of the carbonyl group. In the cristazarin BGC, there

was no such an enzyme. Instead, Crz9 and Crz5 are likely involved in the successive reduction

processes: carbonyl to enoyl by Crz9 (a short chain dehydrogenase), and then enoyl to the fully

saturated side chain by Crz5 (an enoyl reductase). The biosynthetic logic of cristazarin can be

deduced from the putative function of the tailoring enzymes.

GAL4-type transcriptional regulators with a Zn2-Cys6 binuclear cluster domain play key

roles in either activating or repressing the whole BGC in a pathway-specific manner [72, 73].

The high expression levels of crz6 encoding a Zn2-Cys6 transcription factor in inducing condi-

tions indicated that the crz6 is a positive regulator for cristazarin production. Crz3 encodes an

NmrA-like family protein and showed highly correlated expression pattern with the other bio-

synthetic genes in the cristazarin BGC. In other fungi such as A. nidulans, Neurospora crassa,

and Fusarium fujikuroi, NmrA acts as a repressor for the AreA activity that is important for

activation of genes involved in nitrogen catabolism [74]. Therefore, crz3 may play a role in bal-

ancing primary and secondary metabolism to favor the biosynthesis of cristazarin over other

metabolites. An nmrA-like gene also can be found in the naphthalenone BGC in A. parvulus
[59], suggesting its conserved regulatory role in production of asparvenone and cristazarin

that are biosynthesized by an analogous pathway.

Fungal pigments are used as natural colorants in industries, many of which are of polyke-

tide origin [75, 76]. Each group of NR-PKS produces distinct and characteristic chemical scaf-

folds for fungal pigments: group II producing AT4HN or T4HN for melanin, group III and IV

producing naphthopyrones, group V producing anthraquinones, and group VII producing

azaphilones. Crz7 and Apr1 produce cristazarin and asparvenone from AT4HN, respectively,

through an analogous pathway. While the NR-PKS group XI (Apr1) and group V were placed

as sister taxa with strong bootstrap support, Crz7 was phylogenetically related to group II

NR-PKSs for melanin production. In fungi, melanin pigment is biosynthesized from AT4HN

and YWA by NR-PKSs group II and group III, respectively [57]. In Botrytis cinerea, BcPKS12

(related to the PKS13 family in Cladonia spp.) and BcPKS13 (related to the PKS15 family), are

developmentally-regulated and responsible for melanization of sclerotia and conidia, respec-

tively [58]. Tissue-specific regulations of different pigment systems are also observed in peri-

thecial wall pigments in Fusarium species [77, 78]. The role of the PKS13 and PKS15 NR-PKS

families in lichens are currently unknown, however it may have evolved to have tissue-specific

roles during the life cycle of lichens.

The group II NR-PKSs often exhibit promiscuity with respect to polyketide chain length:

TerA producing tri-, tetra-, and penta-ketide [79], Apr1 producing penta- and hexa-ketide

[59], and PksA producing hexa- and hepta-ketide [57], when they are heterologously

expressed. This chain length promiscuity of PKSs may be one of the sources of diversification

driving chemical evolution. Nonetheless, most of group II NR-PKSs produce a hexaketide

product AT4HN in natural hosts, except for the group II-b NR-PKSs including the PKS14

family in Cladonia species. The group II-b NR-PKSs are known to biosynthesize a pentaketide

product, 6-hydroxymellein [35, 79]. Many of the group II NR-PKSs for melanin production

have evolved to have a deacetylase activity so that THN can be generated from AT4HN with-

out the help of a separate hydrolase enzyme, such as Ayg1 [55]. In contrast, Crz7 and Apr1 do

not possess such an activity and may have contributed to establishing diverse pigment systems

in fungi.
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Conclusions

Lichens are treasure chests for novel secondary metabolites. In this study, we linked a putative

biosynthetic gene cluster to cristazarin via transcriptome analysis and phylogenetic dereplica-

tion. Cristazarin BGCs were specifically found in lichens, and the PKS22 family including

Crz7 formed a distinct clade from related NR-PKS in other non-lichenized fungi. The identifi-

cation of the putative cristazarin BGC will be an important addition to the fungal natural prod-

uct BGC database, as this is the first report linking a BGC to a naphthazarin-class metabolite.

Given the frequent appearance of unexpected metabolites from lichen mycobionts [13, 21, 80–

82], transcriptome and phylogenetic analyses of core biosynthetic genes, such as PKS, are an

efficient way to connect BGCs to novel metabolites of interest in lichen mycobionts that are

recalcitrant to genetic transformation for functional studies of biosynthetic genes.
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