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Abstract

The stress-strength reliability (SSR) model ϕ = P(Y < X) is used in numerous disciplines like

reliability engineering, quality control, medical studies, and many more to assess the

strength and stresses of the systems. Here, we assume X and Y both are independent ran-

dom variables of progressively first failure censored (PFFC) data following inverse Pareto

distribution (IPD) as stress and strength, respectively. This article deals with the estimation

of SSR from both classical and Bayesian paradigms. In the case of a classical point of view,

the SSR is computed using two estimation methods: maximum product spacing (MPS) and

maximum likelihood (ML) estimators. Also, derived interval estimates of SSR based on ML

estimate. The Bayes estimate of SSR is computed using the Markov chain Monte Carlo

(MCMC) approximation procedure with a squared error loss function (SELF) based on

gamma informative priors for the Bayesian paradigm. To demonstrate the relevance of the

different estimates and the censoring schemes, an extensive simulation study and two pairs

of real-data applications are discussed.

1 Introduction

The stress-strength reliability (SSR) analysis is a statistical measurement of the interaction

between the component’s strength and the stresses applied to it on a system. SSR analysis is a

popular statistical tool used in reliability engineering that is useful in many disciplines such as

medical studies, engine aircraft testing, physical strength testing of buildings or bridges, and so

on. Assume that X and Y are random variables measuring the strength and stress of a system,

respectively. Then the system’s SSR is described as ϕ = P(Y< X), and the system will fail if X�
Y. This concept was first suggested by [1], who demonstrated how the Mann-Whitney statistic

U could be used to estimate SSR ϕ with given observations Y1, Y1, . . ., Yn; X1, X2, . . ., Xm from

continuous populations. Specifically, he proposed the SSR � ¼ U
mn. Since then, this concept has

been widely adopted in many real-world applications. For example, [2] used the SSR concept

in military applications, [3] discussed various SSR models and their applications. Several
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authors also investigated SSR models for different lifetime models using both complete and

censored samples. Some recent work based on complete samples are discussed in the following

studies: [4–6]. A number of authors have contributed works to the censored life test scenarios

in literature and the work based on different censored samples are given by [7–13], etc.

We require data on variables X and Y to estimate SSR. Observed data are usually gathered

through a life test. In life testing experiments, researchers plan some failures but due to test

anomalies, equipment failures, and operating errors, they do not get failures as expected. Also,

they have to finish their experiment before all the experimental units are exhausted due to lim-

ited budget or due to shortage of time. In such cases, they get censored data rather than the

complete sample data. In real life, there are situations where researchers have to remove live

units during the experiment, then the progressive first failure censoring scheme (PFFCS) is the

best choice. The PFFCS has become the most popular censoring scheme in the last decade as it

allows the intermittent removal of the live units from the experiment. When the tested items

in a large batch are less costly or the inspection cost is high, the PFFCS is popularly used. The

PFFCS was proposed by [14]. They showed PFFCS exhibits some special behaviors to the

other censoring schemes. Due to these flexible behaviors, a lot of coverage with several applica-

tions has appeared in the literature in the last decade, for example, [15–17]. This is how the

PFFCS is explained: Place n independent groups with k test items in a life test, and the test will

be ended whenever a prefixed number of failures (m) has been met. Failures are gathered in

the following way:

• As soon as the first failure (X1:m:n:k) happens, remove G1 live groups at random, and the

group that contains X1:m:n:k from the test.

• As soon as the first failure (X2:m:n:k) happens, remove G2 live groups at random, and the

group that contains X2:m:n:k from the test and so on.

• Finally, as soon as mth failure (xm:m:n:k) occurs, remaining Gm live groups along with group

contains xm:m:n:k are removed from the test.

In this way, X1:m:n:k< X2:m:n:k< . . .< Xm:m:n:k, is observed as ordered progressively first

failure-censored (PFFC) sample with prefixed censoring plans G
~
¼ ðG1;G2; . . . ;GmÞ, where n

= m + G1 + G2 + . . . + Gm.

If the failure times under the test have a continuous pdf f(x|Θ) and cdf F(x|Θ), the joint pdf

for X1:m:n:k< X2:m:n:k< . . .< Xm:m:n:k is given as follows:

fX
�
ðx1; x2; ::; xmjYÞ ¼ Ckm

Ym

j¼1

f ðxj:m:n:kjYÞð1 � Fðxj:m:n:kjYÞÞ
kðGjþ1Þ� 1

ð1Þ

0 < x1 < x2 < . . . < xm <1;

where Θ is the parameters space and C = n(n − G1 − 1)(n − G1 − G2 − 2). . .(n − G1 − G2 − . . . −
Gm−1 −m + 1). The following censoring schemes are special cases of PFFCS:

(i) The PFFC sample reduces to first-failure censored data when G
~
¼ 0; 0; . . . ; 0.

(ii) The PFFC sample reduces to progressively type-II censored data when k = 1.

(iii) The PFFC sample becomes Type-II censored sample when k = 1 and G
~
¼ 0; 0; . . . ; n � m.

(iv) The PFFC sample becomes the complete sample case when k = 1 and G
~
¼ 0; 0; . . . ; 0.
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2 Model description and SSR

The inverse Pareto distribution (IPD) is a one-parameter lifetime distribution that has two dif-

ferent shapes, an upside-down bathtub and decreasing, of the failure rate function. In real-life

applications, there are many situations where both failure rate functions are very useful. The

IPD is adaptable to the various failure rate function forms that are frequently observed in med-

ical studies such as cancer data, heart transplant data, etc. To analyze such data IPD may be

appropriate, see [18]. In reliability engineering, the application of the IPD lifetime model has

been discussed by [4] with the help of the failure time of the air conditioning system of two air-

planes. Also, a number of research papers have described the popularity of the IPD lifetime

model. For example, [19] discussed several estimations of parameter and reliability characteris-

tics with the application of head-neck cancer data and also compared the performance of the

IPD lifetime model with some other existing lifetime models, and [12] discussed SSR based on

progressively censored data for IPD lifetime model. [20] studied reliability estimation using

progressively first-failure censored data. Such behavior of the IPD lifetime model and its

diverse applications motivate us to contribute some more ideas in reliability engineering.

Let X be a random variable with IPD having a probability density function (pdf) fX(x|α),

and a cumulative distribution function (cdf) FX(x|α), respectively

fXðxjaÞ ¼
axa� 1

ð1þ xÞaþ1
; x > 0; a > 0; ð2Þ

FXðxjaÞ ¼
x

1þ x

� �a

; x > 0; a > 0: ð3Þ

Here, α is a scale parameter. The goal of this paper is to develop maximum product spacing

(MPS) method for the SSR of IPD based on PFFC data. In the literature, the MPS method has

not yet been investigated for PFFC data. Also, we considered maximum likelihood (ML) and

Bayesian estimation methods to construct the SSR. Let X and Y be independent random vari-

ables following IPD(α1) and IPD(α2), respectively, then the SSR is defined as

� ¼ PðY < XÞ ¼
Z1

0

FXðxÞfXðxÞdx ¼
a1

a1 þ a2

: ð4Þ

The rest of the article is laid out as follows: The MPS and ML methods for estimating SSR are

addressed in Section 3. The interval estimate of SSR based on ML estimate is also discussed.

The Bayes estimator and their corresponding interval estimate of SSR are discussed in Section

4. Section 5, To assess the efficiency of the SSR estimators, a comprehensive simulation study

is carried out. A pair of real data sets are analyzed in Section 6 to illustrate the suggested tech-

nique. Finally, a concluding remark appears in Section 7.

3 Classical estimation

The SSR is estimated in this section using two estimation procedures: maximum product spac-

ing (MPS) and maximum likelihood (ML) estimation methods.

3.1 Maximum product spacing method

Here, we discuss the maximum product spacing (MPS) method to estimate the SSR ϕ. Initially,

this method was first introduced by [21], which was then employed by [22], they showed it is

an alternative to the ML estimation method. In addition, the MPS method also follows
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consistency, asymptotic, and invariance properties similar to those of the ML estimation

method. However, in the ML estimation method, parameter values are chosen to maximize

the likelihood function, but in the MPS method, parameter values are chosen to maximize the

product of the gaps between the values of the distribution function at adjacent ordered points.

[23] recently recommended the use of the MPS technique for progressively censored data,

which selects the parameter values that make the observed data as uniform as possible.

However, in this study, we proposed to generalize [23] recommended MPS method for pro-

gressively censored data to PFFC data. The product of spacing to be maximized based on

PFFC data can be defined as follows: Let xi:m1:n1:k1
; i ¼ 1; 2; . . . ;m1 be a PFFC sample obtained

from n1 testing groups each having k1 units with pre-fixed censoring scheme G
~
¼

ðG1;G2; . . . ;Gm1
Þ from IPD(α1). Similarly, let Yj:m2:n2

; j ¼ 1; 2; . . . ;m2 be a PFFC sample

obtained from n2 testing groups each having k2 units with pre-fixed censoring scheme W
~
¼

ðW1;W2; . . . ;Wm2
Þ from IPD(α2). Then, the product spacing’s are defined as

Qða1; a2Þ ¼
Ym1þ1

i¼1

½FXðxi; a1Þ � FXðxi� 1; a1Þ�½1 � FXðxi; a1Þ�
k1ðGiþ1Þ� 1

�
Ym2þ1

j¼1

½FYðyj; a2Þ � FYðyj� 1; a2Þ�½1 � FYðyj; a2Þ�
k2ðWjþ1Þ� 1

;

ð5Þ

where,

FXðx0:m1:n1:k1
Þ ’ 0; FXðxm1þ1:m1:n1:k1

Þ ’ 1

FYðy0:m2:n2:k2
Þ ’ 0; FYðym2þ1:m2:n2:k2

Þ ’ 1:

Thus, using Eq (3) in Eq (5), the product spacing’s are given by

Qða1; a2Þ ¼
Ym1þ1

i¼1

xi
1þ xi

� �a1

�
xi� 1

1þ xi� 1

� �a1
� �

Ym1þ1

i¼1

1 �
xi

1þ xi

� �a1
� �k1ðGiþ1Þ� 1

�
Ym2þ1

j¼1

yj
1þ yj

 !a2

�
yj� 1

1þ yj� 1

 !a2
" #

Ym2þ1

j¼1

1 �
yj

1þ yj

 !a2
" #k2ðWjþ1Þ� 1

ð6Þ

Taking natural logarithm, H = ln Q(α1, α2), of Eq (6) we get

H ¼
Xm1þ1

i¼1

ln
xi

1þ xi

� �a1

�
xi� 1

1þ xi� 1

� �a1
� �

þ
Xm1

i¼1

½k1ðGi þ 1Þ � 1� ln 1 �
xi

1þ xi

� �a1
� �

þ
Xm2þ1

j¼1

ln
yj

1þ yj

 !a2

�
yj� 1

1þ yj� 1

 !a2
" #

þ
Xm2

j¼1

½k2ðWj þ 1Þ � 1� ln 1 �
yj

1þ yj

 !a2
" #

:

ð7Þ

The following normal equations are obtained by differentiating Eq (7) w.r.t α1 and α2, respec-

tively:

H0
a1
¼
Xm1þ1

i¼1

1

A1

�
xi

1þ xi

� �a1

ln
xi

1þ xi

� �

�
xi� 1

1þ xi� 1

� �a1

ln
xi� 1

1þ xi� 1

� ��

þ
Xm1

i¼1

½k1ðGi þ 1Þ � 1�
1

B1

xi
1þ xi

� �a1

ln
xi

1þ xi

� �

¼ 0

ð8Þ
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and

H0
a2
¼
Xm2þ1

j¼1

1

A2

� yj
1þ yj

 !a2

ln
yj

1þ yj

 !

�
yj� 1

1þ yj� 1

 !a2

ln
yj� 1

1þ yj� 1

 !�

þ
Xm2

j¼1

½k2ðWj þ 1Þ � 1�
1

B2

yj
1þ yj

 !a2

ln
yj

1þ yj

 !

¼ 0;

ð9Þ

where,

A1 ¼
xi

1þ xi

� �a1

�
xi� 1

1þ xi� 1

� �a1
� �

; B1 ¼ 1 �
xi

1þ xi

� �a1
� �

A2 ¼
yj

1þ yj

 !a2

�
yj� 1

1þ yj� 1

 !a2
" #

; B2 ¼ 1 �
yj

1þ yj

 !a2
" #

:

The MPS estimates say (~a1; ~a2) of (α1, α2) are the solutions of (8) and (9), respectively. For Eqs

(8) and (9), there are no closed-form solutions available. An appropriate iterative approach

can be utilized to get numerical solutions to these nonlinear equations. After obtaining MPS

estimates of α1 and α2, the MPS estimate of SSR, say ~�, is calculated using the invariance prop-

erty of MPS estimators and is provided by

~� ¼
~a1

~a1 þ ~a2

: ð10Þ

3.2 Maximum likelihood estimation method

In this subsection, the estimate of SSR ϕ is obtained using the ML estimation method. Let

xi:m1:n1k1
; i ¼ 1; 2; . . . ;m1, be independent PFFC censored sample from IPD(α1) with presumed

censoring plan G
~
¼ ðG1;G2; . . . ;Gm1

Þ and similarly let Yj:m2:n2:k2
; j ¼ 1; 2; . . . ;m2 be indepen-

dent PFFC sample from IPD(α2) with presumed censoring scheme W
~
¼ ðW1;W2; . . . ;Wm2

Þ,

then using Eqs (2), (3) and (1), the likelihood function is given by

Lða1; a2; x ; yÞ ¼ C1C2k
m1
1 km2

2

Ym1

i¼1

fXðxiÞ½1 � FXðxiÞ�
k1ðGiþ1Þ� 1

�
Ym2

j¼1

fYðyjÞ½1 � FYðyjÞ�
k2ðWiþ1Þ� 1

¼ C1C2k
m1
1 km2

2 a
m1
1 a

m2
2

Ym

i¼1

xa1 � 1

i

ð1þ xiÞ
a1þ1

1 �
xi

1þ xi

� �a1
� �k1ðGiþ1Þ� 1

�
Ym2

j¼1

ya2 � 1

j

ð1þ yjÞ
a2þ1

1 �
yj

1þ yj

 !a2
" #k2ðWjþ1Þ� 1

ð11Þ

where, C1 ¼ n1ðn1 � G1 � 1Þðn1 � G1 � G2 � 2Þ . . . ðn1 � G1 � G2 � � � � � Gm1 � 1 � m1 þ 1Þ

and

C2 ¼ n2ðn2 � W1 � 1Þðn2 � W1 � W2 � 2Þ . . . ðn2 � W1 � W2 � � � � � Wm2 � 1 � m2 þ 1Þ.
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The corresponding log-likelihood function is obtained as

lða1; a2Þ ¼ Dþm1 lna1 þ a1

Xm1

i¼1

ln
xi

1þ xi

� �

þ
Xm1

i¼1

½k1ðGi þ 1Þ � 1� ln 1 �
xi

1þ xi

� �a1
� �

þm2 lna2 þ a2

Xm2

j¼1

ln
yi

1þ yi

� �

þ
Xm2

j¼1

½k2ðWj þ 1Þ � 1� ln 1 �
yj

1þ yj

 !a2
" #

;

ð12Þ

where, D ¼ lnðC1C2Þ þm1 ln k1 þm2 ln k2 �
Pm1

i¼1

ln ½xið1þ xiÞ� �
Pm2

j¼1

ln ½yjð1þ yjÞ�. The nor-

mal equations are obtain by differentiating (12) w.r.t α1 and α2, respectively

@lða1; a2Þ

@a1

¼
m1

a1

þ
Xm1

i¼1

ln
xi

1þ xi

� �

�
Xm1

i¼1

½k1ðGi þ 1Þ � 1�

xi
1þ xi

� �a1

ln
xi

1þ xi

� �

1 �
xi

1þ xi

� �a1
� � ¼ 0: ð13Þ

and,

@lða1; a2Þ

@a2

¼
m2

a2

þ
Xm2

j¼1

ln
yj

1þ yj

 !

�
Xm2

j¼1

½k2ðWj þ 1Þ � 1�

yj
1þ yj

 !a2

ln
yj

1þ yj

 !

1 �
yj

1þ yj

 !a2
" # ¼ 0: ð14Þ

The solution of normal Eqs (13) and (14) are the ML estimates (â1 , â2) of (α1, α2). Here, the

closed form solutions for (13) and (14) are unavailable. An appropriate iterative approach can

be applied to get numerical solutions to these non-linear equations. The ML estimate of SSR,

say �̂ is computed using the invariance property of ML estimators and is given by

�̂ ¼
â1

â1 þ â2

: ð15Þ

3.3 Asymptotic confidence interval (ACI) based on MLE

In this section, we use the delta approach to calculate the ACI of SSR ϕ based ML estimators

since the exact distribution of �̂ is unavailable. Let ĉ ¼ ðâ1; â2Þ be the ML estimates of ψ =

(α1, α2). The asymptotic variance of ĉ using delta method, see [24], is given by

VarðĉÞ ¼ ½q0I� 1ðcÞq�;

where, IðcÞ ¼ � E

@
2lða1; a2Þ

@a2
1

@
2lða1; a2Þ

@a1@a2

@
2lða1; a2Þ

@a2@a1

@
2lða1; a2Þ

@a2
2

2

6
6
6
4

3

7
7
7
5

is the Fisher information matrix (FIM) and

q ¼ @�

@a1
; @�
@a2

� �0
:
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The observed FIM can be utilized as a consistent estimator of the Fisher information under

modest regularity criteria. Thus, the observed variance of �̂ is given by

V̂arð�̂Þ ’ ½q0I� 1ðcÞq�
c¼ĉ

:

In the FIM I(ψ), the partial derivative elements are provided by

@
2lða1; a2Þ

@a2
1

¼ �
m1

a2
1

�
Xm1

i¼1

½k1ðGi þ 1Þ � 1�

ln
xi

1þ xi

� �� �2 xi
1þ xi

� �a1

1 �
xi

1þ xi

� �a1
� �2

;

@
2lða1; a2Þ

@a2
2

¼ �
m2

a2
2

�
Xm2

j¼1

½k2ðWj þ 1Þ � 1�

ln
yj

1þ yj

 !" #2

yj
1þ yj

 !a2

1 �
yj

1þ yj

 !a1
" #2

;

@
2lða1; a2Þ

@a1@a2

¼
@

2lða1; a2Þ

@a2@a1

¼ 0;

and the elements of q are given by

@�

@a1

¼
a2

ða1 þ a2Þ
2
;

@�

@a2

¼ �
a1

ða1 þ a2Þ
2
:

Thus �̂ � �ffiffiffiffiffiffiffiffiffiffi
V̂ arð�̂Þ
p � Nð0; 1Þ. Therefore, the 100(1 − ξ)% ACI of ϕ is given by �̂ � zx=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂arð�̂Þ
q

,

where zξ/2 is the upper (ξ/2)th quantile of N(0, 1).

4 Bayesian estimation

Here, we compute the Bayes estimator of SSR ϕ under SELF. Assume that the unknown

parameter α1 and α1 have gamma distribution with the following pdfs, respectively

h1ða1Þ / a
r1 � 1

1 exp ð� s1a1Þ; a1 > 0; r1; s1 > 0;

and

h2ða2Þ / a
r2 � 1

2 exp ð� s2a2Þ; a2 > 0; r2; s2 > 0;

where ri, si; i = 1, 2 are hyper-parameters selected to represent previous knowledge of the

parameters α1 and α2, respectively. Therefore, the joint prior distribution of α1 and α2 can be

defined as

hða1; a2Þ / a
r1� 1

1 a
r2 � 1

2 exp f� ðs1a1 þ s2a2Þg: ð16Þ

The choice of gamma priors is not unreasonable, as the family of gamma distributions is quite

diverse, with many different types of distributions. Independent gamma priors are specific

examples of non-informative priors. Many researchers have used gamma priors in a variety of

situations, such as [25, 26], etc. Now, by incorporating the joint prior (16) to the likelihood
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function (11), the posterior distribution of α1 and α2 is given by

pða1; a2jx ; yÞ ¼
Lða1; a2; x

~
; y

~

Þhða1; a2Þ

Z1

0

Z1

0

Lða1; a2; x
~
; y

~

Þhða1; a2Þda1da2

) pða1; a2jx; yÞ

/ a
m1þr1 � 1

1 a
m2þr2 � 1

2 exp

(

� a1 s1 �
Xm1

i¼1

ln
xi

1þ xi

� �" #)

� exp

(

� a2 s2 �
Xm2

j¼1

ln
yj

1þ yj

 !" #)
Ym1

i¼1

1 �
xi

1þ xi

� �a1
� �k1ðGiþ1Þ� 1Ym2

j¼1

1 �
yj

1þ yj

 !a2
" #k2ðWjþ1Þ� 1

:ð17Þ

We use one of the Markov Chain Monte Carlo (MCMC) techniques, the Metropolis-Hastings

(M-H) algorithm, to compute the Bayes estimate and the accompanying HPD credible interval

of SSR ϕ, as the posterior distribution in Eq (17) cannot be determined analytically.

4.1 Metropolis-Hastings algorithm

Here, the Bayes estimator and HPD credible interval of SSR ϕ are created using the M-H algo-

rithm. The M-H method is a widely used MCMC approach for obtaining random samples

from any arbitrarily complicated target distribution of any dimension that is known up to a

normalizing constant. [27] for further information on MCMC approaches and their applica-

tions. The marginal posterior distributions of α1 and α2 can be defined as follows:

p1ða1ja2; x ; yÞ

/ a
m1þr1 � 1

1 exp
�

� a1 s1 �
Xm1

i¼1

ln
xi

1þ xi

� �" #�
Ym1

i¼1

1 �
xi

1þ xi

� �a1
� �k1ðGiþ1Þ� 1

ð18Þ

and

p2ða2ja1; x ; yÞ

/ a
m2þr2 � 1

2 exp
�

� a2 s2 �
Xm2

j¼1

ln
yj

1þ yj

 !" #�
Ym2

j¼1

1 �
yj

1þ yj

 !a2
" #k2ðWjþ1Þ� 1

:ð19Þ

Since the marginal posterior distributions of α1 and α2 are not well-known, the M–H algo-

rithm can be used to generate random numbers from these distributions. In this situation, the

proposal density is based on the normal distribution. Consequently, to sample from the mar-

ginal posteriors, the following steps are used:

Step 1: Begin with an initial guess (a
ð0Þ

1 , a
ð0Þ

2 ).

Step 2: Set t = 1.

Step 3: Using the M-H algorithm with normal proposal density, generate a
ðtÞ
1 from

p1ða1ja2; x; yÞ in Eq (18).

Step 4: Using the M-H algorithm with normal proposal density, generate a
ðtÞ
2 from

p2ða2ja1; x; yÞ in Eq (19).

Step 5: Compute �
ðtÞ
¼ �ða

ðtÞ
1 ; a

ðtÞ
2 Þ using Eq (4).
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Step 6: Set t = t + 1.

Step 7: Repeat steps 3 to 6, (M − 1) times.

Now, the Bayes estimate �̂Bayes of SSR under SELF is the posterior mean and it is obtained as

�̂Bayes ¼ Êð�jdataÞ ¼
1

M � M0

XM

t¼M0þ1

�
ðtÞ
: ð20Þ

We discarded the observations�
ð1Þ
; �
ð2Þ
; . . . ; �

ðM0Þ, worked with (M −M0) remaining observa-

tions, which are seen as an independent sample from the stationary distribution of the Markov

chain, which is generally the posterior distribution.

4.2 HPD credible interval

Here, using the generated MCMC samples, we obtained the HPD credible interval of SSR ϕ
with the help of [28] algorithm. Let ϕ(1) < ϕ(2) < � � �< ϕ(M) be the ordered values of ϕ(1), ϕ(2),

. . ., ϕ(M). Then, 100(1 − ξ)%, HPD credible interval of SSR ϕ is given by (ϕ(t), ϕ(t+[(1−ξ)M])),

where t is chosen such that

�ðtþ½ð1� xÞM�Þ � �ðtÞ ¼ min
1�i�xM

ð�ðiþ½ð1� xÞM�Þ � �ðtÞÞ; t ¼ 1; 2; . . . ;M;

where, [x] is the integral part of x.

5 Monte Carlo simulation

The efficiency of the various estimators covered in this work is examined using a comprehen-

sive Monte Carlo simulation study. The average values (AV) and mean squared errors (MSE)

are used to compare these estimators (MSE). In addition, the interval estimates are compared

with average lengths (AL). The Bayes estimate of SSR ϕ is obtained under SELF by incorporat-

ing gamma prior distributions. The following steps are carried out for the simulations as

follows:

1. Considered number of groups n = n1 = n2 with same group sizes k = k1 = k2. Also, we

assumed same prefixed number of failures m = m1 = m2 with same prefixed censoring

schemes CS ¼ G ¼W .

2. The different sample sizes with different prefixed censoring plans for computation purposes

are tabulated in Table 1. The simplified notations used in Table 1 like for CS = 1, (5 * 1, 0 *
19) denotes (5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

3. Two sets of true parameters (α1, α2) = (2, 0.5) and (α1, α2) = (1.2, 0.8) are chosen. Conse-

quently, the corresponding true values of SSR ϕ become, ϕ = 0.80 and ϕ = 0.60, respectively.

Table 1. Different censoring schemes used in the simulation study.

n m CS Scheme n m CS Scheme

25 20 1 (5 * 1,0 * 19) 35 30 6 (0 * 29, 5)

25 20 2 (1 * 2, 0 * 8, 1 * 1, 0 * 7, 1 * 2) 50 40 7 (10 * 1, 0 * 39)

25 20 3 (0 * 19,5) 50 40 8 (1 * 5, 0 * 30, 1 * 5)

35 30 4 (5 * 1, 0 * 29) 50 40 9 (0 * 39, 10 * 1)

35 30 5 (1 * 2, 0 * 12, 1 * 1, 0 * 13, 1 * 2)

https://doi.org/10.1371/journal.pone.0287473.t001
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4. Generate x and y independent PFFC samples with effective sample sizes m, using [2] algo-

rithm with distribution function 1 − (1 − F(.))k from IPD.

5. Compute MPS and ML estimates of SSR ϕ. Also, compute the ACI of SSR based on ML

estimators.

6. For Bayesian computations, the hyper-parameters are chosen as {(r1, s1) = (4, 2), (r2, s2) =

(2, 4)} and {(r1, s1) = (2.4, 2), (r2, s2) = (3.2, 4)} with the assumption that the prior means

equal to true parameter values, respectively. M = 10, 000 posterior samples are generated

using M-H algorithm, and M0 = 2, 000 samples are discarded as burn-in-period. Then,

compute Bayes estimate and HPD credible interval of SSR ϕ.

7. Run the whole process 1000 times and take the average values of the estimates.

In Tables 2 and 3, all of the simulated outcomes are shown. Following are the conclusions

drawn from these simulation tables:

The outcomes of MPS, ML, and Bayes estimates of SSR in terms of AV and MSEs are very

adequate, even for small sample sizes in almost all cases. As n and m increases, the MSEs

decline, confirming the consistency of different SSR estimators. Additionally, the MSEs drop

as the number of test units in a group grows. In terms of MSEs, the Bayes estimator outper-

forms the ML and MPS estimators because Bayes estimators take into account previous infor-

mation about the parameters. In addition, the performance of the MPS estimator is quite

better than that of the ML estimator in terms of MSEs. In addition, when the number of fail-

ures increases, the ALs of ACI and HPD credible intervals decline. It is also observed that

HPD credible intervals exhibit smaller ALs than ACIs. As a result, we may infer that the Bayes

estimator works substantially better when prior information is available, and that it can be

Table 2. The MPS, ML and Bayes estimates of SSR ϕ, when ϕ = 0.80.

~�MPS �̂ML �̂MH

(n, m, k) CS AV MSE AV MSE AL AV MSE AL

(25,20,2) 1 0.7961 0.0015 0.7960 0.0014 0.1433 0.7958 0.0015 0.0305

(25,20,2) 2 0.7961 0.0014 0.7961 0.0014 0.1367 0.7950 0.0013 0.0927

(25,20,2) 3 0.7990 0.0011 0.7990 0.0011 0.1319 0.7981 0.0011 0.1162

(35,30,2) 4 0.7977 0.0010 0.7976 0.0010 0.1184 0.7971 0.0010 0.0179

(35,30,2) 5 0.7987 0.0009 0.7987 0.0009 0.1140 0.7980 0.0008 0.0752

(35,30,2) 6 0.7984 0.0010 0.7984 0.0009 0.1117 0.7978 0.0009 0.0961

(50,40,2) 7 0.7975 0.0007 0.7975 0.0007 0.1022 0.7974 0.0007 0.0128

(50,40,2) 8 0.7984 0.0007 0.7984 0.0007 0.0966 0.7978 0.0007 0.0652

(50,40,2) 9 0.7992 0.0006 0.7992 0.0006 0.0935 0.7988 0.0006 0.0828

(25,20,4) 1 0.7970 0.0013 0.7977 0.0011 0.1430 0.7972 0.0011 0.0304

(25,20,4) 2 0.7988 0.0009 0.7981 0.0009 0.1347 0.7981 0.0008 0.0916

(25,20,4) 3 0.7981 0.0008 0.7976 0.0008 0.1315 0.7977 0.0007 0.1164

(35,30,4) 4 0.7993 0.0005 0.7987 0.0005 0.1169 0.7993 0.0005 0.0174

(35,30,4) 5 0.7991 0.0004 0.7985 0.0004 0.1130 0.7987 0.0004 0.0750

(35,30,4) 6 0.8000 0.0004 0.7994 0.0004 0.1103 0.7997 0.0004 0.0953

(50,40,4) 7 0.7988 0.0003 0.7983 0.0003 0.1009 0.7994 0.0003 0.0121

(50,40,4) 8 0.7990 0.0002 0.7984 0.0002 0.0956 0.7988 0.0002 0.0650

(50,40,4) 9 0.7990 0.0001 0.7984 0.0001 0.0928 0.7991 0.0001 0.0828

https://doi.org/10.1371/journal.pone.0287473.t002
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utilized for any practical purpose. Also, we find that the censoring scheme 9 provides the best

results for classical as well as for Bayesian estimation methods.

6 Real life applications

This section discusses real-life applications for the illustrations of the proposed methodology

developed in this study. For this purpose, two pairs of real data sets are considered and ana-

lyzed in the following subsections:

6.1 Jute fibres’ breaking strength data

[29] discussed the breaking strength of jute fibres at four different gauge lengths as 5 mm, 10

mm, 15 mm, and 20 mm, respectively. Here, we consider the breaking strength of jute fibres at

two distinct gauge lengths 15 mm (say X1) and 20 mm (say Y1) by dividing each observation

by 10. The transformed data sets are given by

X1 (15 mm): 59.440, 20.275, 16.837, 57.486, 22.565, 7.638, 15.667, 12.781, 81.387, 56.239,

46.847, 13.509, 7.224, 49.794, 35.556, 56.907, 64.048, 20.042, 55.042, 74.875, 48.966, 67.806,

45.771, 10.673, 71.630, 4.266, 8.040, 33.922, 7.009, 19.342.

Y1 (20 mm): 7.146, 41.902, 28.464, 58.557, 45.660, 11.385, 18.785, 68.816, 66.266, 4.558, 57.862,

75.670, 59.429, 16.649, 9.972, 70.736, 76.514, 18.713, 14.596, 35.070, 54.744, 11.699, 37.581,

58.160, 11.986, 4.801, 20.016, 3.675, 24.453, 8.355.

To begin, we examine the goodness of fit to see if the IPD can be used to analyze these data

sets separately. The Kolmogorov-Smirnov (KS) statistics along with associated p-values based

on ML estimates are computed. The ML estimates of unknown parameters α1 and α2 are com-

puted as 19.2748 and 16.4732, respectively. The KS statistics (p-values) are computed as 0.2097

Table 3. The MPS, ML and Bayes estimates of SSR ϕ, when ϕ = 0.60.

~�MPS �̂ML �̂MH

CS AV MSE AV MSE AL AV MSE AL

1 0.5957 0.0033 0.5957 0.0033 0.2114 0.5951 0.0033 0.0393

2 0.6012 0.0029 0.6012 0.0029 0.2012 0.6010 0.0027 0.1352

3 0.5998 0.0027 0.5998 0.0026 0.1964 0.5992 0.0024 0.1719

4 0.5997 0.0022 0.5997 0.0022 0.1756 0.5995 0.0023 0.0273

5 0.5985 0.0020 0.5985 0.0020 0.1698 0.5985 0.0019 0.1109

6 0.5995 0.0020 0.5996 0.0020 0.1661 0.5991 0.0019 0.1421

7 0.5974 0.0016 0.5974 0.0016 0.1519 0.5976 0.0017 0.0212

8 0.5980 0.0014 0.5980 0.0014 0.1440 0.5981 0.0014 0.0968

9 0.5981 0.0015 0.5970 0.0015 0.1442 0.5982 0.0013 0.0969

1 0.6017 0.0019 0.6017 0.0019 0.1626 0.6015 0.0020 0.0290

2 0.6015 0.0017 0.6015 0.0017 0.1551 0.6014 0.0016 0.1058

3 0.6020 0.0016 0.6020 0.0016 0.1509 0.6015 0.0015 0.1316

4 0.5995 0.0012 0.5995 0.0012 0.135 0.5990 0.0012 0.0222

5 0.5980 0.0012 0.5980 0.0012 0.1305 0.5979 0.0012 0.0865

6 0.6004 0.0012 0.6004 0.0012 0.1274 0.6001 0.0011 0.1088

7 0.6013 0.0009 0.6013 0.0009 0.1164 0.6015 0.0010 0.0181

8 0.6007 0.0009 0.6007 0.0009 0.1105 0.6007 0.0009 0.0748

9 0.6004 0.0008 0.6004 0.0008 0.1071 0.6002 0.0008 0.0939

https://doi.org/10.1371/journal.pone.0287473.t003
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(0.1232) and 1926 (0.1894), respectively. Based on the p-values, we can say that the considered

data sets are good fits for the IPD model. Further, after randomly grouping the considered

data sets into n = 15 groups with k = 2 items within each group, and then consider the first fail-

ure censored samples. The bold observation shows the first-failure observation in the respec-

tive groups as shown in Table 4.

Finally, the first failure-censored samples of the considered data sets, respectively, are given

by

X1 (15 mm): 4.266, 7.009, 7.224, 8.040, 10.673, 13.509, 15.667, 16.837, 19.342, 20.042, 20.275,

45.771, 46.847, 49.794, 56.239.

Y1 (20 mm): 3.675, 4.558, 4.801, 8.355, 9.972, 11.699, 14.596, 18.713, 18.785, 20.016, 24.453,

28.464, 37.581, 54.744, 59.429.

Now, applying four different common prefixed censoring schemes on the above ordered

first failure censored samples with effective sample size m = 10. The four different common

prefixed censoring schemes and their associated PFFC samples are as follows:

Scheme 1:k ¼ 2; n ¼ 15; m ¼ 10; W ¼ ð5; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ,
x

1
¼ 4:266, 12.781, 13.509, 16.837, 19.342, 20.042, 22.565, 46.847, 57.486, 71.630.

y
1
¼ 3:675, 11.385, 11.699, 11.986, 16.649, 24.453, 28.464, 45.660, 58.160, 59.429.

Scheme 2:k ¼ 2; n ¼ 15; m ¼ 10; W ¼ ð1; 0; 0; 1; 0; 0; 2; 0; 0; 1Þ,
x

1
¼ 4:266, 7.224, 7.638, 8.040, 12.781, 13.509, 16.837, 22.565, 46.847, 48.966.

y
1
¼ 3:675, 4.801, 7.146, 8.355, 11.385, 11.986, 14.596, 24.453, 28.464, 37.581.

Scheme 3:k ¼ 2; n ¼ 15; m ¼ 10; W ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 5Þ,
x

1
¼ 4:266, 7.009, 7.224, 7.638, 8.040, 12.781, 13.509, 16.837, 19.342, 20.275.

y
1
¼ 3:675, 4.558, 4.801, 7.146, 9.972, 11.385, 11.699, 11.986, 16.649, 20.016.

Scheme 4:k ¼ 2; n ¼ m ¼ 15; W ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ,
x

1
¼ 4:266, 7.009, 7.224, 7.638, 8.040, 10.673, 12.781, 13.509, 15.667, 19.342, 20.042, 22.565,

46.847, 49.794, 64.048.

y
1
¼ 3:675, 4.558, 4.801, 8.355, 9.972, 11.385, 11.986, 16.649, 18.713, 18.785, 24.453, 35.070,

41.902, 57.862, 66.266.

Table 4. First-failure censored jute fibres’ breaking strength data.

Data Sets Groups Items 1 2 3 4 5 6 7 8

X1(15mm) i

ii

75.67 35.07 58.557 4.801 11.699 28.464 20.016 14.596

16.649 54.744 8.355 7.146 66.266 4.558 18.713 18.785

9 10 11 12 13 14 15

45.66 76.514 3.675 24.453 11.385 57.862 37.581

9.972 70.736 68.816 41.902 58.16 11.986 59.429

Groups Items 1 2 3 4 5 6 7 8

Y1(20mm) i

ii

58.16 11.699 9.972 68.816 14.596 4.801 4.558 58.557

41.902 75.67 70.736 45.66 7.146 11.986 11.385 54.744

9 10 11 12 13 14 15

16.649 35.07 66.266 3.675 18.785 20.016 59.429

37.851 76.514 28.464 57.862 24.453 18.713 8.355

https://doi.org/10.1371/journal.pone.0287473.t004
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Now, we obtain the ML, MPS, and Bayes estimates of SSR under consideration of four dif-

ferent censoring schemes. Also, computed asymptotic confidence and HPD credible intervals

of SSR, see, Table 5. For the Bayesian computation, the hyper-parameters are taken as ri = si =

0.0001; i = 1, 2 as we don’t have any prior information. We generate 10,000 posterior samples

from the marginal posteriors (18) and (19) using the M-H algorithm. Trace plots and posterior

distribution plots for the jute fibres’ breaking strength data are given in the following Figs 1–4,

respectively. These plots demonstrate the feasibility of MCMC techniques.

6.2 Electrical insulation data

In this illustration, two different types of electrical insulation failure times (measured in sec-

onds) under continuous-increasing voltage stress are considered. Two electrical insulation’s

are tested and recorded each of size 30. These data are studied by [1]. Here, we consider these

data after multiplying each observation by 10. The transformed failure times of two different

electrical insulation’s each of 30 sizes, respectively, are as follows:

X2 (in seconds): 0.97, 0.14, 0.3, 1.34, 2.4, 0.84, 1.46, 0.24, 0.45, 0.04, 0.99, 2.77, 4.72, 0.94,

0.23, 1.46, 0.3, 0.31, 1.04, 1.05, 0.36, 0.65, 0.22, 0.98, 1.78, 0.59, 0.14, 0.07, 0.07, 2.86.

Y2 (in seconds): 1.99, 2.52, 1.03, 4.55, 1.35, 3.48, 3.21, 1.66, 0.4, 0.27, 5.19, 2.7, 0.08, 0.3, 0.84,

2.36, 3.15, 1.77, 2.68, 1.8, 7.96, 2.45, 7.03, 0.45, 0.17, 8.21, 9.42, 3.14, 2.81, 6.52.

First, we check whether IPD fits these data sets. We find KS statistics along with associated

p-value based on ML estimates are computed. The ML estimates of â1 and â2 are 0.8598 and

1.6871 respectively. KS distance along with p-values are 0.1948 (0.2050) and 0.1565(0.4120)

respectively. According to the p-values, we can say that IPD fits well for these data sets. As dis-

cussed in the sub-section (6.1), we make four progressively first failure censored samples with

effective sample size m = 8, which are tabulated in Table 6 along with four different progres-

sively first failure censoring schemes (CS). Now obtain the ML, MPS, Bayes estimates, asymp-

totic confidence, and HPD credible intervals of SSR under consideration of four different

censoring schemes. The obtained results are reported in Table 7. The trace plots and posterior

Table 5. The MPS, ML, and Bayes estimates of the SSR (asymptotic and HPD CIs) for the jute fibres’ breaking strength data.

Schemes MPS MLE ACI Bayes HPD

Schemes 1 0.5670 0.5403 (0.3687, 0.7119) 0.5775 (0.4914, 0.6083)

Schemes 2 0.5529 0.5521 (0.3660, 0.6505) 0.5518 (0.4484, 0.6598)

Schemes 3 0.5372 0.5445 (0.4140, 0.7224) 0.5442 (0.4379, 0.6511)

Schemes tab: analysis 0.5533 (0.4050, 0.7017) 0.5087 (0.3981, 0.6115)

https://doi.org/10.1371/journal.pone.0287473.t005

Fig 1. MCMC trace, and plot of the posterior distribution of ϕ for scheme 1 under consideration of jute fibres’

breaking strength data.

https://doi.org/10.1371/journal.pone.0287473.g001

PLOS ONE On estimation of P(Y < X) for inverse Pareto distribution based on progressively first failure censored data

PLOS ONE | https://doi.org/10.1371/journal.pone.0287473 November 30, 2023 13 / 18

https://doi.org/10.1371/journal.pone.0287473.t005
https://doi.org/10.1371/journal.pone.0287473.g001
https://doi.org/10.1371/journal.pone.0287473


density plots for the electrical insulation data are given in Figs 5–8. These plots show that

MCMC methods perform well.

7 Conclusion

The concept of estimating SSR for IPD using PFFC samples from both the classical and Bayes-

ian prospective was tackled in this study. In the case of the classical estimation procedure, two

estimation methods, the ML and MPS methods, are used to estimate SSR. The MPS method

for PFFC data has not yet been discussed in the literature. Also, 95% of asymptotic confidence

and HPD credible intervals of SSR were constructed. Extensive simulations were examined to

Fig 4. MCMC trace, and plot of the posterior distribution of ϕ for Scheme 4 under consideration of jute fibres’

breaking strength data.

https://doi.org/10.1371/journal.pone.0287473.g004

Fig 2. MCMC trace, and plot of the posterior distribution of ϕ for Scheme 2 under consideration of jute fibres’

breaking strength data.

https://doi.org/10.1371/journal.pone.0287473.g002

Fig 3. MCMC trace, and plot of the posterior distribution of ϕ for Scheme 3 under consideration of jute fibres’

breaking strength data.

https://doi.org/10.1371/journal.pone.0287473.g003
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Table 6. Different censoring schemes (CS) and their corresponding PFFC samples for the electrical insulation data.

(k, n, m) CS Schemes PFFC samples

(3,10,8) 1 (2, 0,0,0,0,0,0,0) x
~ 2
¼ 0:04, 0.22, 0.23, 0.30, 0.30, 0.36, 0.59, 0.65

y
~

2
¼ 0:08, 0.30, 0.40, 0.45, 0.84, 1.03, 2.68, 3.15.

(3,10,8) 2 (1,0,0,0,0,0,0,1) x
~ 2

= 0.04, 0.14, 0.22, 0.23, 0.24, 0.31, 0.45, 0.97.

y
~ 2
¼ 0:08, 0.27, 0.40, 0.84, 1.03, 1.35, 1.66, 2.68.

(3,10,8) 3 (0,0,0,0,0,0,0,2) x
~ 2
¼ 0:04, 0.07, 0.07, 0.14, 0.14, 0.23, 0.31, 0.45.

y
~ 2
¼ 0:08, 0.17, 0.27, 0.30, 0.84, 1.03, 1.66, 1.80.

(3,10,10) 4 (0,0,0,0,0,0,0,0,0,0) x
~ 2
¼ 0:04, 0.07, 0.07, 0.14, 0.14, 0.22, 0.23, 0.24, 0.30, 0.45.

y
~ 2
¼ 0:08, 0.17, 0.27, 0.30, 0.40, 0.45, 1.35, 2.36, 2.52, 2.68

https://doi.org/10.1371/journal.pone.0287473.t006

Table 7. MPS, ML, and Bayes estimates of SSR ϕ (asymptotic and HPD CIs) for the electrical insulation data.

Schemes MPS MLE ACI Bayes HPD

Schemes 1 0.3461 0.3520 (0.2414, 0.4626) 0.3617 (0.1701, 0.6142)

Schemes 2 0.4112 0.4012 (0.2835, 0.5189) 0.4253 (0.2439, 0.6256)

Schemes 3 0.4221 0.4111 (0.2946, 0.5276) 0.4238 (0.2377, 0.6411)

Schemes 4 0.3991 0.3989 (0.2861, 0.5117) 0.4102 (0.2138, 0.6432)

https://doi.org/10.1371/journal.pone.0287473.t007

Fig 5. MCMC trace, and plot of the posterior distribution of ϕ for Scheme 1 under consideration of electrical

insulation data.

https://doi.org/10.1371/journal.pone.0287473.g005

Fig 6. MCMC trace, and plot of the posterior distribution of ϕ for Scheme 2 under consideration of electrical

insulation data.

https://doi.org/10.1371/journal.pone.0287473.g006
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see the performance of different estimation procedures. The outcomes of the simulation results

suggest that the Bayes estimator is more precise than the ML and MPS estimators. In addition,

the performance of the MPS estimator is quite better than the ML estimator. Thus, for all prac-

tical purposes, the Bayes estimator can be a good choice when the prior information is avail-

able; otherwise, the MPS or the ML method is commended. Finally, to demonstrate the

methodologies considered in this study, we analyzed two different pairs of real data sets as

illustrative examples. The approach and estimation results presented in this paper will be valu-

able to reliability practitioners in real-world situations.
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