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Abstract

Objectives

The goal was to investigate the relationship between the insertion angle/cochlear coverage
of cochlear implant electrode arrays and post-operative speech recognition scores in a large
cohort of patients implanted with lateral wall electrode arrays.

Methods

Pre- and post-operative cone beam computed tomography scans of 154 ears implanted
with lateral wall electrode arrays were evaluated. Traces of lateral wall and electrode arrays
were combined into a virtual reconstruction of the implanted cochlea. This reconstruction
was used to measure insertion angles and proportional cochlear coverage. Word recogni-
tion scores and sentence recognition scores measured 12 months after implantation using
electric-only stimulation were used to examine the relationship between cochlear coverage/
insertion angle and implantation outcomes.

Results

Post-operative word recognition scores and the difference between post- and pre-operative
word recognition scores were positively correlated with both cochlear coverage and inser-
tion angle, however sentence recognition scores were not. A group-wise comparison of
word recognition scores revealed that patients with cochlear coverage below 70% per-
formed significantly worse than patients with coverage between 79%-82% (p = 0.003). Per-
formance of patients with coverage above 82% was on average poorer than between 79%-
82, although this finding was not statistically significant (p = 0.84). Dividing the cohort into
groups based on insertion angle quadrants revealed that word recognition scores were high-
est above 450° insertion angle, sentence recognition scores were highest between 450° and
630° and the difference between pre- and post-operative word recognition scores was larg-
est between 540° and 630°, however none of these differences reached statistical
significance.
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Conclusions

The results of this study show that cochlear coverage has an effect on post-operative word
recognition abilities and the benefit patients receive from their implant. Generally, higher
coverage led to better outcomes, however there were results indicating that insertion past
82% cochlear coverage may not provide an additional benefit for word recognition. These
findings can be useful for choosing the optimal electrode array and thereby improving
cochlear implantation outcomes on a patient-individual basis.

Introduction

Since their first commercial use about 40 years ago, cochlear implants (Cls) have become the
preferred treatment option for patients with severe to profound hearing loss, and, in more
recent years, even for patients with a substantial amount of residual hearing at low- to mid-fre-
quencies. Notwithstanding the overwhelming general success of Cls, outcomes remain highly
variable and can differ considerably between patients [1]. Numerous studies have investigated
which ones of the many factors that play a role in the treatment with a CI have the strongest
effect on treatment success and the level of post-operative hearing performance that CI
patients achieve. These factors include, but are not limited to, duration of deafness, age at
implantation, etiology of the hearing loss, duration of hearing aid use prior to surgery, and
pre-operative speech recognition [2-7]. Apart from these pre-operatively determined demo-
graphic and audiometric factors, research has focused on the impact of surgical factors such as
the surgical approach (cochleostomy versus round window; [8, 9]), the scalar position of the
electrode array (scala tympani versus scala vestibuli; [9, 10]), and electrode array malposition
such as a tip fold-over [11]. Furthermore, the influence of electrode array insertion depth and
angle on speech recognition has been a heavily studied subject [12-25]. These parameters are
of particular clinical interest because they are comparatively easy to manipulate by selecting
electrode arrays of different type and/or length.

Dorman et al. [12] investigated the potential interaction between insertion depth and
implantation outcomes in a study with normal hearing subjects. They simulated CIs with five
electrodes using vocoded signals, and varied the simulated insertion depth between 22mm-
25mm by shifting the presented speech material to different vocoder frequencies. In all four
tests that were conducted, their subjects showed better results for deeper simulated insertion
depths. Hochmair et al. [13] simulated different insertion depths of lateral wall electrode arrays
in a study with CI subjects by de-activating the four most apical electrode contacts while keep-
ing the full input frequency range. With this reduced insertion depth, subjects performed sig-
nificantly worse than with all twelve electrode contacts activated in both monosyllabic word
recognition as well as sentence recognition in noise. In a condition with the same number of
de-activated electrode contacts evenly distributed across the electrode array, subjects reached
the same performance as with all electrode contacts activated, suggesting that hearing perfor-
mance would be affected by insertion depth rather than the number of inactive electrode con-
tacts. In a prospective trial, Buchman et al. [14] compared post-operative outcomes between
two groups of CI subjects implanted with different lateral electrode arrays. One group of sub-
jects was implanted with an electrode array with a length of 31 mm, while the other group of
subjects was implanted with a shorter electrode array with a length of 24 mm but the same
number of electrode contacts as the longer array. They measured consonant-nucleus-conso-
nant (CNC) word recognition and sentence recognition in quiet and noise at multiple time
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points up to 12 months after the surgery and observed significantly better results in all tests in
the group with the longer electrode array. These results caused the institutional review board
to terminate the study because it no longer deemed it ethical to implant patients with the
shorter electrode array. In a follow-up study, Canfarotta et al. [15] later published long-term
results of those patients that had been enrolled in the study before its discontinuation. Even 48
months after surgery, patients with the longer electrode array performed better than those
with the shorter electrode array, suggesting that the initial disadvantage introduced by the
shorter electrode array could not be made up for by a longer time to adapt. In another retro-
spective study, Biichner et al. [16] also compared post-operative outcomes between three
groups of patients with lateral wall electrode arrays of different length (20mm, 24mm, and
28mm). When looking at monosyllabic word recognition and sentence recognition in quiet
and in noise they found significantly better results in the group with the longest electrode
array at three months after activation. At six months after activation, patients with longer elec-
trode arrays still showed better performance than those with shorter electrode arrays but the
results did not reach statistical significance.

Using electrode array length as a parameter when analyzing CI outcomes serves as a good
approximation, however, it does not take into account neither fluctuations in the surgically
realized insertion depth nor individual differences of the inner ear morphology. If adequate
imaging data is available, measuring insertion angle (IA) and/or cochlear coverage (CC), i.e.
the proportion of the cochlear duct length that is covered by the electrode array, should result
in a more precise assessment. Consequently, several studies in the past have used some form of
radiological imaging data to investigate the effect of different surgical parameters on implanta-
tion outcomes. Skinner et al. [17] used computed tomography (CT) scans to determine
cochlear length and electrode array insertion depth in a cohort of 26 patients with lateral wall
electrode arrays. After calculating the CC, they correlated their results with word recognition
scores obtained at least 12 months after surgery and found a positive linear correlation
between those word recognition scores and CC. Yukawa et al. [18] used radiographs to deter-
mine the IA in a cohort of 48 patients with lateral wall electrode arrays and found a positive
linear correlation between measured IAs and both phoneme recognition scores in quiet and
sentence recognition scores in noise. O’Connell et al. [19, 20] measured IAs using CT scans
and found a positive linear correlation between IA and word recognition scores both in a
larger cohort with mixed electrode array types (N = 137) as well as in a smaller cohort with lat-
eral wall electrode arrays (N = 48). For the larger cohort they also tested for a correlation
between IA and sentence recognition scores but did not find statistically significant results. In
a cohort of 54 patients with lateral wall electrode arrays Helbig et al. [21] found a positive lin-
ear correlation between IA and monosyllabic word recognition scores at twelve months after
implantation. Contrary to these findings, van der Marel et al. [22] could not find any signifi-
cant correlation between post-operative word and phoneme recognition scores and 6 different
electrode position parameters (including IA and insertion depth) derived from multiplanar
CT scans in a cohort of 203 patients with lateral wall electrode arrays. Lo Russo et al. [23]
divided a cohort of 50 patients implanted with different types of electrode arrays into two
groups based on the difference between post- and pre-operative disyllabic word recognition
scores (ASDS). They analyzed flat-panel CT scans and found that the surgical insertion depth
(SID, distance between basal electrode contact and round window) was significantly higher in
the group with higher ASDS. However, they did not find significant differences in neither lin-
ear insertion depth nor IA between the two groups.

More recently, Cooperman et al. [24] measured the cochlear duct length (CDL) in CT scans
of a cohort of 61 patients implanted with lateral wall electrode arrays using specialized soft-
ware. They then estimated the proportional coverage of the cochlear duct using the electrode
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array length provided by the manufacturer (either 24mm, 28mm, or 31.5mm). When analyz-
ing the effect of this coverage on CI performance, the results suggested that speech recognition
was poorer for both very shallow and very deep insertions with an optimum in between. More
generally, they concluded that cochlear coverage was more closely related to speech recogni-
tion scores than electrode array length alone. In a similar study with a cohort of 75 patients
implanted with lateral wall electrode arrays, Canfarotta et al. [25] found a significant positive
correlation between IA and word recognition scores, however they also observed that IAs
above 600° did not provide any further benefit.

Even though some studies did not find a correlation between CI outcomes and positional
parameters, overall previous results seem to suggest that the position of the electrode array in
the cochlea generally plays a role in post-operative performance with a CI. Furthermore, this
effect may be better captured when individual differences in insertion depth and cochlear
length are taken into account. Several studies have clearly shown a correlation between IA and
post-operative phoneme or word recognition scores, while results for a correlation between IA
and sentence recognition scores have sometimes been less conclusive [20]. Some evidence has
been published that the surgical insertion depth (i.e. the insertion depth of the most basal elec-
trode contact) could also have an effect on performance with a CI.

However, most of these studies have investigated either small cohorts, or cohorts including
different electrode array designs, different surgical approaches, or cohorts with varying degrees
of scalar dislocation. The majority of these studies also evaluated IA as the main parameter for
insertion depth, not taking into account individual differences in cochlear length. This study
therefore aims at investigating potential effects of both insertion angle as well as cochlear cov-
erage on post-operative speech perception with a CI in a large cohort that is homogenous in
electrode array design and surgical approach. This is of particular clinical relevance because
insertion angle and cochlear coverage can be planned (to some extent) before surgery. Conse-
quently, if an ideal range of CC could be identified, speech recognition ability with the CI
could be optimized on a patient-individual basis by customizing the choice of electrode array
during pre-operative planning.

Materials and methods

Ethics statement

The Ethics committee of the Medical University of Hannover, Germany, approved this retro-
spective study. Patients gave written informed consent to the retrospective analysis of their
data before their admission to the clinic. All patient data were anonymized prior to the retro-
spective analysis.

Subjects

Subjects were selected from the database of CI patients at the German Hearing Center (DHZ)
in Hanover, Germany. Patients were included in the cohort if they had been at least 18 years
old at the time of implantation, had acquired their hearing impairment post-lingually, were
German speaking, and if both post-operative speech recognition data as well as pre- and post-
operative cone beam computed tomography (CBCT) imaging data were available. Patients
were excluded from the cohort if they had been deaf for more than ten years prior to implanta-
tion with a CI (self-reported duration of deafness), had been diagnosed with vestibular
schwannoma, or were fitted with electric-acoustic stimulation at the time of their post-opera-
tive speech recognition tests. Furthermore, patients were excluded if they suffered from men-
tal, cognitive, or other conditions that prevented the patients from performing the speech
recognition tests according to the protocol. One patient was excluded due to stimulation of the
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facial nerve on almost all electrodes, which led to a fitting with heavily reduced M-levels. If
patients were implanted bilaterally, both ears were generally included. However, only the first
implant a patient had received on either side was considered (i.e. no re-implantations). Addi-
tionally, individual ears were also excluded from the cohort if the first implant had been
revised (i.e. the patient underwent a second surgery on the ear without re-implantation) or the
ear had been re-implanted within the first two years after implantation, suggesting technical or
medical issues that interfered with a regular adaptation process and learning curve. In an effort
to reduce the impact of confounding factors concerning electrode array design, only ears
implanted with a lateral wall electrode array of the FLEX family (MED-EL, Austria) were con-
sidered for this study.

Imaging data analysis

All CBCT imaging data were analyzed using the DICOM viewer Osirix MD (v.7.0.2, Pixmeo,
Switzerland). This software enables the user to trace structures in volumetric datasets and
export the resulting traces. Using this feature, the lateral wall of the cochlea was traced in the
pre-operative imaging datasets, starting at the round window and stopping at the apex of the
cochlea. In the post-operative imaging datasets, the electrode array was traced by first putting
a marker in the round window and then putting a marker on each intracochlear electrode con-
tact. A more detailed description of this approach including a tutorial video can be found in
[26].

All tracings were conducted by a trained researcher. First, tracings in both pre- and post-
operative scans were done for all patients in the cohort, then those traces were visually checked
and, if necessary, corrected in a second round of assessment by the same researcher.

The obtained traces were exported and further processed using Matlab (version 2018a,
MathWorks, USA). First, the traced electrode array of each patient was registered onto the cor-
responding trace of the lateral wall using the method proposed by Schurzig et al. [27], resulting
in a virtual reconstruction of the implanted cochlea. Then, the reconstructed cochlea was eval-
uated with respect to the cochlear duct length (CDL, length of the lateral wall from the center
of the round window to the apex), the insertion angle (IA, angle between the center of the
round window, the modiolus, and the most apical electrode contact), the covered cochlear
length (CCL, length of the lateral wall from the center of the round window to the IA), and the
inserted electrode length (IEL, length of intracochlear part of the electrode array from the
round window to the apical electrode contact). A visualization of the imaging data evaluation
process is shown in Fig 1. Finally, the cochlear coverage (CC) was computed as the proportion

CDLw ——IEL - - - CCLy |

Fig 1. Visualization of the imaging data analysis method. First, pre-operative CBCT scans are used to trace the lateral wall of the cochlea (A). Then,
post-operative CBCT scans are used to trace the electrode array by marking the position of each electrode contact (B). Finally, the two traces are
combined to obtain a reconstruction of the implanted cochlea that can be used to derive anatomical and positional parameters (C).

https://doi.org/10.1371/journal.pone.0287450.9001
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of the lateral wall covered by the electrode array:

CCL
C=—"-
CDL

Clinical data

Pre-operatively, speech recognition was assessed using the Freiburger Monosyllabic Word
Test (FMWT; [28, 29]). A list of 20 words was presented monaurally over headphones at
sound levels of 60 dB SPL, 80 dB SPL, 100 dB SPL, and, if tolerated by the subject, at 110 dB
SPL to determine the maximum speech recognition at the optimal sound level (dB,y).
Post-operative speech recognition was assessed at 12 months after the initial fitting of the
device using two different tests: The FMWT presented in quiet at a sound level of 65 dB SPL,
and the German language Hochmair-Desoyer, Schulz, Moser (HSM) sentence test [30] pre-
sented in steady-state, speech-shaped noise at a signal-to-noise ratio (SNR) of 10 dB, with the
sentences presented at a sound level of 65 dB SPL. Both tests were conducted within the gen-
eral clinical routine, presented from a loudspeaker at a distance of 1 m in front of the subject.
Hearing aids or CIs on the contralateral side were switched off during testing and the contra-
lateral ear was plugged if contralateral hearing thresholds were lower than 70 dB HL at at least
one frequency between 250 Hz and 3000 Hz. Additionally, the contralateral ear was masked
with speech-shaped noise if hearing thresholds were lower than 30 dB HL at at least one fre-
quency between 250 Hz and 3000 Hz, which was the case for 14 subjects. For both tests, scores
are the percentage of words correctly repeated by the subject. The improvement in speech rec-
ognition due to treatment with a CI was computed as the simple difference between post- and
pre-operative FMWT scores (FMWTpost—FMWT,,.) and is denoted AFMWT.

Statistical analysis

All statistical analyses were carried out using Python (version 3.8.8, Python Software founda-
tion, USA) using the packages scipy (version 1.6.2), statsmodels (version 0.12.2), sklearn (ver-
sion 0.23.2), and scikit_posthocs (version 0.6.7).

Results
Cohort

The subject selection process resulted in a cohort of 142 subjects that had been implanted at
the Medical School Hanover in the time between 2009 and 2020. All subjects had their CI fitted
by experienced CI audiologists at the DHZ. Subjects were predominantly female (N = 85,
59.9%) and the mean and median age at implantation was 63.5 years and 65.2 years, respec-
tively (range: 19-88.6 years). The mean and median duration of hearing impairment before
treatment with a CI (as reported by the patients) was 24.9 years and 22 years respectively
(range: 0.5-69.1 years). Twelve of the subjects were implanted bilaterally with FLEX electrode
arrays and both ears were included in the cohort, yielding a total of 154 ears to be analyzed. Of
those, 13 ears were implanted with a FLEX20 electrode array (8.4%), 23 were implanted with a
FLEX24 electrode array (15%), 2 were implanted with a FLEX26 electrode array (1.3%), 115
were implanted with a FLEX28 electrode array (74.7%), and 1 was implanted with a FLEX-
SOFT electrode array (0.65%). There were five ears with incomplete insertion: One FLEX20 (1
extracochlear electrode), one FLEX24 (2 extracochlear electrodes), and three FLEX28 (one
with 2 extracochlear electrodes and two with 1 extraochlear electrode), and all of those
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extracochlear contacts were also disabled. All of the incomplete insertions were due to the sur-
geon experiencing resistance during the insertion of the electrode array and consequently
abstaining from the application of a stronger insertion force in order to prevent trauma to the
inner ear. Additionally, there were 17 ears where the electrode array was inserted completely,
but one or more electrode contacts were disabled. Of these 17 ears, 15 ears had one contact dis-
abled, and two ears had two contacts disabled. In one of these 17 ears, contact 6 in the middle
of the electrode array was disabled, in all other cases the one or two most basal contacts were
disabled.

The FLEX28 electrode array was used as the standard of care for patients with electric-only
stimulation. Generally, patients with shorter electrode arrays had originally been scheduled for
electric-acoustic stimulation (EAS), but either had no usable residual hearing after surgery (i.e.
no objective or subjective benefit of the acoustic component at the initial fitting of the device),
did not want to wear the acoustic component or could not wear it due to medical reasons, and
were thus fitted with full electric stimulation. Cochlear length measurements were done preop-
eratively in some cases from 2018, but there was no guideline for their application in choosing
a particular electrode array. Ultimately, electrode array selection remained at the surgeon’s dis-
cretion. All ears were implanted using the round-window approach. An overview over the
demographics of the cohort is given in Table 1.

Cochlear size and electrode array placement

In the cohort described above, a mean cochlear length of 39.04mm (+/- 2.03mm standard
deviation) was measured. The mean one-turn length (1TL, length of the lateral wall in the
basal turn, i.e. 360° from the reference point in the round window) and the mean two-turn
length (2TL, length of the lateral wall in the first two turns from the round window) were
23.05mm (+/- 1.01lmm) and 35.67mm (+/- 1.59mm) respectively (see Fig 2). The mean first
turn’s contribution to the total length of the cochlea was 59.1% (+/- 2%-points), while the
mean second turn’s contribution was on 32.3% (+/- 1.1%-points).

The mean IA was 524° (+/- 82°), the mean insertion depth was 25.46mm (+/- 2.68mm),
and the mean CC was 75.2% (+/- 8.5%-points). There was a strong correlation between CC
and IA (Pearson r = 0.95). The overall distribution of these metrics and their distribution with
respect to the different electrode arrays present in the studied cohort are shown in Fig 3. The
mean values and ranges for the different electrode arrays are given in Table 1.

Speech recognition test scores

Pre-operative FMWT .. scores were acquired on average 45 days before the surgery. Post-
operative FMWT e and HSM scores were acquired as part of the 12 months post-operative
rehabilitation appointment, which was scheduled on average 375 days after the initial fitting.
Mean values and ranges for the different electrode arrays are given in Table 1.

FMWT . scores were available for all 154 ears. A significant correlation was found
between FMWT o scores and both CC (Pearson r = 0.233, p = 0.004) as well as IA (r = 0.221,
p = 0.006). In a linear regression model, FMWT , scores increased by 6%-points per 10%-
points CC, and in a separate linear regression model FMWT . scores increased by 5.5%-
points per 90° IA. Subsequently, a multivariate regression analysis including the age at implan-
tation, the duration of hearing impairment before implantation, and the post-operative low-
frequency PTA as potential confounding factors (N = 147 due to seven missing low-frequency
PTA values) showed that CC, age, and duration of hearing impairment were independently
significant factors in the model (p = 0.004, p<0.001, and p = 0.046 respectively), while post-
operative low-frequency PTA was not a significant factor (p = 0.702). The overall model
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Table 1. Overview of the demographic data, anatomic measurement data and speech recognition data of the study cohort in groups according to electrode array.

Electrode N Demographic data
array Duration of hearing Age at implantation [yrs] | Pre-operative low-frequency PTA | Post-operative low-frequency PTA
impairment [yrs] [dB HL] [dB HL]
FLEX20 13 23.4+17.4 58.8+£18.4 61.4+17.0 87.0 £ 15.1
(8.4%) (3.4-69.0) (19.4-75.0) (38.3-96.7) (58.3-103.3)
FLEX24 23 25.1+£13.7 65.0 £ 12.9 67.8+19.7 88.1 +14.2 (N =22)
(14.9%) (4.4-59.1) (28.9-78.9) (26.7-110.0) (58.3-110.0)
FLEX26 2 213+79 67.1+1.2 79.2+22.4 97.5+13.0
(1.3%) (15.7-26.9) (66.3-67.9) (63.3-95.0) (88.3-106.7)
FLEX28 115 25.1+15.7 63.0 £ 13.7 76.3+£17.0 97.1+11.9 (N =109)
(74.7%) (0.5-66.5) (19.0-88.6) (25.0-106.7) (63.3-110.0)
FLEXSOFT 1 239 77.3 66.7 106.7
(0.65%)
Anatomic measurement data
One-turn length (1TL) [mm] Two-turn length (2TL) Insertion angle (IA) [°] Cochlear coverage (CC) [%]
[mm]
FLEX20 13 226+1.0 351+1.7 341 +29 56.6 £5.2
(8.4%) (20.4-24.2) (31.7-37.3) (281-383) (50.6-70.0)
FLEX24 23 229+09 354+14 447 + 42 67.6 £5.8
(14.9%) (20.8-24.4) (32.7-38.1) (315-512) (51.8-79.9)
FLEX26 2 223+ 1.1 348+ 1.8 531 + 26 755+ 1.1
(1.3%) (21.6-23.1) (33.5-36.2) (512-549) (74.7-76.3)
FLEX28 115 23.1+1.0 358+ 1.6 559 + 49 78.8 £4.7
(74.7%) (20.2-25.2) (31.8-39.7) (421-678) (66.2-91.2)
FLEXSOFT 1 23.6 36.9 580 80.1
(0.65%)
Speech recognition data
Pre-operative FMWT Post-operative FMWT HSM sentence test in noise AFMWT [%-points]
[%-correct] [%-correct] [%-correct]
FLEX20 13 30.0+26.2 (N =12) 45.0 £26.1 38.2 £25.0 17.1+28.1 (N =12)
(8.4%) (0-75) (10-90) (0.0-75.5) (-40.0-65.0)
FLEX24 23 29.5+25.5(N=21) 50.0 £23.5 43.6 + 28.0 (N = 20) 21.9 £23.6 (N =21)
(14.9%) (0.0-65.0) (5.0-95.0) (0.0-89.6) (-15.0-75.0)
FLEX26 2 35.0 £35.3 70.0 £ 0.0 69.4+11.4 35.0£35.3
(1.3%) (10.0-60.0) (70.0-70.0) (61.3-77.4) (10.0-60.0)
FLEX28 115 24.0 £ 21.8 (N =90) 59.4 £ 20.5 48.7 £ 26.4 (N = 107) 36.5 (N =90)
(74.7%) (0.0-90.0) (5.0-100.0) (0.0-97.2) (-25.0-85.0)
FLEXSOFT 1 - 85.0 34.9 -
(0.65%)

Demographic data, anatomic measurement data, and speech recognition data of the study cohort across the different electrode arrays. Given are the mean values + one

standard deviation and below in brackets the minimum and maximum values. Low-frequency pure tone thresholds (PTA) were determined as the mean thresholds

across 125 Hz, 250 Hz, and 500 Hz. Pre-operative pure-tone threshold values are taken from the last measurement before implantation, post-operative thresholds are

taken from the measurement at the time of the initial fitting of the implant. In the case of missing values, the remaining sample size is given in brackets.

https://doi.org/10.1371/journal.pone.0287450.t001

explained 17.7% of the variance in FMWT . scores. In a second model including IA instead
of CC, IA, age, and duration of hearing impairment were significant factors (p = 0.008,

p<0.001, and p = 0.045), while post-operative low-frequency PTA was again not a significant
factor. Here, the overall model explained 17.1% of the variance in FMWT . scores. Of these
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Fig 2. Histograms of cochlear length measurements with fitted normal distributions: One-turn length (1TL, blue), two-turn length
(2-TL, red) and total cochlear duct length (CDL, gray).

https://doi.org/10.1371/journal.pone.0287450.9002

147 ears, pre-operative FMWT,, scores were missing at random for 26 ears, and the multivar-
iate regression analysis was repeated for the sub-group of the remaining 121 ears, additionally
including FMWT,,,. scores as an independent factor. In this linear regression model, CC, age,
and FMWT,,. scores were independently significant factors (p = 0.001, p<0.001, and
p<0.001), while duration of hearing impairment (p = 0.073) and post-operative low-frequency
PTA (p = 0.316) were not significant factors. The overall model now explained 34.4% of the

[
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cochlear coverage insertion depth [mm] insertion angle [°]

Fig 3. Distributions of cochlear coverage (left), insertion depth (center), and insertion angle (right) across the entire cohort (top row) and across
sub-populations with different electrode arrays (bottom panels).

https://doi.org/10.1371/journal.pone.0287450.9003
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variance in FMWT,,o scores. When replacing CC with IA in the model, IA, age, and
FMWT,,. scores were significant factors (p = 0.002, p<0.001, and p<0.001) and the overall
model explained 33.2% of the variance in FMWT ,, scores. Including interaction terms
between CC and either of the other independent factors in any of these models did not reveal
any significant interactions.

HSM sentence test scores in noise were only available for 143 of 154 ears due to time con-
straints in the clinical routine. A significant correlation could not be found between HSM
scores and neither CC nor IA (p = 0.341 and p = 0.279, respectively). Consequently, a multi-
variate regression analysis was not carried out.

FMWT,,. were available for 125 ears of the cohort, and in this sub-group both CC
(r=0.287,p = 0.001) as well as IA (r = 0.238, p = 0.008) were significantly correlated with the
difference between post- and pre-operative FMWT scores (AFMWT). In a linear regression
model, AFMWT increased by 8.7%-points per 10%-points CC, and in a separate linear regres-
sion model AFMWT increased by 6.6%-points per 90° IA. The following multivariate regres-
sion analysis including age at implantation, duration of hearing impairment before
implantation, post-operative low-frequency PTA, and FMWT,,. scores (N = 121) showed that
CC, age, and FMWT,,. scores were all independently significant factors (p = 0.001, p<0.001,
and p<0.001), while duration of hearing impairment and post-operative low-frequency PTA
were not statistically significant factors (p = 0.073 and p = 0.316). The overall model explained
55.4% of the variance in AFMWT. In a second model with IA replacing CC, IA, age, and
FMWT,,,. scores were significant factors (p = 0.002, p<<0.001, and p<0.001), while duration of
hearing impairment and post-operative low-frequency PTA were again not significant factors
(p =0.077 and p = 0.323). Here, the overall model explained 54.5% of the variance in AFMWT.
Fig 4 shows the corresponding scatter plots and linear regression modeling results.

It has been reported previously that deeper insertions above a certain threshold provide no
further benefit with respect to speech recognition with a CI [25]. Therefore, in order to further
investigate if there were any other relationships between CC and test scores that would not be
captured by a linear regression model, we divided the cohort into five groups based on the
quintiles of CC, resulting in limits between groups at CC of 70%, 75%, 79%, and 82%. A Krus-
kal-Wallis test showed a significant effect of CC quintile on FMWT s scores (H(4) = 14.39,

p = 0.006), but no significant effect of CC quintile on HSM scores (H(4) = 4.8, p = 0.31). Pair-
wise comparisons using Dunn’s test with Holm-Bonferroni correction indicated that mean
FMWT 0 scores between the first quintile of CC (CC < 70%) and the fourth quintile of CC
(79% < CC < 82%) were statistically different (p = 0.003, means scores: 46% vs 66%). No
other differences were statistically significant.

For a group-wise analysis of the effect of IA, we chose a more intuitive approach and
divided the cohort into five groups based on landmarks in regular intervals of 90°, starting at
360° from the reference point in the center of the round window. A Kruskal-Wallis test for the
effect of IA group on FMWT , scores showed statistical significance (H(4) = 9.58, p = 0.048),
however no significant differences between groups were found in pairwise comparisons using
Dunn’s test with Holm-Bonferroni correction. A Kruskal-Wallis test for the effect of IA group
on HSM scores did not reach statistical significance (H(4) = 5.078, p = 0.279). Speech recogni-
tion scores in groups based on CC are shown in Fig 5, and speech recognition scores in groups
based on IA are shown in Fig 6.

Using the same method to group subjects as above, we also analyzed the effect of CC and
IA on AFMWT. A Kruskal-Wallis test showed a significant effect of both CC group (H(4) =
17.58, p = 0.001) as well as IA group (H = 10.37, p = 0.035) on AFMWT. Pairwise comparisons
between CC groups using Dunn’s test with Holm-Bonferroni correction indicated that mean
AFMWT was significantly different between the first and the fourth quintile of CC (19.5 vs
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Fig 4. Scatter plots of FMWT scores (top row), HSM sentence test scores in noise (center row) and AFMWT (bottom row) over cochlear
coverage (left column) and insertion angle (right column). Solid lines, r-, and p-values show the results of linear regression modeling. Different
symbols correspond to different electrode arrays.

https://doi.org/10.1371/journal.pone.0287450.9004

47.5%-points, p<0.001), as well as between the third and the fourth quintile of CC (26.5 vs
47.5%-points, p = 0.036). Pairwise comparisons between IA groups indicated that mean
AFMWT was significantly different between group 1 and group 4 (11.8 vs 38.5%-points,

p = 0.049). AFMWT values in groups based on CC and in groups based on IA are shown in Fig
7. Cohort and group sizes for the linear regression modeling and both methods of grouping
subjects are given in Table 2.

We also analyzed if any of the potential confounding factors were different between CC
groups and/or IA groups, respectively. Separate Kruskal-Wallis tests for age at implantation,
duration of hearing impairment, and pre-operative FMWT scores revealed that neither CC
group (H=7.127, p =0.129; H = 2.526, p = 0.64; H = 1.505, p = 0.826) nor IA group
(H=2.089,p=0.719; H=2.927, p = 0.57; H = 2.806, p = 0.591) had an effect on these factors,
showing that they were not significantly different between groups. A Kruskal-Wallis test for
post-operative low-frequency PTA, however, showed a significant effect on CC (H = 21.001,
Pp<0.001) as well as IA (H = 19.438, p = 0.001). Pairwise comparisons between CC groups
using Dunn’s test with Holm-Bonferroni correction showed that post-operative low-frequency
PTA was signficantly lower in the first quintile of CC than in the fourth quintile (p = 0.012)
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Fig 5. Box plot of FMWT scores (left) and HSM sentence test scores in noise (right) for groups of subjects based on cochlear coverage quintiles.

Colored areas in the diagram in the bottom right corner correspond to the ranges of cochlear coverage of the five quintiles in an average cochlea. The
whiskers indicate the minimum and maximum value in each group. (*: p<0.05; **: p<0.01; ***: p<0.001).
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Fig 6. Box plot of FMWT scores (left) and HSM sentence test scores in noise (right) for groups of subjects based on insertion angle quadrants.

Colored areas in the diagram in the bottom right corner correspond to the ranges of insertion angle of the five groups. The whiskers indicate the
minimum and maximum value in each group. (*: p<0.05; **: p<0.01; ***: p<0.001).

https://doi.org/10.1371/journal.pone.0287450.9006
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and fifth quintile (p<0.001) of CC. Pairwise comparisons between IA groups showed that

post-operative low-frequency PTA was signficantly lower in the first IA group than in group 5
(p = 0.034), and also lower In IA group 2 than in groups 4 (p = 0.01) and 5 (p = 0.01).
Since there were a total of 22 ears with disabled electrode contacts (17 with complete inser-

tions and 5 with incomplete insertions) we repeated the analysis in two sub-groups of the

cohort: In sub-group 1 we excluded the five ears with incomplete insertions, and in sub-group
2 we excluded all 22 ears with disabled electrode contacts. We repeated the linear regression
analysis between CC/IA and the three outcomes measures FMWT scores, HSM scores, and
AFMWT, as well as the group-based comparison of these outcomes measured between groups
of different CC/IA. The limits for the division into groups were kept unchanged from the ones

Table 2. Cohort sizes for the different statistical analyses.

Group limits N (FMWT) N (HSM) N (AFMWT)

Linear regression model - 154 143 125
CC-based division Group 1 CC<0.70 31 29 29
Group 2 0.70 < CC < 0.75 31 26 26

Group 3 0.75 < CC < 0.79 30 27 22

Group 4 0.79 < CC < 0.82 31 30 23

Group 5 0.82 < CC 31 31 25

IA-based division Group 1 IA < 360° 11 11 11
Group 2 360° < IA < 450° 13 11 11

Group 3 450" < IA < 540° 49 46 41

Group 4 540° < IA <630° 73 67 56

Group 5 630° <IA 8 8 6

Cohort sizes for linear regression modeling (top row) and group sizes for the group-wise analysis after the division based on cochlear coverage (CC) quintiles and after

the division based on insertion angle (IA) quadrants.

https://doi.org/10.1371/journal.pone.0287450.t002
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Table 3. Results of the analysis in sub-groups with extracochlear and deactivated electrode contacts.

linear regression

linear regression

linear regression

CC — FMWT CC — HSM CC — AFMWT

Sub-group 1 r=0.192 (N = 149) r=0.015 (N = 138) r=0.243 (N = 120)

p=0.031* p=0.858 p = 0.008™*
Sub-group 2 r=0.264 (N =132) r=0.074 (N = 123) r=0.262 (N = 105)

p = 0.002** p=0.414 p = 0.007**

linear regression linear regression linear regression
IA — FMWT IA — HSM IA — AFMWT

Sub-group 1 r=0.177 (N = 149) r=0.029 (N = 138) r=0.191 (N = 120)

p =0.031* p=0.732 p =0.037*
Sub-group 2 r=0.255 (N =132) r=0.093 (N =123) r=0.205 (N = 105)

p = 0.003** p=0.304 p =0.036*

Group-wise comparison in CC groups
FMWT HSM AFMWT

Sub-group 1 Kruskal-Wallis: Kruskal-Wallis: Kruskal-Wallis:

H=116,p=0.021* H=3.48,p=0481 H = 15.499, p = 0.004**

group 1 vs group 4: group 1 vs group 4:

p=0.014* p = 0.003**

group 3 vs group 4:
p = 0.044*

Sub-group 2 Kruskal-Wallis: Kruskal-Wallis: Kruskal-Wallis:

H = 15.829, p = 0.003** H =6.564, p=0.161 H = 14.143, p = 0.007**

group 1 vs group 2: group 1 vs group 4:

p =0.018* p < 0.001%**

group 1 vs group 4:

p =0.001**

Group-wise comparison in IA groups
FMWT HSM AFMWT

Sub-group 1 Kruskal-Wallis: Kruskal-Wallis: Kruskal-Wallis:

H=6.862,p=0.143 H=2.592,p=0.628 H=7.141,p =0.129
Sub-group 2 Kruskal-Wallis: Kruskal-Wallis: Kruskal-Wallis:

H = 13.847, p = 0.008™*

H =6.109, p = 0.191

H=7.476,p=0.113

group 2 vs group 3:

p = 0.022*

group 2 vs group 4:

p = 0.022*

Results of the linear regression analysis and the group-wise analysis for two different sub-groups of the cohort: sub-group 1 consists of ears with complete insertions

only (N = 149), and sub-group 2 consists of ears with all 12 electrode contacts active (N = 132). The top two sections of the table show the results of the linear regression

analysis. The bottom two sections of the table show the results of the group-wise analysis. Differences between groups are only shown in the table if they were significant

in pairwise comparisons using Dunn’s test with Holm-Bonferroni correction (*: p < 0.05, **: p<0.01, ***: p < 0.001).

https:/doi.org/10.1371/journal.pone.0287450.t003

used for the full cohort (see Table 2). The results of the analysis in the two sub-groups are
shown in Table 3. The linear regression analyses largely led to the same results as for the full
cohort, showing positive correlations between CC/IA and FMWT,,o scores and AFMWT,
respectively, while showing no significant correlation between CC/IA and HSM scores. The
group-wise comparisons in sub-group 1 also led to the same results as for the full cohort with
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the exception of AFMWT no longer being significantly different between any IA groups. In
sub-group 2, in addition to the significant differences already observed in the full cohort,
FMWT . scores were significantly higher in the second CC quintile than in the first CC quin-
tile, and also significantly higher in IA groups 3 and 4 than in IA group 2. However, similar to
sub-group 1, there were no longer any significant differences in AFMWT between IA groups.

Discussion
Cochlear geometry and implant insertion depth

Previously reported measurements of the cochlear length vary substantially depending on the
available imaging data and the measurement method that is applied. Skinner et al. [17] for
example reported a mean cochlear length of 34.62 mm including the hook region, while Erixon
etal. [31] reported a mean cochlear length of 42 mm starting from the center of the round win-
dow. The imaging data and measurement method used by Timm et al. [26] were similar to
those used in the present study and they reported a mean cochlear length of 37.9 mm (+/- 2.4
mm). Eser et al. [32] also used similar data and methods and reported a mean cochlear length
of 42.09 mm (+/- 1.17 mm) in a group of normal hearing subjects. As was pointed out in these
studies, it is sometimes difficult to determine the exact location of the lateral wall due to the
quality of clinical CBCT scans, resulting in the lateral wall showing as a gradient area rather
than a sharp edge. Therefore, small differences between mean cochlear lengths reported by dif-
ferent observers should not be surprising and the values measured in this study are well within
the range of previous results. Erixon et al. [31] also measured the proportional length of each
cochlear turn, with the first turn (starting from the round window) representing on average
53% of the total length, the second turn representing on average 30% of the total length, and
the apical turn representing on average 17% of the total length. In the current studies, the
mean values were 59%, 32.3%, and 8.6% of the total length for the first, second and apical turn,
respectively. The discrepancies between these values are most likely artifacts of the measure-
ment method, as larger values for the first turn may arise if the trace of the lateral wall is drawn
slightly more laterally.

The measured IA values are in line with those reported by previous studies [25, 33, 34].
Very few data have been published on proportional cochlear coverage measurements. Skinner
etal. [17] reported a mean cochlear coverage of 55%, however all patients in their cohort were
implanted with a lateral wall electrode array with a length of 25mm (Nucleus 22, Cochlear,
Australia). Cooperman et al. [24] estimated CC in a cohort with FLEX electrode arrays based
on CDL measurements and the electrode array length provided by the manufacturer. They
reported a mean CC of 76%, which is remarkably similar to the results in this study. However,
since they did not verify the actual electrode array position in post-operative imaging data and
the distribution of electrode arrays (FLEX24: 54.10%, FLEX28: 32.79%, FLEXSOFT/Standard:
13.11%) was substantially different to that of the cohort analyzed in the present study, it is diffi-
cult to compare CC values between the two studies.

Speech recognition

We decided to investigate the effect of both IA as well as CC on post-operative speech recogni-
tion. The IA is easier to determine and already captures some of the individual differences in
cochlea size (thus being preferable to linear insertion depth or electrode array length alone),
and has therefore been used in the majority of previous studies on the topic. Unlike CC, how-
ever, it does not take into account individual differences in CDL (including apical differences).
Under the assumption that CDL is a more meaningful indicator of the individual extent of the
organ of Corti [35, 36], it could be expected that CC is a more appropriate value to examine
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the effect of electrode array position on CI outcomes. Nevertheless, in the results of this study,
the measured effects of CC and IA on post-operative speech recognition scores were largely
the same. Since any difference between the effect of CC and IA would be expected to be most
pronounced for very deep insertions where the individual extent of the organ of Corti could
make a difference in speech recognition, it is possible that there simply were not enough sam-
ples of insertions that deep, to create a notable difference.

We found that post-operative FMWT scores at 12 months after activation were positively
correlated with both CC and IA. Even after combining CC (or IA) with other important fac-
tors in a multivariate regression model, it was confirmed as an independently significant factor
for FMWT scores. Compared to previous results, we found a similar correlation coefficient
and a similar slope in the regression analysis as O’Connell et al. [20]. However, their cohort
was much more diverse than the one in this study with respect to electrode array types, surgical
approach, and scalar dislocations. Other studies analyzed more similar, albeit smaller, cohorts
and found slightly stronger correlations between word recognition scores and IA than the one
observed in our results [19, 21, 25]. It is not quite clear why the correlation between IA and
word recognition scores observed in the present study was weaker than in those previous stud-
ies. At least in the study published by Canfarotta et al. [25] a smaller range and lower average
values of duration of hearing loss were reported, which could at least partly account for the dif-
ferent correlations. Generally, the cohort analyzed in the present study covered a wide range of
age at implantation and duration of hearing loss, which may have contributed to a wider
spread of speech recognition scores. Additionally, the majority of ears analyzed in the present
study had been implanted with FLEX28 electrode arrays, and in consequence IA values were
more frequent in the range typical for that electrode array. Potentially, a stronger correlation
between CC/IA and FMWT scores might have been observed if both shorter and longer elec-
trode arrays had been more frequent in the cohort.

When dividing the cohort into five equally large groups based on CC, FMWT scores were
highest in the group of patients with CC between 79%-82%. Only the difference to the group
of patients with CC below 70% was statistically significant. Nevertheless, median FMWT
scores of patients with CC between 70%-79% and patients with CC above 82% were at least
10%-points lower than group with the highest performance. A significant effect of IA on
FMWT scores was observed when comparing groups based on IA. Post-hoc pairwise compari-
sons, however, did not reveal any significant differences between groups, even though median
FMWT scores were at least 20%-points lower for patients with IA below 450° than for patients
with TA above 450°. It can be speculated that the lack of statistical significance in spite of strong
differences in median performance is at least partly due to highly unequal group sizes that
resulted from creating groups based on IA quadrants.

Interestingly, not only the absolute post-operative FMWT scores, but also the difference
between post- and pre-operative scores AFMWT was positively correlated with measures of
insertion depth. This implies that patients with deeper insertions did not only reach a higher
level of speech recognition after surgery, but that they also experienced higher gains due to sur-
gery. It should, however, be noted that pre-operative FMWT scores were measured in the
unaided condition using headphones, and post-operative FMWT scores were measured in the
free field condition. Thus, AFMWT should not be interpreted as a literal improvement (in that
AFMWT<0 does not mean that post-operative word recognition performance was worse than
pre-operative word recognition performance). However, it serves as a good indicator of the
benefit patients received with respect to their pre-operative state.

A potential reason for the positive correlation between deeper insertions and CI perfor-
mance lies in the improved utilization of the cochlear structures. It has been shown that spiral
ganglion cell count affects post-operative word recognition scores [37, 38]. Therefore, it could
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be assumed that stimulation with a CI is more successful if a larger amount of spiral ganglion
cells is targeted. Furthermore, it has been speculated that better speech recognition abilities
after deeper insertions are linked to the reduced frequency mismatch between the natural
tonotopy of the inner ear and the default frequency-to-electrode allocation of the CI [12, 19,
34]. Even though it has been shown that CI patients are able to compensate for large frequency
mismatches [39], the individual extent of adaptation varies and may remain incomplete (e.g.
[40, 41]). Consequently, shallower insertions that produce a large frequency mismatch and
thus impede the adaptation process might impair CI outcomes. Nevertheless, the major part of
the learning process with a CI happens within the first 12 months after implantation, which is
when the speech recognition data for this study was measured, and insertion depth was shown
previously to not have a significant effect on the duration of the learning process [42]. Even
though we restricted implants in this this study to those of only one manufacturer to avoid the
influence of differences in electrode array design, we still included electrode arrays of different
lengths and different electrode contact spacing. Since increased contact spacing has been asso-
ciated with reduced channel interaction [34], the larger contact spacing of longer electrode
arrays may also have contributed to the positive correlation between higher CC/larger IA and
word recognition scores.

While both CC and IA were found to be significantly correlated with FMWT scores, no
significant correlation was found between CC or IA and HSM scores. In the group-wise
comparison of groups based on CC quintiles, CI performance was lower for subjects in the
fifth CC quintile compared to the fourth CC quintile, with median HSM scores in the fifth
quintile being even lower than those in the first quintile. When dividing the cohort based on
IA quadrants FMWT scores for IA below 450° was lower than for larger IA. A similar ten-
dency showed for HSM scores, but a drop at very high IA above 630° was observed addition-
ally. Due to the lack of statistical significance, these findings should be treated carefully.
However, a lack of additional benefit or even a negative effect of very deep insertions on CI
performance has been reported previously [24, 25, 43]. It has been speculated before, that
increased frequency-to-place mismatch may contribute to reduced performance in word and
sentence recognition tests (eg. [44, 45]). However, for the electrode array types analyzed in
this study, deeper insertions generally reduce the frequency-to-place mismatch except for
extreme cases with exceptionally deep insertions [34]). Another possible cause of reduced CI
performance after very deep insertions may be the decreased coverage of the basal part of the
cochlea. Previously, evidence was found that deeper insertion of the most basal electrode
contact might negatively affect speech perception outcomes of CI recipients [10, 23]. There-
fore, we also determined the linear distance between the most basal electrode contact and the
reference point in the round window. Since one or more intracochlear electrode contacts
had been disabled in the fitting for 17 subjects of the cohort, we always measured the distance
between the round window and the most basal electrode contact that was also active in the
fitting. The mean distance was 2.58mm (+/- 0.94mm standard deviation), and no significant
correlation could be observed between the distance and any of the three outcome measures
FMWT, HSM, and AFMWT.

A further potential reason for decreased CI performance after very deep insertions is given
by a higher risk of trauma. The scala tympani becomes increasingly narrow towards the helico-
trema, with the cross-sectional area typically falling below 1 mm? for angles greater than 540°
from the round window [46]. Therefore, very deep insertions pose a higher risk of introducing
trauma that could negatively affect the electrode-to-nerve interface and hence also impair the
patient’s speech recognition ability. It has been shown previously that insertional trauma
caused a higher amount of new bone in the cochlea, which in turn was negatively correlated
with post-operative CNC word recognition scores [38].
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Finally, CI performance might be lower after very deep insertions due to a larger amount of
crosstalk, where the same neuronal structures are recruited by two or more electrode contacts.
Firstly, the spatial distance between two electrode contacts is smaller in the apical region of the
cochlea because the radius of the apical turn is smaller than the radius of the basal turn. Sec-
ondly, the peripheral dendrites do not extend radially from the basilar membrane to the spiral
ganglion cells above a certain point towards the apex [47]. Consequently, spiral ganglion cells
are more densely packed in the apical region of the cochlea, increasing the risk of crosstalk
between electrode contacts. Patients with very deep insertions have even been shown to benefit
from deactivating the two or three most apical electrode contacts [43].

A total of 22 implants in the study cohort had at least one electrode contact disabled, and
five of these implants were not inserted completely, leaving one or two extracochlear electrode
contacts. Except for one implant where contact 6 was disabled, only the most basal one or two
electrode contacts were disabled. Even though results of previous studies suggest that speech
understanding would not be affected by the de-activation by one or two basal electrode con-
tacts [13], we repeated the linear regression analysis and the group-wise comparisons for two
sub-groups of the cohort. In the first sub-group only the 5 ears with incomplete insertions
were excluded, while in the second subgroup all 22 ears with disabled electrode contacts were
excluded from the cohort. Overall, there were no major differences in the analysis results of
those sub-groups compared to the results of the full cohort, which suggests that a slightly
reduced number of active electrode contacts was not a contributor to the observed correlations
between CC/IA and word recognition scores.

Based on available findings at the time, both Mistrik and Jolly [48] as well as Timm et al.
[26] recommended a CC of 80% to ensure optimal outcomes. Based on the results of the
group-wise comparison of post-operative FMWT scores in this study, CC above 70% or an IA
above 450° should be preferred. Based on the comparison of AFMWT between groups, pre-
ferred CC should be above 79%, and the preferred IA should be above 540°. We found that the
median scores in all three outcome measures decreased again for insertions deeper than 82%
CC, and that median HSM scores and the median AFMWT decreased again for insertions
deeper than 630° IA, even though these differences were not statistically different. When using
these findings as indication limits, the resulting range of 79%-82% CC is remarkably similar to
the previous recommendations mentioned above, and the resulting range of 540°-630° IA is in
line with the results of Canfarotta et al. [25], who observed no further benefit of insertions
deeper than 600°. For a cochlear coverage of 80%, Timm et al. [26] derived that the FLEX24
would be indicated for a CDL of 32.9mm, the FLEX28 would be indicated for a CDL of
38.2mm, and the FLEXSOFT would be indicated for a CDL of 42.7mm. The majority of
patients (given electric-only stimulation) would consequently be best treated with the FLEX26,
FLEX28 or FLEXSOFT electrode arrays depending on their CDL, while only patients with very
small cochleae would be best treated with a FLEX24 electrode array.

Limitations of the study

Several studies have shown that there is a sizeable correlation between daily processor wear
time and both word and sentence recognition (e.g. [49, 50]). Unfortunately, in the present
study’s cohort, data about the subjects’ processor wear time was not available in a manner con-
sistent enough for a meaningful analysis. Missing data was either due to older processor mod-
els that did not track processor wear time or due to inconsistencies in the database. Therefore,
an influence of daily processor wear time on the results of this study cannot be excluded.

Furthermore, it has been shown in the past that scalar translocations of the electrode array
(i.e. the electrode array puncturing the basilar membrane and deviating into the scalar
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vestibuli) have a negative effect on post-operative speech recognition (e.g. [9, 20]). With the
analysis method applied in the present study, it is not possible to reliably detect scalar translo-
cations of the electrode array. However, ears included in this study were all implanted with lat-
eral wall electrode arrays using the round window approach. In a review of studies analyzing
surgical procedures, Jwair et al. [51] found scalar translocations in only 2% of the implanta-
tions of lateral wall electrode arrays using the round window approach. Consequently, while it
is unlikely that they were frequent enough to substantially affect the results, it cannot be ruled
out that some implants with scalar translocation were present in the studied cohort.

Finally, the lateral wall and electrode array tracings in the CBCT images were done by only
one observer, and the fidelity of the observer was not measured. However, the resulting values
of cochlear size, cochlear coverage and insertion angle were in similar ranges as results of pre-
viously reported studies.

Conclusions

In this study, CC and IA were measured in 154 ears treated with a CI with lateral wall electrode
arrays of different length. In contrast to previous studies with cohorts of similar size, the cohort
analyzed in this study was uniform with respect to electrode array type and surgical approach.
Subsequently, the relationship between CC/IA and post-operative speech recognition scores

12 months after the initial fitting of the device was examined. The results showed a positive lin-
ear correlation between CC/IA and post-operative FMWT scores independently of other fac-
tors commonly associated with CI outcomes. Additionally, a positive linear correlation was
observed between CC/IA and AFMWT, indicating that patients with deeper insertions per-
form better in speech recognition tasks and also had a larger benefit of CI with respect to their
pre-operative state. The results of a group-wise comparison of FWMT scores, HSM scores,
and AFMWT showed that median scores were highest in a range between 79%-82% for CC
and between 540°-630° for IA, respectively. A customized choice of electrode array during
pre-operative planning on a patient-individual basis therefore has the potential to maximize
the probability of optimized CI outcomes.
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