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Abstract

Glioblastoma multiforme (GBM) patients show a variety of signs and symptoms that affect

their quality of life (QOL) and self-dependence. Since most existing studies have examined

prognostic factors based only on clinical factors, there is a need to consider the value of inte-

grating multi-omics data including gene expression and proteomics with clinical data in iden-

tifying significant biomarkers for GBM prognosis. Our research aimed to isolate significant

features that differentiate between short-term (� 6 months) and long-term (� 2 years) GBM

survival, and between high Karnofsky performance scores (KPS� 80) and low (KPS� 60),

using the iterative random forest (iRF) algorithm. Using the Cancer Genomic Atlas (TCGA)

database, we identified 35 molecular features composed of 19 genes and 16 proteins. Our

findings propose molecular signatures for predicting GBM prognosis and will improve clini-

cal decisions, GBM management, and drug development.

Introduction

GBM is the most malignant form of brain cancer. It is a grade IV astrocytoma, which accounts

for 60–70% of all gliomas [1]. GBM has a median survival rate of 12–18 months post-diagnosis,

and only 6.8% of patients survive to 5 years [2]. Survival analysis, prognosis, and the patients’

stratification, play a significant role in the successful diagnosis, management, and treatment of

cancer [3]. In addition, quality of life (QOL] and survival are influential prognostic factors in

neurooncological clinical assessment and therapeutic development [4]. A variety of signs and

symptoms present in GBM patients have a negative impact on their QOL and level of indepen-

dence. These symptoms include neurological deficits, personality changes, epileptic seizures,

and cognitive problems [5]. In this sense, patients with poor QOL and long survival rates

could be considered a heavy social and financial burden, given their requirements for frequent
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care, medical interventions, and hospitalizations [5]. Although GBM patients face devastating

problems associated with their QOL, the lack of comprehensive studies on GBM prognosis

and other related factors has limited the development of proper guidelines for managing and

improving QOL in GBM patients [4].

Integrative omics is a promising approach to unlocking new insights into GBM prognosis

mechanisms and identifying new biomarkers and therapeutic targets [6]. Integrative omics

approaches combine different types of omics data, such as genomics, transcriptomics, proteo-

mics, and metabolomics, to obtain a more comprehensive understanding of biological processes

and pathways in complex biological systems, including cancers [6]. Using the integrative omics

approach could reveal previously unknown connections and relationships between molecules,

pathways, and biological processes in GBM prognosis. In addition, integrating omics data with

patient-level clinical data to identify molecular signatures or biomarkers can help predict dis-

ease risk, prognosis, and treatment response, which can be particularly valuable in personalized

medicine and individualized treatment plans. Several studies have demonstrated the effective-

ness of integrative omics and machine learning approaches in improving our understanding of

different cancers, including GBM [7–9]. One study showed that integrating gene expression

and copy number data improved the accuracy of GBM subtype classification [10]. Another

study showed that integrating single nucleotide polymorphism (SNP), DNA copy number,

DNA methylation, mRNA expression, and clinical data identified new GBM subtypes with dis-

tinct clinical outcomes [11]. Furthermore, integrative omics approaches have also been used to

identify potential therapeutic targets for GBM [12, 13]. Despite the growing interest in this

approach, integrative omics is still missing in QOL studies. Moreover, evidence suggests that

survival length and QOL are positively correlated in patients with advanced cancer stages [14].

In this study, we integrated gene expression and proteomics data with GBM patients’ clinical

data, including KPS and overall survival (OS), to predict the molecular signatures associated

with enhanced GBM patients’ survival and QOL. We developed a Multiview model using the

iRF algorithm by training each omics dataset separately, then by training the integrated omics

dataset to predict molecular signatures that affect KPS and OS. We then biologically interpreted

our findings to determine biological pathways that influence QOL and survival. We then vali-

dated the predictions of the Multiview iRF model (MiRF) using Kaplan–Meier (KM) and regu-

larized Cox proportional hazards model (CPH). A similar survival workflow analysis was done

previously [15, 16]. Our goal was to identify molecular signatures for GBM patients who

survived� 2 years with a QOL� 80 KPS. We intended to differentiate between short-term

(� 6 months) and long-term (� 2 years) GBM survival, as well as between high KPS� 80, and

low KPS� 60. KPS system represents three main categories: KPS� 80, which represents the

ability to work and carry on normally with no special care needed; KPS� 60, which requires

occasional assistance and impairs work but allows self-care; and KPS� 40, which renders

patients unable to look after themselves, necessitates hospital care, and the disease progresses

rapidly. This means QOL� 80 KPS represents a quality of life equal to or better than KPS

group 80, which represents the ability to work and carry on normal tasks with no special care

needed. We propose potential molecular signatures and therapeutic targets that are promising

and novel for GBM management and treatment.

Methods

Data collection and pre-processing

The GBM data were obtained from the Cancer Genomic Atlas (TCGA) database (https://www.

cancer.gov/tcga). The mRNA expression and proteomics datasets were downloaded from the

Broad Genome Data Analysis Center (GDAC) Firehose (https://gdac.broadinstitute.org/
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accessed on 1 June 2022) as log-transformed, z-score standardized Affymetrix U133 microarray

data and z-score standardized RPPA protein expression measured by reverse-phase protein

array, respectively. Clinical data were obtained from the cBioportal database (https://www.

cbioportal.org/ accessed on 1 June 2022). To download all data as a tar.gz file, use (https://

cbioportal-datahub.s3.amazonaws.com/gbm_tcga.tar.gz/ accessed on 1 June 2022).

Data processing was performed using R Statistical Software (R Core Team, 2021), and RStu-

dio (Rstudio Team, 2022.02.3). A general data processing workflow was applied. In the clean-

ing step, all variables with at least 80% missing data were excluded. Then, in the imputation

step, the K-nearest mean approach was applied to replace the missing values using default

parameters in the “impute” R package.

For validation log-transformed, z-score standardized mRNA Seq FPKM data and Z-scores

of protein abundance ratio measured by mass spectrometry GBM data generated by the

National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC) were

obtained from the cBioportal database.

Differentially expressed genes (DEGs) screening

We extracted samples with OS� 6 months and OS� 2 years from the total sample pool of

596. This resulted in 241 samples for gene expression data and 125 samples for proteomics

data as our final datasets. Then, to decrease the dimensionality of the gene expression data, we

screened the differentially expressed genes (DEGs) between 140 patients who survived for less

than 6 months and 101 patients who survived for more than 2 years using the “limma” R pack-

age (Ritchie, M.E. et al, 2015) [17]. The cut-off criteria for determining DEGs were false dis-

covery rate (FDR) < 0.05 and absolute log2-FC> 2, 1, and 0.5. For the proteomic data,

relevant proteins were previously determined from the TCGA database. We transformed OS

months and KPS into binary data.

MiRF model

In this study, we used the “iRF” R package (Sumanta Basu and Karl Kumbier, 2018) [18]

(Fig 1). First, the iRF model grows the reweighted RF with K iterations. Then, significant fea-

tures that had the highest mean decrease in Gini impurity were stored. Second, iRF applies

generalized RIT to projected binary features from reweighted RF to recover important interac-

tions between those features. Third, iRF aggregates interactions prevalent in B bootstrapped

samples to evaluate their stability.

Three steps of bootstrap resampling were applied to the MiRF model: the inner layer boot-

strapping, which bootstrap samples from input data to build up each tree when growing

weighted RF; outer layer bootstrapping, which bootstrap samples from the training data used

in the last iteration of iRF to assess the stability of the recovered interactions; and bootstrap

resampling, which bootstrap samples from the whole dataset to do R iterations of the model

through these samples to recover important features that persisted in at least 50% of the boot-

strap replicates and all interactions between those features with a stability score > 0.5.

Model construction and training

We trained each omics dataset separately, then trained the integrated form of them. First, the

gene expression dataset was trained concerning OS to find significant molecular signatures for

people who lived� 2 years. Then, we trained the model again, but concerning KPS, to find sig-

nificant molecular signatures for people with KPS� 80. We repeated the same process for pro-

teomics and integrated omics datasets. We had 6 models, 3 for OS and 3 for KPS. We

partitioned all datasets into 80% training and 20% testing.
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iRF tuning parameters

We used the default parameters of the “iRF” R-package to train the MiRF model. In addition

to the RF and RIT parameters, iRF had 2 additional parameters: the number of bootstrapped

samples (B) and the number of iterations (K). Since the larger values of B improved the

Fig 1. Multiview iterative random forests (MiRF) model. The iRF algorithm has 3 main components: first, iterative reweighted RF with K times of iterations;

second, generalized RIT that takes projected binary features from the last feature-weighted RF as input; and third, bagged stability scores that aggregate

interactions that are prevalent in B bootstrapped samples. The 3 steps of bootstrapping indicated in blue. The model had 2 main outputs: important features

with the highest Gini importance returned in at least 50% of bootstrapped replicates, and interactions between important features with stability scores> 0.5

were returned from bootstrapped replicates. The Multiview IRF model is composed of six models: Three models for OS include gene expression, proteomics,

and integrated omics; and three for KPS include gene expression, proteomics, and integrated omics.

https://doi.org/10.1371/journal.pone.0287448.g001
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certainty of aggregated interactions, we set B = 50, trading off computational cost. We reported

the final interactions with K determined by 10-fold cross-validation. For all models, we set

K = 5. We added one additional parameter which is bootstrap resampling replicates (R); this

parameter represents the number of runs we have done for each model using bootstrapped

samples. We set R = 100.

iRF performance evaluation and feature selection

The iRF applies the stability principle to recover important interactions. This principle used a

consistent set of features along decision paths and bagged stability scores to recover interac-

tions with high consistency throughout the RF [18]. In addition to the stability principle, boot-

strap resampling (R) was applied to iterate the model 100 times throughout this dataset.

To assess the predictive accuracy of the iRF model, the area under the precision curve

(AUPR) was calculated for each bootstrap replicate using the “PRROC” R package (Jens Keil-

wagen et al, 2014) [19], and the confidence interval and p-value for all replicates were calcu-

lated. Then, the quality of the interaction stability score was evaluated by calculating the area

under the receiver operating characteristic curve (AUROC) for each bootstrap replicate using

the “AUC” R package (Michel Ballings and Dirk Van den Poel, 2022) [20], and the confidence

interval and p-value for all replicates were calculated. Additionally, according to Basu et al., we

considered interactions between active features only as true positives and interactions with

non-active features as false positives.

As a final output from the last iteration of reweighted RF, we retained features with a mean

decrease in Gini impurity� 1 and persisted in at least 50% of bootstrap replicates for each

omics dataset. In addition, we recovered the interactions that were between active features

only and had a high stability score > 0.5 in the bootstrap replicates for each omics dataset.

Functional annotation and enrichment analysis

The DAVID [21, 22] database was used to functionally annotate the genes and proteins we

obtained from the MiRF model. We used three modules in our analysis: gene ontology (GO),

interactions, and pathways. The first step in functional annotation was connecting genes and

proteins with their GO terms. We extracted the GO terms of biological process (BP) and

molecular function (MF) by choosing the GO direct category. Then, the interactions module

was used to recover BioGRID interactions of MiRF-predicted features with GBM driver genes.

Finally, the pathways module was used to extract the KEGG pathways associated with our fea-

tures. We used the STRING [23–25] database to extract protein–protein interactions and com-

pare them with our recovered interactions.

Survival analysis and Cox proportional hazards model (CPH)

The Kaplan–Meier (KM) method was applied to estimate the survival function of the MiRF-

predicted features on the same omics data from the TCGA database. We categorized these fea-

tures in the omics data as high expression and low expression, using their mean expression as

our cutoffs. Then, we applied the log-rank test to compare the survival curves of the 2 catego-

ries for each feature. Chi-squared distribution was used to derive a p-value, and a result with

p< 0.05 was considered significant.

The regularized CPH regression model with the elastic net penalty was applied to the

MiRF-predicted features to determine the contribution of each feature to GBM OS prediction.

“glmnet” R package (Noah Simon et al, 2011) [26] was used to fit the regularized CPH regres-

sion model. We ran a 10-fold cross-validation over the path of λ values obtained from fitting

the regularized CPH regression model to find the optimal value of λ. Finally, we chose the λ
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value that maximized the Harrell C-index value and applied it to our final regularized CPH

regression model. Features with non-zero β value are considered important for OS prediction.

Finally, the univariate and multivariate CPH was used to study the systematic effects of all

features on OS. A backward stepwise approach was applied to determine the effect of non-sig-

nificant features (features with zero β value) on the OS. The concordance index (c-index) was

calculated to evaluate the CPH model prediction accuracy. The likelihood ratio test was used

to calculate the p-value of the model. Additionally, the confidence interval and p-value for the

reach feature were calculated. KM and CPH were performed using the “survival” (Therneau

TM et al, 2000) [27] and “Kassambara, Alboukadel, Marcin Kosinski, Przemyslaw Biecek, and

Scheipl Fabian. 2021. «survminer: Drawing Survival Curves using “ggplot2”». https://CRAN.

R-project.org/package=survminer.

Visualization and validation

To visualize the effect of the MiRF-predicted molecular signatures on classification between

OS� 6 months and OS� 2 years and KPS� 80 and KPS� 60 groups, we calculated PCA

components of the predicted signatures using the entire specific data we extracted from

TCGA. Then, we calculated their explained variances to determine how much variance those

components can explain in PCA.

Then, to visualize how the final OS and overall signatures can classify between OS� 6

months and OS� 2 years, we applied the t-SNE algorithm, which is a nonlinear dimension-

ality reduction technique. Perplexity was determined according to this equation: perplexity

=
ffiffiffiffi
N
p

, where N is the number of samples. The other parameters were kept as package

defaults. For t-SNE plot generation, we used the “Rtsne” R package (Jesse H. Krijthe, 2015)

[28].

To validate the effect of OS and overall signatures on GBM patient stratification, we applied

these signatures to CPTAC GBM data. First, we applied the whole OS signatures except for

NRG1 which was missed in CPTAC data, and the overall signatures on TCGA data to calculate

the expression mean cutoffs for each signature comparing patients who survived� 2 years

with patients who survived� 6 months using Bonferroni corrected non-paired t-test. Then,

we applied OS and overall signatures on CPTAC data using expression means calculated from

TCGA data as expression cutoffs. Finally, we calculated the percentage of GBM patients

located in OS� 6 months and OS� 2 years zones.

Results

Feature selection and interaction recovery

We used the iRF approach to predict important features that classify patients who lived� 2

years from those who lived� 6 months. In our analyses of gene expression, proteomics, and

integrated data, we acquired an area under the precision-recall (AUPR) curve of 0.603 with a

95% confidence interval (CI: 0.6–0.61), 0.638 with a 95% CI (0.635–0.64), and 0.644 with a

95% CI (0.636–0.652), respectively, for K = 5 and R = 100 (Fig 2A and a1-c1 in S1 Fig). These

results show that our models have relatively acceptable performance, as an AUC value closer

to 1 indicates nonrandomized prediction. Additionally, we used iRF to recover important

interactions between these features. We acquired an area under the receiver operating charac-

teristic (AUROC) curve of gene expression, proteomics, and integrated data of 74.95% with a

95% CI (73.23%– 76.67%), 77.72% with a 95% CI (75.56%– 79.87%), and 88.78% with a 95%

CI (86.25%– 91.3%), respectively, for K = 5 and R = 100 (Fig 2A and a1-c1 in S1 Fig). These

results show that our models have reliable performance.
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In the second prediction problem, which focused on classifying patients who had a

KPS� 80 from those who had a KPS� 60, we acquired an AUPR curve of gene expression,

proteomics, and integrated data of 0.78 with a 95% CI (0.76–0.80), 0.79 with a 95% CI (0.76–

0.82), and 0.93 with a 95% CI (0.91–0.96), respectively, for K = 5 and R = 100 (Fig 2B and a2-c2

in S1 Fig). These results show that our models have reliable performance. Then, to recover the

important interactions between these features, we obtained an AUROC curve of gene expres-

sion, proteomics, and integrated data of 72.63% with a 95% CI (71.55%– 73.7%), 72.63% with a

Fig 2. MiRF model performance in feature prediction and interaction recovery. a 95% CIs of mean AUPR curves for gene expression, proteomics, and

integrated omics data used to predict important features in patients who lived for more than 2 years. b 95% CIs of mean AUROC curves for gene expression,

proteomics, and integrated omics data used to recover interactions in patients who lived for more than 2 years. c 95% CIs of mean AUPR curves for gene

expression, proteomics, and integrated omics data used to predict important features in patients who had KPS� 80. d 95% CIs of mean AUROC curves for

gene expression, proteomics, and integrated omics data used to recover interactions in patients who had KPS� 80.

https://doi.org/10.1371/journal.pone.0287448.g002
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95% CI (70%–75%), and 87% with a 95% CI (83%–91%), respectively, for K = 5 and R = 100

(Fig 2B and a2-c2 in S1 Fig). These results show that our models have reliable performance.

The significant features we obtained from the MiRF model are presented in Table 1. It

shows 2 lists of features that appeared in 50% of bootstrap replicates with a mean decrease in

Gini scores� 1 for both OS� 2 years and QOL� 80 KPS. Gene name annotation and

ENTREZ-ID for each feature are listed in S1 Table in S1 File. For OS� 2 years, we obtained 12

genes and 10 proteins. FAM172A, ZKSCAN3, FKBP6, TRIM62, REST, NOL3, CRELD1, and

DRG2 were from the gene expression dataset; EEF2K, FOXO3, G6PD, RAF1, GAPDH, TFRC,

BCL2, NRG1, PXN, and ERRFI1 from the proteomics dataset; and NOL3, TNIP1, B3GAT3,

AGFG2, NCKIPSD, EEF2K, PXN, and NRG1 from the integrated omics dataset. We noticed

that NOL3, NRG1, PXN, and EEF2K were persisted outputs when training omics data sepa-

rately or integrated. In addition, for QOL� 80 KPS, we obtained a final output of 9 genes and

10 proteins. SERPINB10, TM4SF20, POU2F3, EIF2B5, MLN, and WRNIP1 were from the

gene expression dataset; RPS6, PECAM1, LCK, CDH1, FOXO3-P, NDRG1, ERBB2, and RB1

from the proteomics dataset; and GALK1, RNF121, RNF6, TFRC, NDRG1, ERBB2, and

TUBA1B from the integrated omics dataset. We noticed that NDRG1 and ERBB2 were persis-

tent outputs either when trained omics data separately or as integrated. We also found that

TFRC was output from both OS� 2 years and QOL� 80 KPS models, as well as FOXO3.

However, it was in phosphorated form in QOL� 80 KPS model.

Recovered interactions are shown in Fig 3, which include stability scores for both OS� 2

years (Fig 3A) and QOL� 80 KPS (Fig 3B). Blue indicates interactions between proteomics

Table 1. List of important features obtained by the MiRF model.

OS� 2 YEARS QOL� 80 KPS

MRNA DATA

FAM172A/ C5ORF21 SERPINB10

ZKSCAN3 TM4SF20

FKBP6 POU2F3

TRIM62/ DEAR1 EIF2B5

REST MLN

NOL3 WRNIP1

CRELD1 GALK1

DRG2 RNF121

TNIP1 RNF6

B3GAT3/ GLCATI

AGFG2/ HRBL

NCKIPSD/ SPIN90

PROTEOMICS DATA

GAPDH TFRC

TFRC TUBA1B/Acetyl a Tubulin Lys40

NRG1/HEREGULIN ERBB2/HER2

PXN/PAXILLIN RPS6.S6_pS240_S244

G6PD PECAM1/CD31

BCL2 LCK

ERRFI1/MIG.6 NDRG1/NDRG1_pT346

RAF1/C-RAF CDH1/E-Cadherin

FOXO3/FOXO3A/P300 FOXO3/FOXO3a_pS318_S321/P300

EEF2K RB1/Rb_pS807_S811

https://doi.org/10.1371/journal.pone.0287448.t001
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data, orange indicates interactions between gene expression data, and red indicates interac-

tions between integrated omics. The negative sign represents the inactivation of the target

gene, and the positive sign represents its activation. For example, FOXO-_ RAF1+ means that

when FOXO- is inactivated, RAF1+ is activated.

Functional annotation and interaction analysis

Functional annotation and enrichment analysis were done using the DAVID database. We col-

lected GO annotations including BP and MF, BioGRID interactions, and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways for both lists of genes. (Fig 4 and S2a and S2b Tables

in S1 File).

The clustered heatmaps in (Fig 4A) depict the functional annotation obtained from the

DAVID database grouped by genes of interest for both OS� 2 years and QOL� 80 KPS. Each

cell reports the fold enrichment of each gene toward a specific annotation, with larger values

associated with darker coloring and vice versa. Each cluster in the heat map is associated with

a specific annotation: the red cluster represents the KEGG pathways, and the blue cluster rep-

resents the GO-BP annotation. From the 2 heatmaps, we noticed that some genes from the 2

gene lists shared the same functions and pathways. For GO-BP annotation, we found that

NDRG1, BCL2, and FOXO3 play a role in the cellular response to hypoxia; EIF2B5, TFRC,

and FOXO3 in aging; SERPINB10, BCL2, NOL3, TFRC, RAF1, EEF2K, and RPS6 in the nega-

tive regulation of the apoptotic process; EIF2B5, FOXO3, REST, and RPS6 in the positive regu-

lation of the apoptotic process; BCL2, ERBB2, and NRG1 in positive regulation of cell growth;

FKBP6, RAF1, LCK, NRG1, and RB1 in cell differentiation; BCL2, CDH1, and FOXO3 in neg-

ative regulation of cell migration; and BCL2, PECAM1, and CDH1 in cell-cell adhesion; BCL2,

Fig 3. Stability scores of recovered interactions from the MiRF model. a Stability scores of recovered interactions for OS� 2 years. b Stability scores of

recovered interactions for QOL� 80 KPS. Colors indicate interactions from different datasets. Blue indicates interactions between proteomics data, orange

indicates interactions between gene expression data, and red indicates interactions between integrated omics.

https://doi.org/10.1371/journal.pone.0287448.g003
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ERBB2, NRG1, and RPS6 in positive regulation of cell proliferation. For the KEGG path-

ways, we found that BCL2, RAF1, ERBB2, FOXO3, NRG1, and RPS6 have a shared role in

EGFR tyrosine kinase inhibitor resistance; BCL2, TFRC, GAPDH, ERBB2, and RPS6 in

HIF-1 signaling pathway; BCL2, RAF1, ERBB2, FOXO3, and RPS6 in the PI3K-Akt signal-

ing pathway; and BCL2, PXN, RAF1, and ERBB2 in Focal adhesion; RAF1, ERBB2, and

NRG1 in ErbB signaling pathway; BCL2, RAF1, CDH1, ERBB2, and RB1 in pathways in

cancer; RAF1 and RB1 in glioma; RAF1 and RPS6 in mTOR signaling pathway; BCL2,

RAF1, and TUBA1B in pathways of neurodegeneration; RAF1 and LCK in T cell receptor

signaling pathway. S2A and S2B Tables in S1 File show all GO-BP and KEGG pathways

including known and novel pathways with references for known pathways. We identified a

number of pathways from viral and bacterial infections, as well as other cancer pathways

that could be related to GBM survival and QOL.

For GO-MF annotation in (Fig 4B), we found that for OS 36% of its molecular signatures

were nucleic acid proteins, 32% were binding proteins, 20% were transport proteins, and 12%

were enzymes. For QOL, 41% of its molecular signatures were nucleic acid proteins, 33% were

binding proteins, 13% were transport proteins, and 13% were enzymes.

Based on the STRING database results, interaction patterns between important molecular

features are shown in Fig 3 for the 2 gene lists of OS� 2 years and QOL� 80 KPS (Fig 4C).

These interaction patterns were determined by lab experiments, bioinformatics predictions,

co-expression anticipation, and indirect associations. Accordingly, 18% of our recovered inter-

actions with stability score > 0.5 were known direct interactions in the STRING database

including FOXO3-_RAF1+, FOXO3-P-_RB1-, CDH1+_RB1-, FOXO3-P-_RPS6-, and

CDH1+_FOXO3-P-; 43% were known indirect interactions including EEF2K-_TFRC-,

EEF2K+_RAF1+, BCL2+_NRG1+, BCL2-_ERRFI1-, G6PD+_RAF1+; and 39% were not known

interactions. Some existing interactions were experimentally confirmed, and others were com-

putationally predicted.

Survival analysis and Cox proportional hazards model (CPH)

Survival analysis using KM method and log-rank test (Table 2 and S2 Fig) showed that high

expression of FKBP6, REST, EEF2K, MLN, POU2F3, WRNIP1, TM4SF20, and CDH1 was sig-

nificantly associated with longer survival, with p-values ranging between 0.037 and< 0.001.

While low expression of B3GAT3, FAM172A, CRELD1, DRG2, AGFG2, TNIP1, NOL3,

RNF6, ERBB2, FOXO3-P, and NDRG1 was significantly associated with longer survival, with

p-values ranging between 0.023 and <0.0001. Survival was not affected by the rest of the fea-

tures. In addition, patients with a high KPS score� 80 showed longer survival rates, with a p-

value of<0.0001. According to TCGA clinical data, we found that 63% of patients who lived

for more than 2 years had a KPS score� 80.

Fig 4. Functional annotation and interaction analysis. a Clustered heatmaps illustrate the functional annotation

obtained from the DAVID database grouped by the list molecular features obtained from MiRF for OS� 2 years and

QOL� 80 KPS. Each cell reports the fold enrichment of each gene toward a specific annotation. Darker coloring is

associated with larger values and vice versa. The coloring of clusters corresponds to the following annotations: red

represents KEGG pathways and blue represents GO-BP annotations. b Pie chart represent distribution of proteins

categorized based on functions relevant to overall survival or quality of life genes. c Protein–protein interactions from

the STRING database for both OS� 2 years and QOL� 80 KPS, respectively. Colored nodes indicate query proteins

and the first shell of interactors. Interactions include known interactions from curated databases and those that were

experimentally determined; predicted interactions by gene neighborhood, gene fusion, and gene co-occurrence; and

others by text mining, co-expression, and protein homology. All the different interactions can be recognized by the

different colors. Colored nodes represent query proteins and the first shell of interactors; filled nodes are the 3D

structure of known or predicted proteins.

https://doi.org/10.1371/journal.pone.0287448.g004
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We applied the regularized CPH regression model with elastic net penalties to the 22 OS

features and the 40 overall OS and QOL signatures obtained from the MiRF model. This was

done to determine the importance of those features in predicting the survival of patients with

GBM. The optimal lambda value was determined using 10-fold cross-validation for both OS

and overall signatures models. For the OS model, λ = 0.00611 with Harrell C index = 0.72 and

standard error = 0.036; for the overall model, λ = 0.01549 with Harrell C index = 0.70 and stan-

dard error = 0.034 (Fig 5A1 and 5B1). The OS model identified all 22 signatures as nonzero

features, which implicates their significance in OS prediction. (Fig 5A2) Furthermore, the

overall signature model returned 31 nonzero features out of 40, indicating their significant

role in OS prediction. PXN, FKBP6, CRELD1, TM4SF20, RNF6, LCK, RB1, SERPINB10, and

RAF1 were zero features which means they have limited or no significance (Fig 5B2).

In addition to the regularized CPH regression model, the univariate and multivariate CPH

analyses in Table 3A and 3B demonstrate how our predicted features act individually and

together in predicting OS in GBM patients. In the OS� 2 years model (Table 3A), the univari-

ate analysis revealed that the hazard ratio increased significantly by 1.20- to 1.55-fold with

high expression of FAM172A, NOL3, CRELD1, DRG2, TNIP1, B3GAT3, AGFG2, NCKIPSD,

TFRC, and ERRFI1. In addition, the hazard ratio decreased significantly by 30% with high

expression of FKBP6 and BCL2. While multivariate analysis showed that the hazard ratio

increased significantly by 1.59- and 2.34-fold with high expression of B3GAT3 and NRG1,

respectively, and decreased significantly by 43% and 30% with high expression of G6PD and

FOXO3, respectively. Moreover, the backward stepwise approach showed that all 22 OS fea-

tures have a significant effect on OS. This is consistent with the regularized CPH regression

Table 2. a. Important features for OS� 2 years. b. Important features for QOL� 80 KPS.

SYMBOL Expression status with good

survival

P-value SYMBOL Expression status with good survival P-value

TNIP1 Low 0.004 ** GALK1 Low 0.065

B3GAT3 Low <0.0001*** RNF121 Low 0.7

NOL3 Low 0.0008 *** RNF6 Low 0.00032 ***
AGFG2 Low 0.023 * SERPINB10 Low 0.3

NCKIPSD Low 0.26 TM4SF20 High 0.0042 **
FAM172A Low 0.0028 * POU2F3 High 0.0046 **
ZKSCAN3 High 0.88 EIF2B5 Low 0.21

FKBP6 High 0.0021 * MLN High 0.0057 **
TRIM62 High 0.69 WRNIP1 High 0.00085 ***

REST High 0.021 * NDRG1 Low 0.00026 ***
CRELD1 Low 0.00049 *** ERBB2 Low 0.011 *

DRG2 Low <0.0001 *** TUBA1B Low 0.98

NRG1 Low 0.2 RPS6 Low 0.095

PXN Low 0.31 PECAM1 Low 0.65

EEF2K High 0.037 * LCK Low 0.32

GAPDH Low 0.17 CDH1 High 0.0022 **
TFRC Low 0.24 FOXO3-P Low 0.011 *
G6PD High 0.21 RB1 High 0.3

BCL2 High 0.1

ERRFI1 Low 0.065

RAF1 High 0.42

FOXO3 Low 0.55

https://doi.org/10.1371/journal.pone.0287448.t002
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model. The likelihood ratio test p-value for the OS multivariate CPH model was 0.000003,

which is significant, and the concordance index was 0.78, which indicates that the multivariate

CPH model has nonrandomized performance.

In the overall signature model, we studied the effect of all features from both OS� 2 years

and KPS� 80 MiRF models on GBM overall survival (Table 3B). The univariate analysis

showed that the hazard ratio increased significantly by 1.55- to 1.63-fold with high expression

Fig 5. Regularized CPH regression model. a1 and b1 Plots of the 10-fold cross-validated error rates show the optimal lambda value with the higher Harrell C-

index and minimum error for both OS and overall signatures models, respectively. a2 and b2 Dot charts show β values of each feature. Values that are closer to

zero are the least important features, and vice versa.

https://doi.org/10.1371/journal.pone.0287448.g005
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Table 3. a. Univariate and Multivariate Cox Regression Analysis of OS� 2 years. b. Univariate and Multivariate Cox Regression Analysis of Overall signatures.

Variables Univariate Cox Regression Analysis Multivariate Cox Regression Analysis

HR 95% CI P-value HR 95% CI P-value

a

FAM172A 1.54 1.09–2.17 0.0145 * 1.32 0.77–2.27 0.31

ZKSCAN3 0.82 0.64–1.05 0.122 0.68 0.43–1.05 0.08

FKBP6 0.73 0.55–0.96 0.0257 * 1.00 0.71–1.42 0.99

TRIM62 0.87 0.67–1.14 0.314 0.72 0.51–1.01 0.058

REST 0.82 0.67–1.01 0.056 1.17 0.9–1.53 0.24

NOL3 1.52 1.24–1.87 0.00007 *** 1.48 0.98–2.23 0.064

CRELD1 1.32 1.09–1.6 0.0048 ** 0.94 0.65–1.36 0.75

DRG2 1.39 1.14–1.71 0.00148 ** 1.08 0.75–1.56 0.67

TNIP1 1.49 1.16–1.91 0.00179 ** 0.77 0.50–1.18 0.23

B3GAT3 1.50 1.22–1.85 0.00012 *** 1.59 1.00–2.53 0.049 *
AGFG2 1.27 1.05–1.54 0.0145 * 0.90 0.61–1.32 0.58

NCKIPSD 1.36 1.07–1.73 0.012 * 1.06 0.66–1.70 0.80

GAPDH 1.20 0.98–1.47 0.083 1.18 0.81–1.74 0.39

TFRC 1.35 1.07–1.71 0.0113 * 1.26 0.90–1.76 0.17

NRG1 1.09 0.88–1.36 0.433 2.34 1.32–4.14 0.004 **
PXN 1.18 0.97–1.43 0.099 1.18 0.86–1.63 0.29

G6PD 0.88 0.71–1.09 0.25 0.57 0.38–0.84 0.005 **
BCL2 0.70 0.53–0.92 0.0095 ** 0.73 0.51–1.05 0.09

ERRFI1 1.27 1.03–1.57 0.027 * 1.21 0.81–1.79 0.35

RAF1 1.00 0.83–1.21 0.99 0.78 0.50–1.19 0.25

FOXO3 0.90 0.75–1.09 0.29 0.70 0.50–0.97 0.03 *
EEF2K 0.83 0.67–1.03 0.09 0.85 0.61–1.2 0.35

b

FAM172A 1.54 1.09–2.17 0.0145 * 1.12 0.59–2.11 0.73

FKBP6 0.73 0.55–0.96 0.0257 * 0.88 0.51–1.51 0.65

TRIM62 0.87 0.67–1.14 0.314 0.42 0.26–0.69 0.00049 ***
REST 0.82 0.67–1.01 0.056 0.87 0.64–1.19 0.39

NOL3 1.52 1.24–1.87 0.00007 *** 1.85 1.05–3.25 0.032 *
CRELD1 1.32 1.09–1.6 0.0048 ** 1.07 0.73–1.57 0.74

DRG2 1.39 1.14–1.71 0.00148 ** 1.01 0.63–1.63 0.95

TNIP1 1.49 1.16–1.91 0.00179 ** 1.13 0.71–1.79 0.61

B3GAT3 1.50 1.22–1.85 0.00012 *** 1.32 0.79–2.20 0.29

AGFG2 1.27 1.05–1.54 0.0145 * 0.76 0.48–1.18 0.22

NCKIPSD 1.36 1.07–1.73 0.012 * 1.27 0.78–2.08 0.34

GAPDH 1.20 0.98–1.47 0.083 1.48 0.92–2.38 0.10

TFRC 1.35 1.07–1.71 0.0113 * 1.37 0.9–2.11 0.15

NRG1 1.09 0.88–1.36 0.433 2.91 1.60–5.28 0.0004 ***
PXN 1.18 0.97–1.43 0.099 0.85 0.56–1.29 0.44

G6PD 0.88 0.71–1.09 0.25 0.61 0.39–0.97 0.036 *
BCL2 0.70 0.53–0.92 0.0095 ** 0.77 0.53–1.14 0.19

ERRFI1 1.27 1.03–1.57 0.027 * 1.65 0.99–2.74 0.054

FOXO3 0.90 0.75–1.09 0.29 0.52 0.32–0.82 0.0053 **
EEF2K 0.83 0.67–1.03 0.09 0.95 0.62–1.45 0.82

TM4SF20 0.77 0.59–0.99 0.0428 * 0.85 0.52–1.4 0.53

POU2F3 0.73 0.5–1.06 0.0999 0.26 0.14–0.46 0.000004 ***
(Continued)
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of RNF6, ERBB2, NDRG1, and FOXO3-P in addition to the OS features in Table 3A. Addi-

tionally, the hazard ratio decreased significantly by approximately 25% with high expression

of TM4SF20, WRNIP1, RNF121, and CDH1 in addition to the OS features in Table 3A.

While multivariate analysis showed that the hazard ratio increased significantly by 1.41- to

2.91-fold with high expression of NOL3, NRG1, WRNIP1, and ERBB2; and decreased by

70% - 30% with high expression of TRIM62, G6PD, FOXO3, POU2F3, EIF2B5, RNF121,

and TUBA1B. Moreover, the backward stepwise approach showed that 34 out of 40 features

have an important effect on OS as the model performance was enhanced after removing

LCK, RB1, SERPINB10, ZKSCAN3, MLN, and RAF1. These results increased our confi-

dence in the regularized CPH regression model. The likelihood ratio test p-value for the

overall signature multivariate CPH model was 0.00000004, which is significant, and the

concordance index was 0.81, which indicates that the multivariate CPH model has nonran-

domized performance.

Visualization and clinical application of the molecular signatures

To visualize the effect of MiRF signatures on stratifying GBM patients according to their OS

and KPS, we applied PCA algorithm to both OS and QOL signatures. 3D PCA scatter plot

illustrates the effect of MiRF-predicted features on separating the different groups. For the OS

model, the 22 molecular signatures showed two clear clusters: the blue cluster represents

patients who lived� 2 years, and the green cluster represents patients who survived� 6

months. This plot presents a total of 50% of the explained variance since the first PCA compo-

nent is 25%, the second component is 15%, and the third component is 10% (Fig 6A1). For the

QOL model, the 19 molecular signatures showed two clusters: the blue cluster represents

KPS� 80, and the green cluster represents KPS� 60. This plot presents a total of 45% of the

explained variance since the first PCA component is 20% of the variance, the second compo-

nent is 15%, and the third component is 10% (Fig 6A2).

In the method of visualization, we compared the average expression of all samples for each

signature for the different groups of OS and QOL. The heatmap in (Fig 6B1) illustrates the

expression mean of OS signatures between OS� 2 years and OS� 6 months. While the heat-

map in (Fig 6B2) compares the expression mean of QOL signatures between KPS� 80 and

QOL� 60. Each cell reports an expression average. Blue shades indicate high expression and

Table 3. (Continued)

Variables Univariate Cox Regression Analysis Multivariate Cox Regression Analysis

HR 95% CI P-value HR 95% CI P-value

EIF2B5 0.89 0.73–1.1 0.28 0.60 0.4–0.91 0.017 *
WRNIP1 0.75 0.57–0.98 0.0326 * 2.71 1.52–4.82 0.00069 ***
GALK1 1.25 1.00–1.57 0.053 0.92 0.61–1.38 0.69

RNF121 0.78 0.62–0.99 0.039 * 0.66 0.44–0.99 0.047 *
RNF6 1.55 1.21–1.98 0.000456 *** 0.93 0.64–1.36 0.72

TUBA1B 1.02 0.83–1.25 0.88 0.51 0.31–0.85 0.00947 **
ERBB2 1.37 1.14–1.65 0.000886 *** 1.41 1.00–1.99 0.048159 *
RPS6 1.16 0.93–1.45 0.196 0.71 0.48–1.06 0.09

PECAM1 0.94 0.77–1.16 0.57 0.60 0.31–1.15 0.13

NDRG1 1.63 1.28–2.06 0.000056 *** 0.99 0.64–1.55 0.97

CDH1 0.73 0.56–0.95 0.018 * 1.06 0.69–1.62 0.78

FOXO3-P 1.51 1.15–1.98 0.00317 ** 0.87 0.55–1.38 0.54

https://doi.org/10.1371/journal.pone.0287448.t003
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Fig 6. MiRF signatures validation. a1 and a2 3D PCA scatter plots with their explained variance plots for OS and

QOL signatures show two clusters for each model: blue for OS� 2 years, green for OS� 6 months and blue for

KPS� 80, green for KPS� 60, respectively. b1 and b2 Heatmaps represent internal validation on the list of molecular

features obtained from MiRF for OS� 2 years and QOL� 80 KPS. Each cell reports the average expression of all

samples for each signature. Blue shades indicate high expression and red shades indicate low expression. c1 and c2 t-
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red shades indicate low expression. The two heatmaps show clear expression variation between

groups.

To visualize the effect of CPH signatures on classifying GBM OS, we applied t-SNE algo-

rithm to determine if there is a significant separation between OS� 2 years and OS� 6

months. The t-SNE plot for the 22 OS signatures showed two clear clusters: the blue cluster

indicates patients who lived� 2 years, and the green cluster reflects patients who survived� 6

months (Fig 6C1). In addition, the t-SNE plot for the 34 overall signatures also showed two

clear clusters: the blue cluster represents patients who lived� 2 years, and the green cluster

represents patients who survived� 6 months (Fig 6C2).

To validate the effect of CPH signatures on GBM OS stratification and make it clinically

applicable, we applied the final set of signatures obtained from CPH models to GBM omics

data obtained from CPTAC project. First, we determined expression cutoffs by applying both

OS and overall signatures to TCGA data (Fig 6D1 and 6D2). We used the average expression

of signatures as our cutoffs. From the boxplots, we notice that patients who survived longer

have a low expression average of both OS and overall signatures with a p-value of 0.008 and

0.018, respectively. For OS signatures, applying expression means cutoffs obtained from

TCGA data to CPTAC data led to clearly stratifying 40% of the patients to OS� 2 years and

OS� 6 months. In addition, for overall signatures, applying expression means cutoffs to

CPTAC data led to clearly stratifying 42% of the patients to OS� 2 years and OS� 6 months

(Table 4).

We applied previously predicted signatures to TCGA to calculate expression mean cutoffs.

We then applied these cutoffs to CPTAC data to see their effect on stratifying GBM patients

according to their possible OS. From (Table 4) we can see that our signatures have a 10% -

12% better performance in stratifying GBM patients.

Discussion

In this study, our goal was to identify the genetic signatures of GBM patients who survived� 2

years with QOL� 80 KPS. We collected gene expression, proteomics, and clinical data from

the TCGA database. In differentially expressed genes (DEGs), which have been done to

SNE plots show the effect of OS and overall signatures, respectively, in distinguishing OS� 2 years and OS� 6 months

groups. Each plot has two clusters have distinct expression profile of OS and overall signatures. Red for OS� 2 years,

green for OS� 6 months. d1 and d2 Boxplots represent the expression mean cutoffs for OS� 2 years and OS� 6

months of both OS and overall signatures, respectively. Red for OS� 2 years, green for OS� 6 months. A p-value

of< 0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0287448.g006

Table 4. Expression means cutoffs and external validation on CPTAC database.

Signatures Expression mean for OS� 2

years

Expression mean for OS� 6

months

P-value of comparing the tow

means

Percentage of CPTAC samples in

mean area

OS Signatures - 0.09 0.09 0.008 ** 40%

Overall Signatures - 0.08 0.042 0.018 * 42%

Yu’s Signature [29] - 0.07 0.14 0.12 32%

Yin’s Signature [30] - 0.035 0.19 0.0097 ** 32%

Pan’s Signature [31] - 0.1 0.2 0.042 * 32%

Wang’s Signature
[32]

- 0.095 0.27 0.00012 *** 28%

Zhang’s Signature
[33]

- 0.03 0.127 0.016 * 30%

Cao’s Signature [34] - 0.036 0.31 <0.0001 *** 31%

https://doi.org/10.1371/journal.pone.0287448.t004
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decrease the dimensionality of gene expression data, we used an absolute log2-FC > 2, 1, and

0.5 comparing OS� 2 years with OS� 6 months and KPS� 80 with KPS� 60. FC > 2 did

not return any genes, FC > 1 returned only one gene, and FC > 0.5 returned 772 genes for OS

comparison and 357 genes for KPS comparison.

We used the iRF algorithm [18] for feature selection in integrative omics data. This method

is preferred because it identifies stable and robust high-order interactions between features,

maintains high accuracy, and is interpretable. Omics data are often characterized by high

dimensionality, missing values, multicollinearity, high noise, normalization problems, imbal-

ance, and complexity [35–38]. Identifying meaningful relationships between variables is criti-

cal for understanding complex disease phenotypes and molecular pathways. Compared to

other machine learning methods for analyzing integrative omics data, iRF has several advan-

tages. Firstly, it uses a recursive feature elimination approach to iteratively eliminate the least

informative features to enhance model accuracy and stability in high-dimensional datasets

[18]. Secondly, iRF is designed to identify high-order interactions between features which is

essential for integrative omics data where many biological processes involve interactions

among multiple molecular features from multiple sources. This makes iRF an excellent

method for biological and biomedical applications. Thirdly, iRF has been shown to handle

noisy data. Building a new random forest at each iteration eliminates the effect of correlated

variables and noisy data on feature importance. The invariance of decision trees also ensures

less bias due to the signal-to-noise ratio among biological replicates, a significant concern in

omics data analysis. It also deals with imbalanced data without affecting model performance.

The iRF algorithm is less prone to overfitting than other machine learning approaches because

it utilizes much smaller decision trees, mitigating the problem of overfitting in high-dimen-

sional integrative omics data. The algorithm additionally enhances the interpretability of the

RF’s recovered interactions by applying the generalized random intersection trees algorithm

(RIT) and calculating a stability score [18]. This helps identify stable, robust, and reproducible

high-order interactions across different subsets of the same dataset. This is particularly impor-

tant due to the variability and instability in omics data analysis that arise from the underlying

biological processes and environmental factors across multiple samples [18].

The iRF algorithm contains 2 layers of bootstrap resampling [18]. In addition to these 2 lay-

ers, we added a third layer of bootstrap resampling to iterate the whole model through the

whole samples. The third bootstrap layer ensures that the model is rotated through the entire

dataset and improves the reliability of the output by considering the intersection between the

collective predictions of bootstrap replicates.

To evaluate the performance of the iRF algorithm, AUPR and AUROC curves were calcu-

lated. Score 1.0 indicates that the performance level is perfect and stable, whereas 0.5 indicates

that the performance level is random and uncertain. The results of the AUPR curves for all

trained datasets were� 0.6, with significant 95% CIs. This means that our predicted features

were not randomly selected for all models. In addition, the AUROC curves for all the trained

datasets were significant� 70%, with 95% CIs. This indicates that our recovered interactions

were stable with high-quality stability scores. We noticed that AUPR and AUROC curves were

improved with integrated omics for both the OS� 2 years and QOL� 80 KPS models up

to� 0.8, with significant 95% CIs, except for AUPR of OS� 2 years model, which showed no

significant improvement.

Since we trained the gene expression and proteomics data separately and concatenated, we

obtained information from different points of view from these datasets. For this reason, we

called our model a MiRF. Our study complied with the complementary principle by exploring

the comprehensive picture of omics datasets. It also complied with the consensus principle

through the agreement of some features between the 2 models, which greatly improved our
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conclusions. From the OS� 2 years model, we obtained 22 features, including 12 from the

gene expression data and 10 from the proteomics data. We noticed that the NOL3 gene and

EEF2K protein were persistent outputs from training the omics data separately and as inte-

grated. They were both involved in apoptotic regulation. From the QOL� 80 KPS model, we

obtained 19 features: 9 from the gene expression data and 10 from the proteomics data. We

noticed that ERBB2, NDRG1, and TFRC proteins were persistent outputs from training the

omics data separately and integrated. TFRC and FOXO3 proteins appeared in both the OS� 2

years and QOL� 80 KPS models. The above findings demonstrate the principle of consensus

of the MiRF model.

The MiRF identified complex nonlinear interactions between predicted features. It employs

a feature importance metric to identify important and significant interactions between fea-

tures. The feature importance metric assigns a score (mean decrease in Gini impurity) to each

feature that measures its contribution to prediction as part of an interaction. The feature

importance score is determined by two factors: feature impact which reflects a feature’s indi-

vidual effect on the outcome, and feature importance with respect to interaction which mea-

sures the contribution of a feature to complex interactions. This feature importance metric

enables iRF to provide more accurate and interpretable predictions while accounting for the

complexity of the underlying interactions between features. We also calculated a stability score

which is a measure of the robustness of the discovered interactions. The stability score pro-

vides an estimate of the probability that a particular interaction is consistently recovered across

different bootstrapped samples of the training dataset. We identified 13 important interactions

from OS� 2 years models with stability score� 0.5: 6 from proteomics data, 6 from gene

expression data, and 1 from integrated omics data. In addition, we identified 15 important

interactions from KPS� 80 models with stability score� 0.5: 9 from proteomics data, 5 from

gene expression data, and 1 from integrated omics data.

For the proteomics output, we used gene names associated with the protein list in our func-

tional annotations, as gene names are universal. Additionally, we connected the genes’ SYM-

BOL with their ENTREZ-ID identifier, which is a standard and universal identifier throughout

large, curated databases. To perform a functional analysis of the set of genes and proteins we

obtained from the MiRF model, we used the DAVID database. We connected the gene list

with its GO term to annotate them with their biological functions, which made them more

understandable and interpretable. We extracted the GO terms of BP and MF, as they are more

relevant to cancer prognosis. Based on the functional analysis, we concluded that our predicted

genes are involved in important biological functions and pathways that regulate cell growth,

proliferation, and cell death. These biological functions and pathways affect cancer prognosis,

patients’ survival, and treatment outcomes. For example, hypoxia is strongly correlated with

the poor prognosis of solid cancers. BCL2 [39], ERBB2 [40], RPS6 [41], RAF1, and FOXO3

[42] participate in the regulation of responses to hypoxia through PI3K/AKT/mTOR, NFB,

and MAPK signaling pathways that are also activated in a hypoxia-independent manner by

several factors that eventually activate hypoxia-inducible factor (HIF)-1α [43]. Activation of

HIF-1α enhances the tumor microenvironment and improves tumor cell survival and propa-

gation through increased blood vessel formation, aggressiveness, metastasis, and resistance to

treatment [43]. TFRC [44], PECAM1 [45], GAPDH [46], GALK1 [47], NDRG1 [44], and

DRG2 [48] also have role in cellular response to hypoxia. Another important biological func-

tion is apoptosis. Lack of apoptotic control allows cancer cells to survive longer, and hence

mutations will accumulate, which can increase tumor invasiveness, stimulate angiogenesis,

and disrupt cell differentiation [49]. BCL2 [50, 51], ERBB2 [52], RAF1, FOXO3 [53], NRG1

[54], PXN [55], NOL3 [56, 57], TFRC [44], EEF2K [58], EIF2B5 [59], TUBA1B [60],

FAM172A [61], RNF6 [62], and RPS6 [63] regulate the apoptotic process through the
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epidermal growth factor receptors (EGFR), FOXO, NF-B, JAK-STAT, and PI3K/AKT signal-

ing pathways. GAPDH also has a role in neuron apoptotic processes under oxidative stress

[46]. Cellular responses to oxidative stress and the regulation of reactive oxygen species (ROS)

are double-edged swords in cancer progression and prognosis. Increasing metabolic rate,

mutation of genes, and hypoxia result in ROS production in tumor cells. Moderate levels of

ROS are quenched by the increased activation of antioxidant pathways in cancer cells that pro-

mote tumor progression. However, programmed cell death, including apoptosis, autophagy,

and necrosis, can also be triggered by ROS and hence hinder cancer progression [64]. BCL2

[65], G6PD [66], NOL3 [56], RAF1, and FOXO3 [53] are involved in different signaling path-

ways that regulate reactive oxygen species’ metabolic process. Enhanced cell proliferation cor-

relates strongly with a poor prognosis of cancer [67]. BCL2 [68], ERBB2 [40], NRG1 [54],

RPS6 [63], RAF1, FOXO3 [53], REST [69], PXN [55], B3GAT3 [70], RNF6 [62], EEF2K [71],

ERRFI1 [72], TUBA1B [60], FAM172A [61], ZKSCAN3 [73], TRIM26 [74], RNF121 [75], and

TNIP1 [76] regulate cellular proliferation through the ErbB, EGFR, RAS-RAF-MEK-ERK

MAPK, PI3K-AKT-mTOR, and NF-B signaling pathways [77]. Epithelial-to-mesenchymal

transition (EMT) plays an essential role in the invasion and metastasis of different cancers,

including gliomas. EMT is linked to cancer stem cell properties and chemotherapeutic resis-

tance [78]. ZKSCAN3 [73], TRIM26 [74], FAM172A [61], B3GAT3 [70], FOXO3 [79], CDH1

[78], and REST [80] regulate EMT through FAK/AKT, Ras/ERK MAPK-PI3K/Akt, TGF/

P38MAP signaling pathways. It is worth noting that all mentioned genes affect CDH1 expres-

sion which is controlled by SMARCA5, a stem cells differentiation gene and cancer marker

[81]. In addition to the well-known biological functions and pathways, we identified a novel

association of neurodegenerative, cardiac, vascular, viral, bacterial, and other cancer pathways

with GBM (S2A and S2B Tables in S1 File). These findings require further investigation, and

they could implicate common therapies between those diseases and GBM depending on the

gene expression and proteomics profiles of the patient which improves personalized medicine.

Our findings come along with Alzahrani et al findings who found pathways associated with

COVID-19 poor prognosis in GBM patients [82]. BIOGRID interactions analysis showed that

our predicted molecular features interact with GBM driver genes including PIK3R1, EGFR,

TP53, RB1, and NF1 (S3D Fig). We also investigated the mutations in GBM driver genes in

TCGA data and found that most of the mutations are in GBM patients with low survival but

nonsignificant p-values (S3A–S3C Fig).

The STRING database consists of direct (physical) and indirect (functional) protein–pro-

tein interactions arising from computation prediction, knowledge transfer between organisms,

and interactions gleaned from other primary databases [24]. From our predicted interactions,

we found that CDH1+_FOXO3-P- is a known critical functional interaction for cancer pro-

gression. Research by Chen et al. has shown that FOXO3 functions as a transcription factor

that regulates CDH1 gene expression and thus inhibits the metastatic potential of cancer cells

[83]. In addition, FOXO3- RAF1+ is a crucial functional interaction involved in cellular prolif-

eration signaling pathways. In response to external stimuli and growth factors, FOXO3 is nega-

tively regulated by the PI3K-Akt/protein kinase B (PKB) and Ras-RAF-MEK-ERK signaling

pathways. Specifically, external stimuli activate Ras, which activates subsequent kinases RAF,

mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase

(ERK/MAPK) to phosphorylate FOXO3 [51]. Further investigations into the recovered inter-

actions are required. This could lead to the discovery of novel underlying mechanisms that

affect GBM prognosis and hence new therapeutic targets.

Survival analysis was performed on the predicted features for OS� 2 years and for the over-

all OS and QOL features to validate our findings and establish the molecular signature for

stratifying GBM patients. A KM curve was used to visualize the differences in survival between
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high and low-expression groups for each feature. A log-rank test was conducted to determine

whether there was a significant difference between them. Furthermore, we applied the regular-

ized CPH regression model with elastic net penalties to determine the significance of OS fea-

tures and overall features in predicting GBM overall survival. Finally, we evaluated how our

predicted features act individually and together to predict OS in GBM patients using univariate

and multivariate CPH analyses. We evaluated the predictive accuracy of the CPH model using

the concordance index (c-index), which is the generalization of AUROC for regression prob-

lems [84]. The c-index and p-value for both CPH models were significant. From the survival

analysis, we found that low expression of NOL3, DRG2, B3GAT3, FAM172A, CRELD1,

AGFG2, TNIP1, RNF6, ERBB2, FOXO-P, and NDRG1 enhanced GBM patients’ survival and

significantly decreased the hazard ratio. Furthermore, high expression of FKBP6, WRNIP1,

POU2F3, REST, TM4SF20, EEF2K, and CDH1 enhanced GBM patients’ survival and signifi-

cantly decreased the hazard ratio. However, the hazard ratio for WRNIP1 increased signifi-

cantly in the multivariate CPH model. From univariate analysis, high expressions of

NCKIPSD, TFRC, BCL2, RNF121, and ERRFI1 demonstrated significant effects on the hazard

ratio. While from multivariate analysis TRIM62, NRG1, G6PD, FOXO3, EIF2B5, RNF121,

and TUBA1B showed significant effects on the hazard ratio. Even though GAPDH, PXN,

GALK1, RPS6, RAF1, and ZKSCAN3 showed no statistical significance on survival and hazard

ratio, the backward stepwise approach showed that they have an important effect on the other

features. Increasingly, we noticed that KPS scores have a significant correlation with survival.

From the TCGA data, we found that 64% of patients who survived 2 years or longer had

KPS� 80. This suggests that the QOL gene signature is also implicated in OS.

From the literature, we found that high expression of NOL3 [85], DRG2 [86], B3GAT3

[87], CRELD1 [88], TNIP1 [76], ERBB2 [89], FOXO3 [42], REST [80], EEF2K [69], TFRC [44,

90], NRG1 [54], TUBA1B [60], PXN [53], GALK1 [47], RPS6 [91], and RAF1 [92, 93] were

shown to be poor prognostic indicators in GBM patients and associated with lower overall sur-

vival. The survival outcomes reported by Liang et al. on REST using TCGA GBM patients con-

trast with our findings; this might be because we specifically focused on people who lived more

than 2 years and less than 6 months in our survival analysis. Furthermore, we found that high

expressions of NDRG1 [94], CDH1 [78], ERRFI1 [72, 95], G6PD [96], and ZKSCAN3 [29, 32]

were significantly correlated with better prognosis of GBM patients and longer overall survival.

On the contrary, Kathagen-Buhmann et al., reported that knocking down the G6PD gene in

glioblastoma xenograft mice resulted in prolonged survival [66].

In a related vein, GAPDH function in tumor cells is controversial; it is important for cancer

cell survival, but under oxidative stress, it induces apoptosis. Lazarev et al. found that enhancing

the aggregation of oxidized GAPDH is a promising strategy to overcome GBM resistance to

therapeutic tools [46]. In addition, Sun et al. showed that downregulation of NCKIPSD was

associated with breast cancer and colon cancer recurrence [97]. Yuan et al. identified POU2F3

as a marker for good prognosis of lung adenocarcinoma (LUAD) patients [98]. Chen et al. iden-

tified a positive correlation between FAM172A expression and better prognosis of pancreatic

cancer patients [61]. Wang et al found an association between AGFG2 expression and prognosis

in colorectal cancer patients [99]. Liu et al. reported high expression of RNF6 as an independent

poor prognosis indicator in colorectal cancer [100]. Zhao et al. Zhao et al. [101] revealed that

RNF121 overexpression inhibits growth and invasion of human renal carcinoma [102]. Lippo-

nen et al. study revealed a significant improvement in the prognosis of patients with breast can-

cer expressing abnormally high levels of BCL2 [103]. Chen et al. reported that heterozygous loss

of TRIM62 correlates significantly with poor OS in breast cancer patients [104]. Jiao et al. and

Palaniappan et al. indicated that high expression of EIF2B5 was associated with poor prognosis

of liver cancer patients and worse survival of colorectal patients [105, 106].
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From the above review, we noticed that all our predicted features were approved experi-

mentally as survival biomarkers for GBM or other cancers. However, WRNIP1, FKBP6, and

TM4SF20 were novel. Nevertheless, the expression status of ERRFI1, REST, EEF2K, NDRG1,

and RAF1 in survival analyses from the literature did not match our analysis. This suggests

that either there is an unknown underlying mechanism for those features in survival, or there

are too few samples in our study to make serious conclusions. Further investigation and valida-

tion are thus required to support our signatures.

We visualized the effect of MiRF output on separating GBM patients according to their OS

and QOL using PCA approach. MiRF molecular signatures showed an accepted effect on

GBM patients’ classification. Internal validation further demonstrated clear variation in the

expression level of each feature between different GBM groups. We also visualized the effect of

CPH output on separating GBM patients according to their OS using t-SNE algorithm. Both

OS and overall signatures showed clear separation.

Finally, to make our molecular signatures clinically applicable, we determined average

expression cutoffs for each signature using TCGA data. We applied these cutoffs to CPTAC

GBM data to stratify GBM patients to OS� 2 years and OS� 6 months. We found that OS sig-

nature stratified 40% of GBM patients and overall signature stratified 42%. We compared our

signatures with previously predicted signatures and found that our signatures were the most

effective at stratifying GBM patients. These signatures will help enhance the clinical plan and

provide intense care for patients predicted with short OS to prolong their OS.

Finally, here we provide evidence that combined measurement of expression levels of OS

and overall molecular signatures may be informative on the outcome of GBM patients. We

anticipate that further investigation with a larger sample size could confirm our findings pro-

viding critical information on human GBM malignancy. This could enable improved clinical

decisions and GBM management by setting treatment plans with the most appropriate thera-

peutic strategy. These prospective findings will also improve GBM prognosis and drug devel-

opment. On the economic side, increasing the accuracy of therapeutic plans, including

interventions, will reduce costs for patients, families, and the ecosystem.

Supporting information

S1 Fig. AUROC and AUPR curves. The PR and ROC curves represent the performance of a

binary classification model on bootstrapped test datasets with class imbalance (median curves

with their AUCs are shown). a1 & a2 AUPR and AUROC curves of the gene expression MiRF

model for OS� 2 years and KPS� 80 models, respectively. b1 & b2 AUPR and AUROC curves

of the proteomics MiRF model for OS� 2 years and KPS� 80 models, respectively. c1 & c2

AUPR and AUROC curves of the integrated omics MiRF model for OS� 2 years and KPS� 80

models, respectively. An AUC value closer to 1 indicates better performance. In AUPR curves the

color scale on the right side of the plot represents the value of the threshold. This threshold is

used to calculate the precision and recall values for each point on the curve. Each shade represents

a different threshold value. The fact that we have small data points in the test dataset is reflected

in the PR curves which display only two colors (thresholds). This means precision and recall val-

ues at different classification thresholds may not be well represented. However, we coped with

this problem by bootstrapping and taking the median of model performance, and through using

a second parameter AUROC. This provides a comprehensive understanding of the model’s statis-

tical performance on binary classification data with class imbalance.

(ZIP)

S2 Fig. Kaplan–Meier analysis. a KM plots and log-rank test p-values of important genes

obtained from the MiRF model for OS� 2 years. b KM plots and log-rank test p-values of

PLOS ONE Novel molecular signature for glioblastoma patient stratification

PLOS ONE | https://doi.org/10.1371/journal.pone.0287448 November 16, 2023 22 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0287448.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0287448.s002
https://doi.org/10.1371/journal.pone.0287448


important proteins obtained from the MiRF model for OS� 2 years. c KM plots and log-rank

test p-values of important genes obtained from the MiRF model for KPS� 80. d KM plots and

log-rank test p-values of important proteins obtained from the MiRF model for KPS� 80. e

KM plot and log-rank test p-value of KPS. A p-value of< 0.05 was considered significant.

(ZIP)

S3 Fig. Mutations in the driver genes in our specified TCGA dataset. a Box plot compares

frequencies of driver mutations between high and low survival groups. b bar plot compares

frequencies of driver mutations in high and low survival groups. c The table shows data behind

Fig a and b. d The table shows the BIOGRID interactions of MiRF predicted genes with the

driver genes. A p-value of < 0.05 was considered significant.

(TIF)
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