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Abstract

The primary cause of hazy weather is PM2.5, and forecasting PM2.5 concentrations can aid

in managing and preventing hazy weather. This paper proposes a novel spatiotemporal pre-

diction model called SpatioTemporal-Informer (ST-Informer) in response to the shortcom-

ings of spatiotemporal prediction models commonly used in studies for long-input series

prediction. The ST-Informer model implements parallel computation of long correlations and

adds an independent spatiotemporal embedding layer to the original Informer model. The

spatiotemporal embedding layer captures the complex dynamic spatiotemporal correlations

among the input information. In addition, the ProbSpare Self-Attention mechanism in this

model can focus on extracting important contextual information of spatiotemporal data. The

ST-Informer model uses weather and air pollutant concentration data from numerous sta-

tions as its input data. The outcomes of the trials indicate that (1) The ST-Informer model

can sharply capture the peaks and sudden changes in PM2.5 concentrations. (2) Compared

to the current models, the ST-Informer model shows better prediction performance while

maintaining high-efficiency prediction ðMAE � 7:50mg=m3;RMSE � 4:31mg=m3;R2 � 0:88Þ.

(3) The ST-Informer model has universal applicability, and the model was applied to the con-

centration of other pollutants prediction with good results.

Introduction

China’s rapid industrialization and urbanization are worsening urban air pollution, which has

detrimental effects on individuals’ lives, health, and economic activity [1–3]. To reduce air pol-

lution, relevant departments have proposed important initiatives such as haze control and

improvement of environmental quality [4]. As a significant component of atmospheric pollut-

ants, PM2.5 is a major factor in causing hazy weather, reducing visibility, and affecting traffic

safety. Long-term exposure to high PM2.5 concentrations can result in cancer of the lungs, car-

diovascular disease, respiratory disorders, and other health significantly impacts youngsters,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0287423 June 23, 2023 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ma Z, Luo W, Jiang J, Wang B, Ma Z, Lin

J, et al. (2023) Spatial and temporal characteristics

analysis and prediction model of PM2.5

concentration based on SpatioTemporal-Informer

model. PLoS ONE 18(6): e0287423. https://doi.

org/10.1371/journal.pone.0287423

Editor: Mahmud Iwan Solihin, UCSI University

Kuala Lumpur Campus: UCSI University,

MALAYSIA

Received: April 10, 2023

Accepted: June 6, 2023

Published: June 23, 2023

Copyright: © 2023 Ma et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

fromThe U.S. Embassy in Beijing(http://archive.ics.

uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality

+Data).

Funding: This study is fully supported by National

Natural Science Foundation of China (Grant No.

61762071, Grant No.61163025). There was no

additional external funding received for this study.

https://orcid.org/0009-0000-5755-0968
https://doi.org/10.1371/journal.pone.0287423
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287423&domain=pdf&date_stamp=2023-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287423&domain=pdf&date_stamp=2023-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287423&domain=pdf&date_stamp=2023-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287423&domain=pdf&date_stamp=2023-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287423&domain=pdf&date_stamp=2023-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0287423&domain=pdf&date_stamp=2023-06-23
https://doi.org/10.1371/journal.pone.0287423
https://doi.org/10.1371/journal.pone.0287423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data


the elderly, and those with heart or lung disease. In addition, The development of aquatic

organisms and plants can also be impacted by high PM2.5 concentrations that land in soil and

water bodies. Therefore, accurate prediction of PM2.5 concentration is of great practical impor-

tance for national air pollution control and risk avoidance. However, PM2.5 concentrations are

often influenced by various external factors and have complex time and space dependence [5].

Therefore, the development of highly precise and effective PM2.5 prediction systems is still an

urgent scientific issue.

With the advancement of science and technology, monitoring tools, including weather

observation stations, air quality monitoring stations, and meteorological satellites, have started

to be extensively dispersed in diverse locations. Because the massive amount of air pollutant

concentration data and meteorological data collected by this equipment provides a large

amount of data support for air quality prediction and meteorological research, PM2.5 concen-

tration prediction models built on data-driven models are receiving increasing attention from

research scholars. Previous studies have used statistical models to predict PM2.5 concentra-

tions, such as Auto-regressive Moving Average (ARMA) model [6, 7] and Auto-regressive

Integrated Moving Average (ARIMA) model [8, 9], which are traditionally spartan in struc-

ture, less computationally intensive, and can effectively describe the variability of time series;

however, these models tend to oversimplify the complexities between PM2.5 and other air pol-

lutant concentrations non-linear relationships, which are prone to bias in the face of non-lin-

ear relationships. The development of pollutant concentration prediction models based on

machine learning algorithms has been rapid in recent years [10], and the nonlinear regression

prediction performance of these models is better than that of traditional statistical methods,

and commonly used models include Support Vector Regression (SVR) [11], random forest

models [12], and Artificial Neural Networks (ANN) [13–15]. In addition, artificial neural net-

works have strong adaptive and robust properties and show excellent performance in solving

prediction problems, especially Recurrent Neural Network (RNN); RNN and their variants

Long Short Term Memory Network (LSTM) in processing and are commonly used for pollut-

ant concentration prediction in different time spans [16, 17]. Since various factors influence

the concentration of pollutants, the data’s long-term time dependence and dynamic spatial

correlation need to be considered when constructing prediction models. There are studies to

construct spatiotemporal prediction models by fusing different neural network structures,

such as Convolutional Neural Network and Long Short Term Memory Network

(CNN-LSTM) model; CNN-LSTM model by CNN layer Convolutional operations are per-

formed on the input data, and the spatial feature information extracted from it is passed to the

LSTM layer to capture the dynamic changes and long-term dependencies in the spatiotempo-

ral sequence data [18, 19]. In addition, there are Graph Convolutional networks and Long

Short Term Memory Networks (GC-LSTM) model [20], Long Short Term Memory-Fully

Connected Neural Network (LSTM-FC) model [21], and other combined spatiotemporal pre-

diction models that are more comprehensive in dealing with spatiotemporal data with multidi-

mensional features. However, due to the limitations of convolutional filters and the

shortcomings of LSTM, which cannot be computed in parallel, these models cannot adequately

extract the long-term and complex correlations of spatiotemporal data when the input data is

extended. Some studies have compensated for these shortcomings in the above models by

introducing the Attention mechanism [22, 23], the addition of the Attention mechanism can

be used to focus on extracting important information in the context, but their inherent charac-

teristics limit their predictive power for long spatiotemporal sequences.

Vaswani et al. [24] proposed the Transformer model, which is a model with a new architec-

ture built entirely based on the Attention mechanism and achieves higher parallelism, which

has achieved excellent results in Natural Language Processing (NLP) [25], Computer Vision
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(CV), and other fields. Considering that the model allows parallel processing and temporal fea-

ture extraction for time-series data, many studies have applied the Transformer model to time-

series data prediction tasks [26]. For example, Li S et al. [27] proposed an Enhanced Local

Transformer (ELM) model that enhances the Transformer’s local and context-aware capabilities

in processing time series data by introducing adaptive location coding and spatially aware atten-

tion mechanisms, and the ELM model achieves better performance on various time series pre-

diction tasks. In addition, Zhou et al. [28] developed an Informer model, which improves the

traditional Transformer model by introducing new structures and mechanisms to learn non-

smooth and long-term time dependence and has higher efficiency and accuracy when dealing

with long series time series data [29]. However, the Informer model focuses only on the "tempo-

ral attention" between learning time steps and ignores the complex spatial relationships between

variables. Therefore, to predict PM2.5 concentrations with spatiotemporal characteristics more

accurately and effectively, this paper proposes a spatiotemporal prediction model: the Spatio-

Temporal-Informer (ST-Informer) model. The ST-Informer model has an independent spatio-

temporal embedding layer, which enables a comprehensive analysis of the spatiotemporal

correlation of the input data. Secondly, considering that meteorological characteristics and spa-

tial characteristics of data can affect the prediction of pollutant concentrations [30], auxiliary

data such as meteorological data and atmospheric pollutant concentration data from multiple

stations were integrated into predicting PM2.5 concentrations to improve the performance of

the model. The results show that the ST-Informer model has spatiotemporal prediction capabil-

ity and high prediction accuracy. The main contributions of this paper are as follows.

1. In this paper, the influence of multi-source data is considered comprehensively, and adja-

cent stations’ meteorological factors and pollutant concentration factors affect the PM2.5

concentration prediction at the central station. Therefore, the study selects meteorological

data and pollutant concentration data from multiple stations as input data.

2. Due to anomalies and missing data collected, the ST-Informer model is relatively sensitive

to outliers and noise in the input sequence, and the presence of many outliers or noise will

affect the prediction results of this model. Therefore, this paper performs complete pre-pro-

cessing work on the data. Then, Pearson correlation coefficients were used to analyze the

strength of the data’s temporal and spatial correlations to ensure the input data’s strong cor-

relation as the ST-Informer prediction model in PM2.5 prediction and enhance the model’s

prediction performance.

3. The independent temporal embedding layer and spatial embedding layer in the ST-Infor-

mer model proposed in this paper are used to process the input data and capture the com-

plex spatiotemporal characteristics of the data. As well as the ProbSpare Self-Attention

mechanism, which is unique to this model, concentrates on extracting information of data

across time, space, and multiple dimensions. The model can analyze the spatiotemporal

correlation of data more comprehensively. Its prediction effect is better than LSTM, Trans-

former, and Informer models through the comparative analysis of the results of three evalu-

ation indexes. And the ST-Informer model is applied to the prediction of other pollutant

concentrations, which proves its universality.

Materials

Description of the data

Because of the rapid economic growth, dense population, and industrialization of the Beijing-

Tianjin-Hebei area, in this paper, we take the forecast of PM2.5 concentration in Beijing as an
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example. The U.S. Embassy in Beijing, China provided the hourly meteorological and pollut-

ant concentration data from 11 air quality monitoring stations in Beijing that were collected

between March 1, 2013, at 00:00 and February 28, 2017, at 23:00 (http://archive.ics.uci.edu/ml/

datasets/Beijing+Multi-Site+Air-Quality+Data). Fig 1 depicts the locations of each station,

and Table 1 lists the latitude and longitude of each station. The Aotizhongxin Center’s air qual-

ity monitoring station, which is close to all the other sites, was chosen as the central site. The

10 other sites, including Changping, that had strong correlations with the central site were

then identified by looking at the spatial and temporal correlation of the data. As shown in

Table 2, the pollutant concentration factors include the following 6 variables: PM2.5, PM10,

SO2, NO2, CO, and O3. The weather variables primarily consist of 6 variables: temperature,

atmospheric pressure, dew-point temperature, rainfall capacity, wind direction, and wind

speed.

Data preprocessing

The factors predicted in this study include pollutant concentrations (PM2.5, PM10, SO2, NO2,

CO, O3) and meteorological factors (temperature, atmospheric pressure, dew-point tempera-

ture, rainfall capacity, wind direction, wind speed). Before using this dataset as input data for

PM2.5 concentration prediction, data pre-processing is performed. The data preprocessing

mainly includes outlier testing, missing value filling, and data normalization.

1. Test for outliers

In this paper, outliers are examined using the principle of box plot, which is a statistical

graph used to display the dispersion of a set of data [31], and its structure is shown in Fig 2.

The box plot provides a criterion for identifying outliers, i.e., a value greater than or less than

the upper and lower bounds set by the box plot is considered an outlier.

The historical data collected from each air quality monitoring station were first examined

for outliers. Taking the Aotizhongxin station as an example, the image of the meteorological

data and air pollutant concentration data collected at this station after processing by the box-

Fig 1. Coordinates of air quality monitoring stations. Location map of each air quality monitoring station in Beijing.

https://doi.org/10.1371/journal.pone.0287423.g001
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line diagram principle is shown in Fig 3. The examined outliers are then marked as missing

values.

2. Missing value padding

The method for filling in the missing values in this paper is the K Nearest Neighbor Classifi-

cation (KNN) algorithm [32], which estimates the missing data by identifying K sample points

adjacent to the missing values and using the average of these K sample points. As shown in

Fig 4, a comparison graph of unprocessed and processed historical data from the air quality

Table 1. Name of air quality monitoring station.

Station Name longitude latitude

Aotizhongxin 116˚24’3.028" 39˚59’6.562"

Changping 116˚13’51.722" 40˚13’15.427"

Dingling 116˚13’32.732" 40˚17’41.435"

Dongsi 116˚24’55.862" 39˚55’46.423"

Guanyuan 116˚21’24.548" 39˚55’57.986"

Gucheng 116˚11’6.130" 39˚54’47.041"

Huairou 116˚37’55.106" 40˚19’1.211"

Nongzhanguan 116˚27’54.468" 39˚56’25.872"

Tiantan 116˚24’38.984" 39˚52’54.887"

Wanliu 116˚17’53.063" 39˚58’1.758"

Wanshouxigong 116˚17’40.420" 39˚54’34.171"

Aotizhongxin 116˚24’3.028" 39˚59’6.562"

Changping 116˚13’51.722" 40˚13’15.427"

Dingling 116˚13’32.732" 40˚17’41.435"

Dongsi 116˚24’55.862" 39˚55’46.423"

Guanyuan 116˚21’24.548" 39˚55’57.986"

Gucheng 116˚11’6.130" 39˚54’47.041"

Huairou 116˚37’55.106" 40˚19’1.211"

Nongzhanguan 116˚27’54.468" 39˚56’25.872"

Tiantan 116˚24’38.984" 39˚52’54.887"

Wanliu 116˚17’53.063" 39˚58’1.758"

Wanshouxigong 116˚17’40.420" 39˚54’34.171"

https://doi.org/10.1371/journal.pone.0287423.t001

Table 2. Attributes of the correlation factors input when the model is making predictions.

data name data type unit

PM2.5 PM2.5 Treatment serum concentration μm/m3

PM10 PM10 Treatment serum concentration μm/m3

SO2 SO2 Treatment serum concentration μm/m3

NO2 NO2 Treatment serum concentration μm/m3

CO CO Treatment serum concentration μm/m3

O3 O3 Treatment serum concentration μm/m3

TEMP temperature ˚C

PRES atmospheric pressure pa
DEWP dew-point temperature ˚C

RAIN rainfall capacity mm
WD wind direction orientation

WSPM wind speed m/s

https://doi.org/10.1371/journal.pone.0287423.t002
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monitoring sites in the Aotizhongxin clearly shows that the outliers are significantly reduced

and the data are more stable after being processed using the KNN algorithm.

3. Normalization of data

The data are then normalized [33], which is treating each feature equally by removing the

variability of values and units between feature parameters and normalizing the initial feature

data to increase prediction accuracy. The normalization expression is as follows:

xi ¼
xi � min
max � min

ð1Þ

Methods

Spatiotemporal correlation

Because meteorological elements like the wind impact air pollutants, the concentration of pol-

lutants at one site can impact the concentration of pollutants at nearby locations. Because of

Fig 2. Structure of the box line diagram. A boxplot is a statistical graph showing the distribution of one or more sets

of continuous quantitative data, the first quartile, the median, and the third quartile.

https://doi.org/10.1371/journal.pone.0287423.g002
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this, spatial and temporal correlations between the data are extracted when making predictions

of air pollutant concentrations based on data on pollutant concentrations and meteorological

data from the central and nearby locations.

To derive elements of spatiotemporal correlation, use the Pearson correlation coefficient.

The Pearson correlation coefficient is a statistic used to determine how closely two factors are

correlated linearly and to compare traits and categories. A higher absolute number denotes a

stronger correlation between the two variables, and the Pearson correlation coefficient ranges

from -1 to 1. The formula for calculating the Pearson correlation value is:

rX;Y ¼
covðX;YÞ
sXsY

¼
EððX � mXÞðY � mYÞÞ

sXsY

¼
EðXYÞ � EðXÞEðYÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX2Þ � E2ðXÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðY2Þ � E2ðYÞ

p

ð2Þ

Where X and Y represent the two variables, cov(X,Y) represents the covariance between the

two variables, and σxσy represents the standard deviation of the two variables.

In terms of extracting temporal correlation analysis, the Pearson correlation coefficient was

used to assess the degree of temporal correlation, with X and Y in the Pearson correlation coef-

ficient formula representing the values of historical data before and after a specific time inter-

val, respectively. Fig 5 shows the correlation coefficients of PM2.5 concentrations at each

station at the current time and 1–24 hours, from which it can be seen that the autocorrelation

coefficients of PM2.5 concentration values at all stations in 1–24 hours are 0.4 and above.

Hence, it is feasible to predict the future PM2.5 concentration values to the results with the

24-hour values. However, as time in-creases, the value for the autocorrelation coefficient

decreases, and when it exceeds 24 hours, the temporal correlation of the data is weaker.

Fig 3. The resulting graph of outliers is tested using a boxplot. Taking the air quality monitoring station of the Aotizhongxin as an example, this research

used the boxplot principle to test the outliers of the collected historical data.

https://doi.org/10.1371/journal.pone.0287423.g003
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There is a strong spatial correlation between air quality monitoring stations, and the Pear-

son correlation coefficient formula can also be used to calculate the correlation coefficients

between the monitoring stations in the city. Fig 6 shows the heat map of the correlation coeffi-

cients between the central station of Aotizhongxin and the rest of the neighboring stations for

each meteorological data and pollutant concentration data. From the heat map, it can be seen

that the correlation coefficients between the neighboring stations and the central station are all

greater than 0.42, the correlation between the central station and the neighboring stations is

stronger, and the stations with larger correlation coefficients are used as neighboring stations

to analyze the spatial correlation of the data.

Spatiotemporal prediction model

Informer for forecasting. The Informer model, which effectively enhances the Long

Sequence Time-Series Forecasting (LSTF) problem’s predictive power and confirms the poten-

tial utility of the Transformer-like model, is an improved version of the Transformer model.

Fig 4. Pre-processed data visualization. Comparison of meteorological data and air pollutant concentration data

before and after data preprocessing at the central station. (a) Visualization of unprocessed data. (b) Visualization of pre-

processed data.

https://doi.org/10.1371/journal.pone.0287423.g004
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Three significant issues with Transformer are addressed by Informer: complexity in quadratic

time and significant memory usage. The answer is suggested by the ProSparse Self-Attention

Mechanism, self-attention distilling, and generative style encoder.

Fig 7 depicts the Informer framework. A supervised learning model built on an attention

process is known as an informer model. Encoder and decoder are the two components that

make up the entire model. To save memory and expedite reasoning, the model enhances the

Transformer-based self-attentive mechanism.

In the scrolling prediction setting with fixed window size, the input at time point t is

xt ¼ fXt
1
; . . .;Xt

LX
Xt
d 2 R

dxg ð3Þ

The output predicts the corresponding sequence as

yt ¼ fYt
1
; . . .;Yt

Ly
Yt
d 2 R

dyg ð4Þ

1. Encoder

The architecture of the Informer’s encoder for removing reliable remote dependencies

from inputs for long-term series. The extra-long incoming data is given to the encoder

Fig 5. Time autocorrelation analysis. The autocorrelation coefficient of each station changes with time delay of 0–24 hours.

https://doi.org/10.1371/journal.pone.0287423.g005
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Fig 6. Spatial correlation analysis. Correlation coefficients of meteorological data and pollutant concentration data at

each station.

https://doi.org/10.1371/journal.pone.0287423.g006

Fig 7. Model structure of Informer. Informer model maintains encoder-decoder structure, and it adds ProbSpare

self-attention mechanism, which effectively reduces time complexity and memory usage.

https://doi.org/10.1371/journal.pone.0287423.g007
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component, as seen in Fig 7. The ProbSpare Self-Attention layer is used in lieu of the tradi-

tional Self-Attention layer in the encoder portion, and feature compression is then carried out

by the Self-Attention distilling operation. The encoder module increases the robustness of the

algorithm by stacking the two processes mentioned above.

The temporal complexity of self-attention dot product computation from optimization is

resolved by ProbSpare Self-Attention. Instead of selecting the total dot product, the dot prod-

uct computation is carried out by sampling each individual point. Allowing each person to

concentrate solely on the main allows for ProbSparse self-attention. The equation reads as fol-

lows

AðQ;K;VÞ ¼ softmax
�QKT

ffiffiffi
d
p

� �

V ð5Þ

Where Q, K, and V are three matrices of the same size obtained by a linear transformation

of the input feature variables, respectively ðQ 2 RLQ�d;K 2 RLK�d;V 2 RLV�dÞ. d is a input

dimension; �Q is obtained from Q by probabilistic sparsification; Softmax is the activation

function.

Self-Attention distilling is added as an improvement to the encoder for reducing the size of

feature maps. the Self-Attention distilling operation is used for topic compression as a natural

consequence of ProbSparse Self-attention, the encoder’s feature mapping brings about a V

redundant combinations, using distilling to privilege dominant features with dominant fea-

tures, and generating focus self-attention feature maps at the next layer.

2. Decoder

The decoder gets a long sequence of inputs and places a zero in the predicted target posi-

tion. The final stage then involves passing through the Attention layer of the Mask to produce

the anticipated output. The decoding process is described above, in which each decoder layer

conducts feature extraction operations in the target’s direction based on the input.

A two-layer stack of Multi-head attention mechanism levels makes up the decoder. Because

the future information is unknown at the time of generation, the first layer, Masked Multi-

head ProbSparse self-attention, partly masks it out. The current output is then computed using

only the prior data using the ProbSparse self-attention method. Multi-head ProbSparse self-

attention is the second phase.

The Decoder gets a long sequence of inputs and places a zero in the projected target point.

Then the predicted output is generated in the last step by passing through the Attention layer

of the Mask. Each decoder layer performs feature extraction operations in the direction of the

target based on the given input, and the above process is the decoding process. The decoder

uses the encoder’s output data to determine what the current decoding should produce in the

second layer, which is known as Multi-head ProbSparse self-attention.

ST-Informer. In this paper, an improved model based on Informer is used to capture the

spatiotemporal correlation of the data. As shown in Fig 8, the structure of the ST-Informer

model is illustrated. In the constructed prediction model, the spatiotemporal data of a region

over a while is collected as the input to the prediction task. The input data is a two-dimensional

spatiotemporal matrix X(X2RT×S×W), where T represents the time lag, and S means the air

quality monitoring station information. W represents the air pollutants and meteorological

characteristics. The input data is first input to the temporal embedding layer to extract the

temporal correlation of the data fully. The temporal embedding layer uses the location embed-

ding in the Transformer model to fully extract the temporal properties of this data. The spatial

embedding layer directly captures the spatial characteristics of the input data using the multi-
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headed self-attentive mechanism. The addition of the spatial embedding layer captures not

only the data’s static elements but also the data’s dynamic spatial dependencies. The value

embedding layer separates different timestamps to compute correlations between sites and

uses the correlations as weights to adjust the high-dimensional representation of all site input

variables. Thus, the complex interdependencies between variables and their dynamic relation-

ships are highlighted in the model. The spatial embedding layer, temporal embedding layer,

and value embedding layer data are then linked to represent a comprehensive embedding fea-

ture. In the spatiotemporal embedding layer module, the main processes implemented in each

layer are.

1. Temporal embedding layer

Fig 8. Structure diagram of ST-Informer model. A spatio-temporal embedding layer is added to the original

Informer model to fully analyze the spatiotemporal characteristics of the input data.

https://doi.org/10.1371/journal.pone.0287423.g008
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The model can represent temporal information thanks to the addition of a temporal

embedding layer. Since the data’s reliance on time is complex, we must embed not only the

sequence’s own temporal characteristics but also its position at the time of the input sequence.

Positional coding must be used to embed the data’s temporal properties while taking into con-

sideration the time series’ inherent periodicity.

PEðpos; 2iÞ ¼ sin
pos

1000

2i
dmodel

0

B
B
@

1

C
C
A

PEðpos; 2iþ 1Þ ¼ cos
pos

1000

2i
dmodel

0

B
B
@

1

C
C
A

ð6Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

dmodel refers to the dimensionality of the data after mapping through the input layer; pos refers

to the position of a mapped feature in a row of data in the input data; 2i and 2i+1 denotes the

number of rows of data; Eq (6) converts the data’s temporal order into a vector by mapping

each series’ integer index to a high-dimensional representation. The input to the final time

embedding layer is produced by extending each time features into a vectorized index for each

new timestamp. The time embedding layer functions as a lookup table, storing embeddings in

fixed hours, days, weeks, and months.

2. Spatial embedding layer

Using a multi-headed self-attentive mechanism, the spatial embedding layer immediately

captures the spatial characteristics of the input data. Each air quality tracking station’s data has

characteristics of spatial and temporal correlation, and by adding a spatial embedding layer, it

is possible to record both the static and dynamic spatial dependence of the data.

The input values (NS×NV) at each moment are first projected into a high-dimensional sub-

space utilizing a feedforward neural network.

Zt ¼ w∗Xt þ b ð7Þ

Zt is a high-dimensional representation of the input variables at moment t. Using the above

equation, the site i and site j correlation strength St,ij can be calculated using the mutual covari-

ance function as follows.

St;ij ¼ xcorrðZt;i;Zt;jÞ ð8Þ

St is obtained as a square matrix of NS×NV, representing the strength of the correlation

between the two sites at moment t. The value of the spatial embedding layer output ES at a

given moment is calculated as

ES ¼ w∗St∗Zt þ b ð9Þ

3. Value embedding layer

The value embedding module uses a one-dimensional convolution of the input dimension

dmodel to represent the input sequence in high dimension as EV. The value embedding layer cal-

culates the correlation between sites by separating the different timestamps and uses the calcu-

lation results as weights to adjust the high-dimensional representation of all site input
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variables. The value embedding does not separate timestamps. It makes use of the whole input

time series and turns it into a single, highly dimensional representation matrix to illustrate the

intricate relationships and dynamics between the model’s variables. A full embedding feature

is then represented by connecting the spatial, temporal, and value embedding layer data

XST ¼ ET � ES � EV ð10Þ

The encoder-decoder of the Informer model is then fed data from the value encoding layer

of the outputs. The Transformer model’s initial self-attention mechanism is replaced by a

multi-head probabilistic sparse self-attention mechanism in the encoder, which significantly

reduces the computational scale of the model and boosts robustness through layer-by-layer

superposition. By padding the target prediction data to zero, measuring the feature map’s

weighted attention composition, and then going through a hidden multi-head probability

sparse self-attention mechanism layer, the decoder produces the prediction output.

Results

Performance of ST-Informer

The research model in this article was built using the meteorological data and pollutant con-

centration data introduced in Beijin, with 80% of the data serving as the training set, 10% as

the test set, and 10% as the validation set. Following preprocessing, the tested outliers are

marked as missing values in the collected dataset, and the KNN algorithm is then used to fill in

the missing values.

The constructed prediction model of spatiotemporal data is used to predict the future

PM2.5 concentration values at the central location using the collected 24 hours of spatiotempo-

ral data of a particular area as the input sequence of the prediction task. By adjusting various

batch sizes, learning rates, and iterations, the ST-Informer model’s training was used in this

study to identify the ideal set of model parameters. The parameters chosen for this model in

this exercise are shown in Table 3. The Mean Absolute Error (MAE), the Root Mean Square

Error (RMSE) and the Coefficient of determination (R2)are then selected as the evaluation

indicators of the model in this study. If the MAE and RMSE are smaller and the R2 is closer to

1, it means that the model has higher prediction accuracy.

MAE ¼
1

n

Xn

i¼1

jXactðiÞ � XpredðiÞj ð11Þ

Table 3. Setting of ST-Informer model parameters.

attribute name parameter setting

Encoder stack 3\2\1

Batch size 128

training cycle 20

Dropout 0.01

optimizer Adam

learning rate 0.0001

activation function Relu

loss function MSE

https://doi.org/10.1371/journal.pone.0287423.t003
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

½XactðiÞ � XpredðiÞ�
2

n

v
u
u
u
t

ð12Þ

R2 ¼

Xn

i¼1

½XpredðiÞ � �X �2

Xn

i¼1

½XactðiÞ � �X �2
ð13Þ

in which n is the sample size of the test set; Xact(i), Xpred(i) are the true and predicted values

of PM2.5 concentration at moment i (i = 1,2,. . .,n); �X is the average of the true values of the

predicted samples.

Model comparison

Three models were chosen by the experiment for comparison with the ST-Informer model

used in this research in order to assess the models’ performance.

1. LSTM: LSTM is an RNN model with advantages over traditional neural network frame-

works and is often used for time series prediction; and adds a memory cell to determine

whether the information is valid, solving the gradient vanishing and gradient explosion

problem during training of long sequences. This improvement allows it to perform better

in longer sequences.

2. Transformer: The Transformer model is essentially a model built based on the Attention

mechanism. Attention can solve the long-range dependency problem of RNN and its vari-

ants and supports parallelized computation.

3. Informer: Informer is an improved model based on Transformer that is more suitable for

long sequence prediction. Informer aims to improve self-attentive mechanisms, reduce

memory use, and speed up inference.

The above three models were selected in order to verify the advantages of this model in

long-term prediction, we selected different times for PM2.5 concentration prediction. The

above four models were used to predict PM2.5 concentrations for the next 4 hours, 8 hours, 12

hours, 16 hours, 20 hours, and 24 hours, respectively. The optimal set of hyperparameters was

selected for each prediction model, and the results obtained were calculated for the evaluation

indexes shown in Table 4. Fig 9 shows the specific values of each evaluation index for predict-

ing different times in the future, and it can be seen in the figure that all four models’ show

good results in predicting PM2.5 concentrations at 4 hours, with the value of R2 above 0.85. As

the prediction length increases, the MAE and RMSE of all four models increase and the value

Table 4. Compare the performance of different models.

Model MAE(μg/m3) RMSE(μg/m3) R2

ST-Informer 7.50 ± 3.16 4.31 ± 2.04 0.88 ± 0.05

LSTM 12.50 ± 7.41 10.34 ± 6.65 0.80 ± 0.12

Transformer 9.34 ± 5.66 7.89 ± 4.21 0.84 ±0.06

Informer 8.91 ± 3.57 6.52 ± 3.06 0.86 ± 0.04

https://doi.org/10.1371/journal.pone.0287423.t004
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of R2 decreases. This proves that the longer the prediction time is, the error of the model

increases and the prediction becomes worse. the values of MAE and RMSE of the LSTM model

increase significantly with the increase of the prediction time compared to the other models,

and the difference between the predicted and the actual values is larger. The prediction accu-

racy of the Transformer and Informer models is lower than that of the ST-Informer model,

and the ST-Informer model does not have a sudden decrease in prediction accuracy due to the

long prediction sequences. The ST-Informer model has better prediction results than the other

models mentioned above for longer sequences.

To more visually show the advantages of the ST-Informer model in prediction, Fig 10

shows the prediction results of the four models for PM2.5 for the next 4 hours, 8 hours, 12

hours, 16 hours, 20 hours, and 24 hours, respectively. The PM2.5 concentrations were pre-

dicted from 0:00 a.m. on January 1 to 12:00 a.m. on January 3, 2017 (a total of 60 hours), and it

can be seen from the figure that the predicted PM2.5 concentrations using the ST-Informer

model are closer to the true values, and the model can more fully extract the spatial and tempo-

ral characteristics of the data. As the predicted future PM2.5 concentrations increase in time,

the ST-Informer model shows better performance, and the model can capture the sudden

changes in the predicted values more accurately and has better prediction results.

Fig 9. The value of the model evaluation index. The values of the evaluation indicators obtained by predicting PM2.5

in different models.

https://doi.org/10.1371/journal.pone.0287423.g009

Fig 10. The results of four models to predict PM2.5 concentration in different time periods in the future. (a) The results of four models predicting PM2.5

concentrations over the next 4 hours; (b) The results of four models predicting PM2.5 concentrations over the next 8 hours; (c) The results of four models

predicting PM2.5 concentrations over the next 12 hours; (d) The results of four models predicting PM2.5 concentrations over the next 16 hours; (e) The results

of four models predicting PM2.5 concentrations over the next 20 hours; (f) The results of four models predicting PM2.5 concentrations over the next 24 hours.

https://doi.org/10.1371/journal.pone.0287423.g010
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Application of pollutant concentration prediction

To further analyze the generalizability of the ST-Informer model, the model was used to pre-

dict the concentration values of other pollutants. This paper selected four atmospheric pollut-

ants, O3, SO2, NO2, and PM10, as targets for prediction. O3, SO2, NO2, and PM10 are also

significant components of atmospheric pollutants, and these pollutants are also extremely

harmful to the environment [34–36], so predicting the concentrations of these pollutants also

has important practical significance. In past studies, many scholars contended that the predic-

tion of these four pollutants had been studied separately, and all of them have achieved good

prediction results. In this paper, in investigating the generalizability of the ST-Informer model,

the model was trained with the four pollutant concentrations as the output of the model, and

the optimal parameter set of the model was selected. The final prediction results of the model

are shown in Fig 11. It can be seen that the ST-Informer model also achieves good results in

the prediction experiments of other pollutant concentrations. It is proved that the ST-Informer

model can be used to solve various complex spatiotemporal prediction problems.

Discussion

This study aims to combine deep learning models to develop a prediction model for spatial

and temporal data, through which PM2.5 concentrations can be accurately predicted to provide

data support for relevant departments for PM2.5 management. Specifically, this paper does the

following work: (1) Taking Beijing as an example, meteorological data and pollutant concen-

tration data from several stations in the city are integrated. And the data set is finely pre-pro-

cessed to make sufficient preparation for the input of the subsequent prediction model and

effectively improve the prediction ability of the model. (2) The multidimensional historical

meteorological data and pollutant concentration data were analyzed for spatial and temporal

correlation, and the dynamic multivariate dependence of the data in space and time was ana-

lyzed. (3) Capturing the highly dynamic spatiotemporal dependence in the data. A

Fig 11. Predicted results of other air pollutant concentrations. The ST-Informer model was used to predict 60-hour other air pollutant concentrations. (a)

The results of the O3 concentration prediction. (b) The results of the SO2 concentration prediction. (c) The results of the NO2 concentration prediction. (d)

The results of the PM10 concentration prediction.

https://doi.org/10.1371/journal.pone.0287423.g011
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SpatioTemporal-Informer (ST-Informer) model is proposed, which utilizes independent tem-

poral and spatial embedding layers to process the input data and capture the complex spatio-

temporal properties of the data, and the model’s unique ProbSpare Self-Attention mechanism

is used to focus on extracting data across time, spatial and multidimensional information of

the data. In this study, the research results in the attention mechanism are applied to the spa-

tiotemporal data prediction task, and a novel PM2.5 concentration prediction model combin-

ing spatial location, temporal variation and contextual information is proposed, which

provides a new idea for PM2.5 concentration prediction.

In the process of verifying the performance of the ST-Informer model, three more typical

deep learning models, LSTM, Transformer and Informer, were selected for comparative analy-

sis. The mean absolute error MAE, root mean square error RMSE and coefficient of determi-

nation R2 were selected as the evaluation indexes of the models in this study. According to the

experimental results, the ST-Informer model has higher prediction accuracy compared with

the other three comparison models when predicting PM2.5 concentrations of different time

durations. In the face of sudden and abrupt changes in PM2.5 concentration values, the other

comparison models tend to produce erroneous analyses and the prediction results have large

errors with the true values, while the ST-Informer model can more sensitively sense large

changes in the predicted data. Secondly, to study the generalizability of the ST-Informer

model, this paper also applies the model to the prediction of other pollutant concentrations,

such as O3, SO2, NO2, and PM10, and compared with the prediction of other pollutant concen-

trations, the real value of SO2 is smoother and the model effect is significant, while for the pre-

diction of other pollutant concentrations, the prediction results of ST-Informer model are

closer to the prediction results of ST-Informer model are also close to the real results.

The model still needs further improvement in the future: (1) In predicting PM2.5 concentra-

tions, the influencing factors are not sufficiently considered, and the influence of factors such

as geographical environment is not taken into account. (2) This study only predicted the PM2.5

concentration data in a few cities, and the migration analysis of the model is not comprehen-

sive enough. In future work, the ST-Informer model can be applied to predict pollutant con-

centrations in multiple regions. In addition, the model can also be applied to other studies of

spatiotemporal data prediction.

Conclusion

This study proposes a spatiotemporal prediction model: SpatioTemporal-Informer (ST-Infor-

mer), which is used to cope with the accurate prediction of fine particulate matter PM2.5 in the

air. The model introduces a spatiotemporal embedding layer, which calculates the temporal,

spatial, and value embedding layers separately and analyzes the data temporal and spatial cor-

relations independently. In addition, the model applies the ProbSparse Self-Attention mecha-

nism, which may contribute to a more focused analysis of the complex dynamic spatial and

temporal variation characteristics of PM2.5 concentrations. In this paper, the ST-Informer

model is applied to predict PM2.5 concentration at a site in Beijing. The selected influencing

factors include meteorological factors and air pollutant concentration factors. The historical

data of adjacent areas are used to predict the future PM2.5 concentration values, and the ideal

prediction results are achieved. In the experiments of predicting PM2.5 concentration, the pre-

diction results of the ST-Informer model proposed in this paper are significantly better than

those of the LSTM, Transformer, and Informer models

ðMAE � 7:50mg=m3;RMSE � 4:31mg=m3;R2 � 0:88Þ. In addition, the ST-Informer model

can more thoroughly analyze the nonlinear relationship between the data and more sharply

detect sudden changes in PM2.5 concentration values and identify the peaks of the data. In
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addition, the model is more generalizable and has been applied to predicting other pollutant

concentrations with good results. The ST-Informer model can be applied to prediction prob-

lems with complex spatial and temporal characteristics and can also effectively identify peak

spikes or pits due to various factors. The results of this study provide data support for the

national control of air pollution. Relevant departments can make corresponding air pollution

control measures based on the results of this study according to local conditions.
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