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Abstract

Link prediction in complex network is an important issue in network science. Recently, vari-

ous structure-based similarity methods have been proposed. Most of algorithms are used to

analyze the topology of the network, and to judge whether there is any connection between

nodes by calculating the similarity of two nodes. However, it is necessary to get the extra

attribute information of the node in advance, which is very difficult. Compared to the difficulty

in obtaining the attribute information of the node itself, the topology of the network is easy to

obtain, and the structure of the network is an inherent attribute of the network and is more

reliable. The proposed method measures kinds of similarity between nodes based on non-

trivial eigenvectors of Laplacian Matrix of the network, such as Euclidean distance, Manhat-

tan distance and Angular distance. Then the classical machine learning algorithm can be

used for classification prediction (two classification in this case), so as to achieve the pur-

pose of link prediction. Based on this process, a spectral analysis-based link prediction algo-

rithm is proposed, and named it LPbSA (Link Prediction based on Spectral Analysis). The

experimental results on seven real-world networks demonstrated that LPbSA has better

performance on Accuracy, Precision, Receiver Operating Curve(ROC), area under the

ROC curve(AUC), Precision and Recall curve(PR curve) and balanced F Score(F-score

curve) evaluation metrics than other ten classic methods.

Introduction

The purpose of link prediction is to detect the missing links or forecast the future links based

on the existing properties and structural topologies of the observed networks [1]. Link predic-

tion includes prediction of unknown links and future links [2], it has important theoretical

and practical significance. We can identify the spurious links in network, extract the implicit

information. Furthermore, it helps us to model and evaluate the evolution mechanisms of net-

work [3]. So far, link prediction has great practical applications in many areas, e.g., drug repo-

sitioning in biological networks [4], discovering underground criminal groups in terrorist

networks [2], uncovering the disease relationships [5], finding new friends in social networks

[6, 7], recommending the favorite goods for customers in online shopping systems [8], and

predicting the potential collaborators in citation networks [9].

One of major type of approaches for link prediction is learning-based method. Such as

classification-based method [10, 11], matrix factorization-based method [12, 13] and
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probabilistic model-based method [14–16]. All these methods have good performance, but

they are time-consuming in constructing training data set. Another major type of approaches

is similarity metric-based method [2, 3 17, 18], which is a simple and mainstream approach

for link prediction. The similarity metric-based methods regard as that if two nodes are simi-

lar in attributes or network structure attributes, then they will form links with high probability

[2]. However, the similarity metric-based methods based on node attributes often oriented

towards specific contexts, which limits the scope of application in various networks. Besides,

node attributes are difficult to obtain as they are always hidden or confidential. In contrast,

the topology of the network is readily available which has good general adaptability with low

computational complexity. So the structure-based similarity methods have been widely

explored. A variety of topologies are employed to achieve good accuracy of link prediction,

such as node degree, node centrality, neighborhood, clustering coefficient, community as well

as path, and so on. Structure topology methods are more general to measure pair nodes simi-

larity in networks. In the literature, lots of efforts have been devoted to node similarities [19],

which are the attributes of common edge between two nodes. In the [20] article, an effective

method for improving local random walks has been proposed, which encourages random

walks to move towards nodes with greater impact at each step. Therefore, the next node is

selected based on the influence of the source node. It considers the nodes that interact with

each other and considers the neighboring nodes that interact with each other during the pro-

cess of randomly walking to the next step, and randomly walks towards the nodes that are

affected by the source node. The method do not require obtaining additional information

about nodes in the network, but only use information about the network topology to predict

whether there is a link between nodes. The probability of common edge between node pairs

in the same community is greater than node pairs in different communities. The community

structure has an influence on link prediction. [21] proposed a novel Non-negative Matrix Fac-

torization (NMF) based algorithm called Graph regularized nonnegative matrix tri-factoriza-

tion (GNMTF) model, which incorporates the intrinsic geometrical properties of the network

graph by manifold regularization. Some of similarity measures such as SimRank [22] can be

employed to calculate the similarity of an edge between a pair of nodes by only considering

the topological structure in contrast to text-based similarity measure that consider the node

content for similarity computation [23–25].

The link prediction model based on machine learning not only utilizes the structural infor-

mation of the network, but also utilizes the attribute information of nodes in the network. This

type of algorithm transforms link prediction into supervised classification or regression pre-

diction problems by extracting the attribute features of various matrices in the network, and

then various classic machine learning algorithms can be used. The matrix of the network, such

as adjacency matrix and Laplacian matrix, is easy to obtain, but the use of machine learning

algorithms requires the attributes of nodes. For example, in a shopping network, nodes repre-

sent shoppers or customers. Most customer information is confidential, and only relevant

information about customers’ shopping can be obtained on the website. Such information is

very limited, and its role in classification and regression is also limited; In protein interaction

networks, the properties of proteins themselves are even more difficult to obtain; Various

social networks have almost zero node information. Without node information, machine

learning algorithms cannot perform classification predictions. Therefore, it can be said that

the difficulty of link prediction based on machine learning is focused on how to obtain node

attribute. One of the most important work is to calculate the similarity between nodes for the

research of complex network structure. The methods include Jaccard Index based method

[26–28], Euclidean distance, Manhattan distance, Angular distance and so on. Jaccard Index

computes the similarity between nodes with a common edge, it is 0 if the two nodes share no
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common edge. The disadvantage of this method is that it only focuses on node pairs with com-

mon edges and ignores node pairs without common edges. Manhattan distance and Euclidean

distance depend on the length of the line segment connecting the two nodes. Angular distance

is another commonly used metric, and measures similarity as the angle between two vectors.

Spectral analysis can be used for spectral clustering by using the eigenvectors of matrices [29].

It is easy to get matrices such as Adjacency matrix, Degree matrix, Laplacian matrix based on

the topological structure of network. Spectral analysis considers the non-trivial eigenvector of

Laplacian matrix. Each component of the minimum non-trivial eigenvector of the Laplacian

matrix corresponds to a node in one network. Therefore, the non-trivial eigenvector can

exactly be the attribute of the corresponding node, and the similarity between the pair nodes

can be obtained by calculating the distance of the non-trivial eigenvector. In spite of the cur-

rent work of similarity methods, we used spectral analysis for link prediction for the first time

and proposed a method named LPbSA (link prediction based on spectral analysis). In this

manuscript, we focus on the structure-based similarity methods and pay special attention to

the similarity of node pairs based on Laplacian matrix. Different from the traditional method

that node attributes are employed for link prediction, we get edge attributes and use the classi-

fication prediction methods of machine learning to classify the edges according to their attri-

butes. Since the actual networks are usually sparse networks, the resulting edge data sets are

unbalanced data sets [30]. SMOTE(Synthetic minority over-sampling technique) is employed

to equilibrate the unbalanced data sets, and classification and prediction are executed on bal-

anced data sets.

The rest of the manuscript is organized as follows. The related work of spectral analysis

knowledge and unbalanced data set are introduced in section Related work. I introduced base-

lines and metrics for experiment in section Baselines and metrics. The description and pseudo

code of the proposed LPbSA is given in section Description of LPbSA algorithm. The experi-

ment preparation such as experimental networks, preparation of data sets and the choice of

classifier are introduced in section Experiment preparation. The experimental analysis are

given in section Experimental results and analysis. The conclusion of the article is in section

Conclusion.

Related work

The meanings of the symbols used in manuscript are shown in Table 1.

Table 1. The commonly used symbols.

Parameters Meanings Parameters Meanings

N number of nodes in the network M number of edges in the network

N(G) the node set of G E(G) the edge set of G
A the adjacency matrix of G D the degree matrix of G
L(G) the Laplacian matrix of G Γ(i) the neighbor set of node i
Γ(j) the neighbor set of node j k(i) the degree of node i
k(j) the degree of node j (An)ij path size with length n between nodes i and j
λ1 maximum eigenvalue of matrix A β weight attenuation factor

ϕ a parameter less than 1 α an adjustable parameter

lþij the value of the element in the corresponding position in matrix L+ L+ pseudo inverse of Laplacian matrix L

L+ pseudo inverse of Laplacian matrix L qi initial resource distribution of node

Pij = aij/ki probability of particle i will go to node j in the next step j paths<l>
ij j the number of paths with length l between i and j

πij(t) probability that the particle exactly right walk from node i to node j at time t + 1 qij probability of particle i eventually walked to node j

https://doi.org/10.1371/journal.pone.0287385.t001
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Spectral analysis

The main content of this manuscript is to show how spectral analysis is used to achieve link

prediction in all kinds of network. Spectral analysis is one of methods based on the properties

of the spectrum of the matrix. By far, the most used matrix in spectral analysis is the Laplacian.

The components of the non-trivial eigenvector of the Laplacian matrix exactly correspond to

each node of the network, so the change of representation induced by the eigenvector makes

the node attributes of the initial data set much more evident. Spectral clustering is one of the

most important methods for community detection. We innovatively use spectral analysis for

link prediction. The graph used in this manuscript are simple, un-weighted and undirected.

Let G = (N, E) be a graph with node set N(G) and edge set E(G). We set n = |N(G)| and m = |E
(G)|. The adjacency matrix of network G is denoted by A whose element aij is defined as fol-

lows:

aij ¼
1; if < vi; vj > is an edge of G

0; otherwise

(

ð1Þ

The degree matrix of network G is denoted by D whose element dij is defined as follows:

dij ¼
degðviÞ; if i ¼ j

0; otherwise

(

ð2Þ

where the degree deg(vi) of a node counts the number of times an edge terminates at that

node. D is a n × n diagonal matrix.

The topology of a network with n nodes can be shown by a symmetric n × n Laplacian

matrix. The Laplacian matrix L(G) of graph G can be calculated as follows:

LðGÞ ¼ DðGÞ � AðGÞ ð3Þ

Unbalanced data sets

Classification with unbalanced data sets was listed as one of the top ten challenging problem in

the field of data mining in 2005 ICDM(International Conference on Data Mining series).

Most of the real world networks are sparse. Table 2 shows full connection edge number and

actual edge number of seven networks used in experiment. It can be seen the smallest unbal-

anced rate is 19:1. In general, standard classifiers are developed to maximum a global measure

of accurate, which has nothing to do with the class distribution. Classification of unbalanced

data sets usually leads to a preference for the majority class, but less attention is paid to the

minority class [31]. As a result, the minority class produce more error-prone than the majority

Table 2. Full connection edge number and actual edge number of seven networks.

Networks Node size Full connection edge number Actual edge number Unbalanced rate

USAir 332 54946 2126 25:1

Politic Blogs 1222 746031 16714 44:1

NetScience 1589 71631 2742 77:1

PPI 2375 2819125 11693 240:1

Power Grid 4941 12204270 6954 1755:1

Router 5022 12607731 6258 2014:1

Celegans 297 43956 2148 19:1

https://doi.org/10.1371/journal.pone.0287385.t002
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one, as a large proportion of errors are concentrated in the minority class [32]. When one of

the classes is heavily overpowered by the other one, the binary class data set is said to be unbal-

anced. We call the one having fewer of the number of samples as the minority class and the

other one having more of the number of samples as the majority class. In this case, standard

classification algorithms usually show a tilt to the majority class.

A lot of methods are proposed in order to solve the problem of unbalanced data sets clas-

sification. These methods can be roughly divided into two categories. For unbalanced data

sets, random undersampling Undersampling [33] and oversampling SMOTE(Synthetic

Minority Over-Sampling Technique, SMOTE) [34] are two common data collection solu-

tions. The sampling algorithm changes the category distribution of samples through a cer-

tain strategy to achieve the purpose of transforming unbalanced samples into relatively

balanced samples. Undersampling randomly selects a small number of samples from the

majority classes, and then combines the original minority samples as a new experimental

data set. This method modifies the sample classification distribution by changing the sample

proportion of majority classes. SMOTE algorithm first assumes that the samples between

the close minority classes are still minority classes. Its idea is to synthesize new minority

class samples. The synthesis strategy is to randomly select a sample t from its nearest neigh-

bor for each minority class sample s, and then randomly select a point on the line between s
and t as the newly synthesized “artificial” minority class sample, these three samples belong

to the same category. As shown in Fig 1, which is the sample synthesis process of SMOTE

method.

Let the sampling rate be m, for each minority sample xi, find out its k nearest neighbors,

and select m nearest neighbors randomly yij (j = 1, 2, . . ., m), synthesize a new minority sample

Fig 1. The sample composition of SMOTE [34].

https://doi.org/10.1371/journal.pone.0287385.g001

PLOS ONE Link prediction based on spectral analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0287385 January 2, 2024 5 / 22

https://doi.org/10.1371/journal.pone.0287385.g001
https://doi.org/10.1371/journal.pone.0287385


zj (j = 1, 2, . . ., m) according to formula (4).

zj ¼ xi þ randð0; 1Þ ∗ ðyij � xiÞ ð4Þ

where rand(0, 1) in the formula represents a random number between (0, 1).

Baselines and metrics

Comparison baselines

In order to evaluate the accuracy of the LPbSA method, we chose eighteen baselines for perfor-

mance comparison based on six widely used metrics. In the following Eqs (5) to (23), Sij repre-

sents the similarity of two nodes, Γ(i) represents the neighbor set of node i, Γ(j) represents the

neighbor set of node j. k(i) means the degree of node i, k(j) means the degree of node j.
(1)CN [35, 36] (common neighbor index). This index counts the number of all common

neighbors as similarity score and is defined as follows:

SCN
ij ¼j GðiÞ

T
GðjÞ j ð5Þ

(2)Salton [37]. This index is the number of common neighbors of two nodes divided by the

square root of the product of two nodes’ degree.

Sij ¼
j GðiÞ

T
GðjÞ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðiÞ � kðjÞ

p ð6Þ

(3)Jaccard [38]. This index is the sum of the number of common neighbors of two nodes

divided by the number of all their neighbors.

Sij ¼
j GðiÞ

T
GðjÞ j

j GðiÞ
S
GðjÞ j

ð7Þ

(4)Sorensen [39]. This index is the sum of twice the number of two nodes’ co-neighbors

divided by the sum of two nodes’ degree.

Sij ¼
2 j GðiÞ

T
GðjÞ j

kðiÞ þ kðjÞ
ð8Þ

(5)HPI [40] (hub promoted index). This index is the number of common neighbors of two

nodes divided by the smaller degree of them.

Sij ¼
j GðiÞ

T
GðjÞ j

minfkðiÞ; kðjÞg
ð9Þ

(6)HDI [41] (Leicht-Holme-Newman-I index). This index is the number of common

neighbors of two nodes divided by the product of two nodes’ degree.

Sij ¼
j GðiÞ

T
GðjÞ j

maxfkðiÞ; kðjÞg
ð10Þ

(7) LHN-I [26] (Leicht-Holme-Newman-I index). This index is the number of common

neighbors of two nodes divided by the product of two nodes’ degree.

Sij ¼
j GðiÞ

T
GðjÞ j

kðiÞ � kðjÞ
ð11Þ
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(8)LHN-II [26] (Leicht-Holme-Newman-II index). This index takes into account all the

paths between nodes, but gives different weights to different paths. Generally, short paths have

a higher weight and longer paths have smaller weights. It is defined as follows:

S ¼ bA=EðAÞ þ b2A2=EðAÞ2 þ b3A3=EðAÞ3 þ . . . ¼ Ml1D� 1ðI � �A=l1Þ
� 1D� 1 ð12Þ

where β is weight the attenuation factor, A is the adjacency matrix of network, (An)ij represents

the path size with length n between nodes i and j,D is the degree matrix, E½ðAnÞij� ¼
kikj
M l

n� 1

1
is

the expected value with length n between nodes i and j. ϕ is a parameter less than 1. λ1 is the

maximum eigenvalue of matrix A.

(9)PA [42] (preferential attachment index). This index is the product of two nodes’ degree.

Sij ¼ kðiÞ � kðjÞ ð13Þ

(10)AA [43] (Adamin-Adar index). This index is a variant of CN, which draws a distinction

among common neighbors.

Sij ¼ Sz2GðiÞ
T

GðjÞ

1

logkðzÞ
ð14Þ

where k(z) is the degree of node z.

(11)RA [41] (resource allocation index). Motivated by the resource allocation mechanism

on networks, this index punishes the large degrees of common neighbors more heavily than

AA.

Sij ¼ Sz2GðiÞ
T

GðjÞ

1

kðzÞ
ð15Þ

(12)LP [44] (local path). This index only counts the number of paths with length 2 and 3

between two nodes and is defined as follows:

S ¼ A2 þ aA3 ð16Þ

where α is a free parameter.

(13)LP* [41]. The result of LP is obtained at the optimal parameter α, and the result of LP*
is obtained at a fixed parameter α = 0.01.

(14)Katz [45]. This index considers all paths between two nodes and assigns less weights to

longer paths. It is defined as follows:

Sij ¼ S1l¼1
b

l
� j paths<l>

ij j¼ bAij þ b
2
ðA2Þij þ b

3
ðA3Þij þ � � � ð17Þ

where A is the adjacency matrix of network and j paths<l>
ij j is the number of paths with length

l between i and j. β is a tunable parameter that is always fixed at a very small value. If β is lower

than the reciprocal of the maximum eigenvalue of adjacent matrix A, this index can be rede-

fined as S = (I − βA)−1 − I.
(15)ACT [46] (average commute time). This index defines the similarity by calculating the

average commute time between nodes, and the smaller the average commuting time for both

nodes, the more similar they are. The numerical solution of the average commuting time can

be obtained by solving the pseudo-inverse L+ of the Laplacian matrix corresponding to the net-

work. It is defined as follows:

tði; jÞ ¼ Mðlþii þ lþjj � 2lþij Þ ð18Þ

where lþij represents the value of the element in the corresponding position in matrix L+. M is
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the number of edges of the network. Based on the observed agglomeration effect of the net-

work, the nearer the nodes are, the more likely they are to produce the connected edges. The

similarity based on the average commuting time ACT is defined as follows:

SACT
ij ¼

1

lþii þ lþjj � 2lþij
ð19Þ

(16)RWR [47] (random walk with restart). RWR first assumes that random walked particles

return to the initial node with a certain probability for each step taken. Based on this assump-

tion, the probability vector of particle i arriving at other nodes at t + 1 moment is defined as

follows:

qiðt þ 1Þ ¼ cPTqiðtÞ þ ð1 � cÞei ð20Þ

where qij is the probability of particle i eventually walked to node j. P is the Markov probability

transfer matrix of the network. Pij = aij/ki is the probability of particle i will go to node j in the

next step. The element aij = 1 if there is an edge between nodes i and j, and 0 otherwise. (1 − c)
is the probability of particle return. ei is a one-dimensional vector and only the i − th element

is 1, the rest of the elements are zero. The similarity of RWR is defined as follows:

SRWR
ij ¼ qij þ qji ð21Þ

(17)LRW [48] (local random walk). LRW only care about the number of random walking

steps. The similarity of LWR is defined as follows:

SLRW
ij ¼ qi � pijðtÞ þ qj � pjiðtÞ ð22Þ

where πij(t) is the probability that the particle exactly right walk from node i to node j at time t
+ 1. πi(0) is a N × 1 dimensional vector and only the i − th element is 1, the rest of the elements

are zero. qi is the initial resource distribution of node.

(18)SRW [48] (superposed random walk). SRW is the sum of the t − th step of SRW and its

previous results. The similarity of SRW is defined as follows:

SSRW
ij ¼ St

l¼1
sLRWij ðlÞ ¼ qiS

t
l¼1
pijðlÞ þ qjS

t
l¼1
pjiðlÞ ð23Þ

The meaning of the parameter is the same as that of Eq 22.

Evaluation metrics

The operation object of link prediction is the network that can be transformed into graph.

Consider a simple network G(V, E) be a graph with vertex set V and edge set E, let U denotes

all possible edges of G and includes E. In order to test the accuracy of predictors, all possible

edges U are randomly divided into two parts: one part is training set UT and the other part is

testing set UP. Link prediction is to predict the possibility of generating edges between two

nodes through known network structure information. UT is regarded as the foregone informa-

tion of network, while UP is used to validate the accuracy of classifier and does not used to par-

ticipate in the prediction procedure. The set of edges for machine learning classification

prediction has the following relation: UTS UP = U = n × (n − 1)/2 and UTT UP = ϕ, where n
is the node size of G. Seven metrics such as Accuracy, Precision, Recall, AUC, ROC curve, PR

curve and F-Score are used to measure the prediction accuracy. Confusion matrix [49] is a spe-

cific table layout which allows visualization of the performance of algorithm as show in

Table 3.
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TP means true positive, which refers to the positive case that is correctly classified by the

model. TN means true negative, which refers to the negative case that is correctly classified by

the model. FP means false positive, which refers to the negative case that is incorrectly classi-

fied as positive by the model. FN means false negative, which refers to the positive case that is

incorrectly classified as negative by the model. The evaluation metrics are described as follows:

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð24Þ

Precision ¼
TP

TP þ FP
ð25Þ

AUC ¼
Z 1

0

TPRdFPR ¼
1

ðTP þ FNÞðTN þ FPÞ

Z 1

0

TPdFP ð26Þ

Recall ¼
TP

TP þ FN
ð27Þ

F � Score ¼
Precision ∗ Recall ∗ 2

Precisiþ Recall
ð28Þ

AUC can directly see the performance of the classifier through an accurate value. AUC rep-

resents the area under the ROC. The AUC value range is between 0 and 1. The larger the AUC

value, the higher the accuracy of the algorithm. Therefore, the ideal value of AUC is 1. How-

ever, such an ideal classifier does not exist. Generally, when the AUC value is greater than 0.5,

it means that the classification result of the classifier is better than the random classification

result. In addition to these five numerical evaluation indicators, we used ROC(Receiver Oper-

ating Curve), PR(Precision and Recall curve) and F-Score curve to show the results of classifi-

cation prediction in a two-dimensional space by graphical way. ROC is a method to display

classification prediction results in a two-dimensional space. The abscissa is FPR(False Positive

Rate), and the ordinate is TPR(True Positive Rate), where FPR = FP/(TN+FP) is the propor-

tion of positive samples which are incorrectly divided, TPR = TP/(TP+FN) is the proportion

of positive samples which are correctly divided, and the coordinates of ROC curve (0, 1) indi-

cate that all samples are correctly divided. ROC does not have an accurate value to reflect the

accuracy, so it cannot directly reflect the performance of the classifier. In PR curve, P repre-

sents precision and R represents recall. It represents the relationship between accuracy and

recall. Generally, recall is set as abscissa and precision as ordinate.

The similarity definition between nodes

It is necessary to calculate the similarity between each node pairs for link prediction. We mea-

sure three kinds of similarity based on non-trivial eigenvectors of Laplacian Matrix of network,

such as Euclidean distance, Manhattan distance and Angular distance. All these distance are

Table 3. Confusion matrix of four terms of measure.

Prediction outcome Total

Actual value TP FP P

FN TN N

Total P’ N’

https://doi.org/10.1371/journal.pone.0287385.t003
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the attributes of common edge. Given the two data points A = (a1, a2, . . ., an) and B = (b1, b2,

. . ., bn), the Euclidean distance is defined as:

dE
AB ¼

Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðak � bkÞ
2

q

ð29Þ

the Manhattan distance of the two data points is defined as:

dM
AB ¼

Xn

k¼1

jðak � bkÞj ð30Þ

the cosine value of the two data points is defined by formula:

cosð~A;~BÞ ¼
~ak �

~bk

k~akkk
~bkk

ð31Þ

in practical application, the inverse cosine is used to implement the comparison between

objects instead of cosine value. The Angular distance of the two data points is defined as:

dA
AB ¼ arccos

~ak �
~bk

k~akkk
~bkk

ð32Þ

Manhattan distance and Euclidean distance depend on the length of the line segment con-

necting the two nodes(called absolute values). Angular distance is a commonly used metric

which measures similarity as the angle between two vectors. These three methods have their

own advantages and disadvantages. They can learn from each other to make the acquired attri-

bute values more comprehensive.

Description of LPbSA algorithm

With the similarity calculation based on Laplacian matrix is introduced, spectral analysis is

employed for link prediction. We named this method as LPbSA. The pseudocode of LPbSA is

shown in Table 4. To clarify the steps of the algorithm, I select a small network to demonstrate

the results of the algorithm step by step. You can see the detailed steps in S1 Appendix.

Experiment preparation

Experimental networks

There are seven real world networks from various fields with different structures are consid-

ered in experiment. The basic topological attributes of networks are given in Table 5. In our

experiments, the giant component of each network is only considered. The descriptions of

these seven networks are as follows: (1) USAir [50] : a network records the routes of a certain

period of the United States; (2) Politic Blogs [51]: an US political blog network; (3) NetScience

[52]: a network of scientists on network theory and experiment; (4) PPI [53]: a protein-protein

interaction network of yeast; (5) Power Grid [54]: a power grid network of the western US; (6)

Router [55]: a snapshot of the Internet autonomous system; (7) Celegans [56]: a neural net-

work of the nematode Caenorhabditis elegans.

Preparation of data set

SMOTE method is used to balance the number of edges of the data set. SMOTE is proposed in

order to solve the shortage of random sampling. It combines the newly synthesized minority
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sample with the sampled majority sample to obtain a relatively balanced new data set, which

lays a foundation for the bisectional modeling of unbalanced data set. There is no definitive

conclusion as to how much the unbalanced rate can achieve good classification results [57].

Table 6 is the parameter selection for seven data sets. Specific explanation on the two parame-

ters is as follows: assume that the original data set consist of N minority samples and M

Table 4. Pseudocode of LPbSA.

Input: Network G
1: p number of nodes in G
2: D degree matrix of G
3: A adjacency matrix of G
4: Laplacian(G) D − A
5: vec1, vec2,vec3 the minimum three nontrivial eigenvectors of Laplacian(G)

6: for i in 1 : p, do

7: for j in 1 : p, do

8: a. Attr1,Attr2,Attr3 Euclidean Distance, Manhattan Distance and Angular Distance of vec1 and vec2
9: b. Attr4,Attr5,Attr6 Euclidean Distance, Manhattan Distance and Angular Distance of vec1, vec2 and vec3
10: endfor

11: endfor

12: cla=[]

13: for i in 1 : p, do

14: for j in (i + 1) : p, do

15: cla=cla+A[i][j]

16: endfor

17: endfor

18: combine attr1, attr2, attr3, attr4, attr5, attr6 and cla as a newdataset
19: use SMOTE method to get the balanced data set
20: use RF for the classification prediction on the balanced data set
Output: the classification results of the balanced data set

Note: attr1, attr2, attr3, attr4, attr5, attr6 are the six columns of attribute and cla is the column of classification value

of new data set

https://doi.org/10.1371/journal.pone.0287385.t004

Table 5. The topology attributes of seven networks.

Network N M LCS C MC H <k>

USAir 332 2126 332/1 0.749 -0.208 3.46 12.80723

Politic Blogs 1224 19090 1222/2 0.361 -0.079 3.13 27.35516

NetScience 1589 2742 379/268 0.878 0.462 1.85 4.823219

PPI 2617 11855 2375/92 0.387 0.461 3.73 9.846737

Power Grid 4941 6954 4941/1 0.107 0.003 1.45 2.669095

Router 5022 6258 5022/1 0.033 -0.138 5.05 2.492234

Celegans 297 2148 297/1 0.308 -0.163 1.801 15.88552

Note: N is the node size. M is the link size. LCS is the largest connected subset. C is the average clustering coefficient. MC is the matching coefficient. H is the network

heterogeneity. <k> is the average degree of nodes.

https://doi.org/10.1371/journal.pone.0287385.t005

Table 6. The value of parameter.

Network Celegans PPI NetScience PowerGrid Politic Blogs Router USAir

perc.over 150 40 150 180 15 200 150

perc.under 240 350 200 200 400 150 200

https://doi.org/10.1371/journal.pone.0287385.t006
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majority samples, two parameters perc.over = a, perc.under = b. First, increase the size of

minority samples, about a/100 new samples are added to each sample, there are a total of a*N/

100 new minority class samples are added. Put the original minority class sample and the new

minority class sample into the new data set. Then sample the majority sample, the sample size

is (b/100) * a *N/100, get a new majority sample, put the new majority sample into the new

data set. The minority size sample is (1 + a/100) * N, and the majority size sample is (b/100) * a

*N/100. The two parameter values perc.over and perc.under are obtained through experi-

ments over and over again. The purpose of using these two parameters is to obtain a balanced

data set using the SMOTE method. Due to the different imbalance rates of each data set, there

is no unified parameter setting method to obtain a balanced data set. Table 7 shows the num-

ber of edges that the network contains before and after the SMOTE method is used.

The balanced data sets are the experimental data sets, which are divided into training set

and testing set. The training set occupies 70% and the testing set occupies 30%. We use R lan-

guage to carry out experiment. The Random Forest algorithm uses the RF package of R, in

which the number of growing trees is set as 100, and the ratio of training set to testing set is 7 :

3. The hardware environment is Intel (R) Core i7–4790 CPU @ 3.60GHz, memory is 8G, oper-

ating system is Microsoft Windows 7 64-bit. We finished the whole experiments by using free

software named RStudio. The methodology is implemented in RStudio freely available for the

interested users. First we download R3.4.1 from URL https://www.r-project.org/.RStudio is an

active member of the R community, which makes R easier to use. It includes a code editor,

debugging and visualization. We draw all graphs in this manufacture based on RStudio. In

order to get more accurate experimental results, each experiment of data set is repeated 20

times.

The choice of classifier

The data sets processed by Undersampling and SMOTE should be classified and predicted.

The experiment compares the prediction results of five popular classifiers: Random Forest

(abbreviated as RF) [58], Decision Tree(abbreviated as DT) [59, 60], K-nearest neighbor

(abbreviated as KNN) [61], Support Vector Machine(abbreviated as SVM) [62, 63] and Neural

Network(abbreviated as nnet) [64, 65]. Table 8 shows the results of Accuracy, Precision, AUC,

Recall and F-score values obtained from RF classification prediction. For each evaluation

index, the data sets processed by SMOTE method get better results than the ones processed by

Undersampling. Because the Undersampling method discards some samples of the original

data set, resulting in the loss of valuable information, while the SMOTE method makes full use

of the information of a few classes in the original data set. SMOTE is based on the k nearest

neighbor sample points of each sample point, randomly selecting N neighboring points to

multiply the difference by a threshold within the range of [0, 1], in order to achieve the purpose

Table 7. The size of edge before and after SMOTE is used.

Network Celegans PPI NetScience PowerGrid Politic Blogs Router USAir

B-Majority 41808 2807432 70717 12197676 729317 12601473 52820

B-Minority 2148 11693 914 6594 16714 6258 2126

A-Majority 5155 16369 1828 13188 17549 18774 4252

A-Minority 4296 16370 1828 13188 19221 18774 4252

Note: B-Minority is the number of minority sample before SMOTE is used; B-Majority is the number of majority sample before SMOTE is used; A-Minority is the

number of minority sample after SMOTE is used; A-Majority is the number of majority sample after SMOTE is used.

https://doi.org/10.1371/journal.pone.0287385.t007
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of synthesizing data. The core of this algorithm is that the features of adjacent points in the fea-

ture space are similar. It does not sample in the data space, but in the feature space, so its accu-

racy is higher than traditional sampling methods.

Here we show ROC, PR curves and F-Score curves of these five classifiers on seven experi-

mental data sets. In general, if the curve is smooth, it means there is not much over-fitting. For

ROC, the closer the curve is to the upper left corner in the coordinate system, the better. For

PR curves and F-Score curves, the closer the curve is to the upper right corner in the coordi-

nate system, the better. Fig 2 consists of the ROC of five classifiers. Fig 3 consists of the PR

curves of five classifiers. Fig 4 consists of the F-Score curves of five classifiers.

From these three sets of curves, we can see that in the ROC curves, RF is only slightly infe-

rior to the KNN model on the Router data set, but obtains the best performances on the other

six data sets. In the PR curves, RF obtains the best performances on all seven data sets. In the

F-Score curves, RF, SVM and KNN models have their own advantages and disadvantages.

With the comprehensive evaluation, RF is the best one among five classifiers. RF adopts the

bagging idea, it does not need a single decision tree to make prediction, but votes and selects

the classification results of multiple weak classifiers. In this process, multiple weak classifiers

form a strong classifier. Therefore, RF under the bagging idea improves the prediction

accuracy.

Experimental results and analysis

Experimental results

We use Accuracy, Precision, Recall, AUC, ROC, PR curve and F-Score metrics to measure the

performance of prediction. Tables 9–11 respectively show the accuracy results measured by

Accuracy, Precision and AUC on seven networks compare with other ten methods.

Besides these three evaluation metrics, we use ROC, PR curves and F-Score curves to show

the prediction performance of LPbSA by a graphical way. Fig 5 shows the ROC, PR curves and

F-Score curves of LPbSA on seven networks.

Experimental analysis

Analysis of experimental results. The prediction accuracy measured by Accuracy in

Table 7, LPbSA is not ideal on Politic Blogs data set with value 0.838 and a little inferior to CN

and RA on USAir data set with value 0.930, but obtains good performance on other four data

Table 8. The results of two balance methods use RF classifier to measure the prediction accuracy on seven data sets using five evaluation indexes.

Balance method and evaluation

indexes

Celegans PPI NetScience Power Grid Politic Blogs Router USAir

Undersampling Accuracy 0.759 0.961 0.933 0.975 0.838 0.943 0.832

Precision 0.73 0.901 0.922 0.966 0.842 0.934 0.803

AUC 0.825 0.961 0.977 0.995 0.894 0.988 0.911

Recall 0.818 0.892 0.946 0.985 0.901 0.952 0.881

F-Score 0.773 0.896 0.934 0.975 0.871 0.943 0.840

SMOTE Accuracy 0.806 0.911 0.965 0.980 0.838 0.956 0.930

Precision 0.839 0.927 0.952 0.976 0.842 0.956 0.909

AUC 0.943 0.968 0.992 0.996 0.894 0.990 0.981

Recall 0.921 0.934 0.980 0.992 0.901 0.976 0.957

F-Score 0.878 0.931 0.965 0.984 0.871 0.966 0.932

https://doi.org/10.1371/journal.pone.0287385.t008
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Fig 2. ROC curves of seven data sets used SMOTE((a) for Celegans network, (b) for NetScience network, (c) for Politic Blogs network, (d) for Power Grid

network, (e) for PPI network, (f) for Router network and (g) for USAir network).

https://doi.org/10.1371/journal.pone.0287385.g002
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Fig 3. PR curves of seven data sets used SMOTE((a) for Celegans network, (b) for NetScience network, (c) for Politic Blogs network, (d) for Power Grid

network, (e) for PPI network, (f) for Router network and (g) for USAir network).

https://doi.org/10.1371/journal.pone.0287385.g003
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Fig 4. F-Score curves of seven data sets used SMOTE((a) for Celegans network, (b) for NetScience network, (c) for Politic Blogs network, (d) for Power Grid

network, (e) for PPI network, (f) for Router network and (g) for USAir network).

https://doi.org/10.1371/journal.pone.0287385.g004
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Table 9. Prediction accuracy measured by Accuracy on six networks.

Method PPI NetScience Power Grid Politic Blogs Router USAir

LPbSA 0.911 0.965 0.980 0.838 0.956 0.930

CN 0.889 0.933 0.590 0.925 0.559 0.937

Salton 0.869 0.911 0.585 0.874 0.552 0.898

Jaccard 0.888 0.933 0.590 0.882 0.559 0.901

Sorensen 0.888 0.933 0.290 0.881 0.559 0.902

HPI 0.868 0.911 0.585 0.852 0.552 0.857

HDI 0.888 0.933 0.590 0.877 0.559 0.895

LHN-I 0.866 0.911 0.585 0.772 0.552 0.758

PA 0.828 0.623 0.446 0.907 0.464 0.886

AA 0.888 0.932 0.590 0.922 0.559 0.925

RA 0.890 0.933 0.590 0.931 0.559 0.955

The bold and oblique values are the best ones.

https://doi.org/10.1371/journal.pone.0287385.t009

Table 11. Prediction accuracy measured by AUC on seven networks.

Method Celegans PPI NetScience Power Grid Politic Blogs Router USAir

LPbSA 0.943 0.968 0.992 0.996 0.894 0.990 0.981
LP / 0.970 0.988 0.697 0.941 0.943 0.960

LP* / 0.970 0.988 0.697 0.939 0.941 0.959

Katz / 0.972 0.988 0.952 0.936 0.975 0.956

LHN-II / 0.968 0.986 0.947 0.769 0.959 0.778

ACT 0.747 0.900 0.934 0.895 / / 0.901

RWR 0.889 0.978 0.993 0.760 / / 0.977

LRW 0.899 0.974 0.989 0.953 / / 0.972

SRW 0.906 0.980 0.992 0.963 / / 0.978

The bold and oblique values are the best ones.

https://doi.org/10.1371/journal.pone.0287385.t011

Table 10. Prediction accuracy measured by Precision on seven networks.

Method Celegans PPI NetScience Power Grid Politic Blogs Router USAir

LPbSA 0.839 0.927 0.952 0.976 0.842 0.956 0.909
LP / 0.734 0.292 0.132 0.519 0.557 0.627

LP* / 0.734 0.292 0.132 0.469 0.121 0.627

Katz / 0.719 0.290 0.063 0.456 0.368 0.623

LHN-II / 0 0.060 0.005 0 0 0.005

ACT 0.07 0.57 0.19 0.08 / / 0.49

RWR 0.13 0.52 0.55 0.09 / / 0.65

LRW 0.14 0.86 0.54 0.08 / / 0.64

SRW 0.14 0.73 0.54 0.11 / / 0.67

The bold and oblique values are the best ones.

https://doi.org/10.1371/journal.pone.0287385.t010
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Fig 5. Prediction performance of LPbSA measured by ROC, PR curves and F-Score curves((a) for Celegans network, (b) for NetScience network, (c) for Politic

Blogs network, (d) for Power Grid network, (e) for PPI network, (f) for Router network and (g) for USAir network).

https://doi.org/10.1371/journal.pone.0287385.g005
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sets. The prediction accuracy measured by Precision in Table 8, LPbSA gets the best prediction

accuracy on seven data sets. The prediction accuracy measured by AUC in Table 9, LPbSA is

slightly poorer on PPI data set with value 0.968, and is superior to ACT with value 0.900 and

equal to LHN-II with value 0.968, but obtains good performance on other six data sets. With

the comprehensive evaluation, we think LPbSA is the better one compare to other compared

methods. From Fig 5 we can see: 1.most curves are smooth; 2.ROC curves are closer to the

upper left corner except Celegans and Politic Blogs data sets; 3.PR and F-Score curves are

closer to the upper right corner except Celegans data set. The performances of LPbSA are good

at most data sets.

The superiority of the proposed method are: a. each component of the minimum non-triv-

ial eigenvector of the Laplacian matrix corresponds to a node in one network. The distance

based spectral analysis exactly reflects the similarity between pair nodes; b. the real networks

are usually sparse, the resulting data sets are unbalance. SMOTE is employed to improve the

category distribution of samples to get the balanced data sets. c. RF adopts the bagging idea, it

does not need a single decision tree to make prediction, but votes and selects the classification

results of multiple weak classifiers. In this process, multiple weak classifiers form a strong clas-

sifier. Therefore, RF under the bagging idea improves the prediction accuracy. The experimen-

tal results also prove that RF performs the best among the five classifiers. Therefore, the

proposed method uses RF to complete classification prediction. Compared to the baseline

methods, the proposed method uses more precise attributes to complete classification predic-

tions on balanced datasets, better link prediction performance was achieved.

Analysis of algorithm complexity. Let n and m are the number of nodes and edges of the

network, respectively. The first computationally expensive part of LPbSA algorithm is the calcu-

lation of Laplacian eigenvectors, which is O(n3). The Lanczos method can be used to determine

the required eigenvectors [62]. Thus the computational complexity is reduced to n/λ3 − λ2,

where λ3 is the second non-trivial eigenvalue and λ2 is the first non-trivial eigenvalue. The sec-

ond computationally expensive part of LPbSA is using RF for classification prediction. The

complexity of RF is O(nklogn), where k = (the number of column of balanced data set − 1), k = 5

in the proposed method. The calculation of this algorithm is mainly spent on obtaining the

eigenvectors of the Laplacian matrix, so the complexity of LPbSA is n/λ3 − λ2.

Conclusion

In the present research, spectral analysis is used for link prediction for the first time, which

considers the non-trivial eigenvector of Laplacian matrix. Each component of the minimum

non-trivial eigenvector of the Laplacian matrix corresponds to a node in one network. There-

fore, the non-trivial eigenvector can exactly be the attribute of the corresponding node, and

the similarity between the pair nodes can be obtained by calculating the distance of the non-

trivial eigenvector. Different from the traditional method that node attributes are employed

for link prediction, we get edge attributes and use the classification prediction methods of

machine learning to classify the edges according to their attributes. In this process, since the

actual networks are usually sparse networks, the resulting edge data sets are unbalanced data

sets. So, SMOTE is employed to equilibrate the unbalanced data sets, and RF based classifica-

tion and prediction are executed on balanced data sets. In order to prove the performance of

the proposed method, a comparative experiment was performed on seven real-world net-

works. It demonstrated that LPbSA has better performance on Accuracy, Precision, AUC,

ROC curve, PR curve and F-score curve evaluation metrics than other ten classic methods. In

future studies, the proposed method will have the option to be applied to weighted and
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directed networks. The future study will be link prediction based spectral analysis on large-

scale networks through distributed computing.
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