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Abstract

The Antarctic toothfish (Dissostichus mawsoni) is the largest notothenioid species in the

Southern Ocean, playing a keystone role in the trophic web as a food source for marine

mammals and a top predator in deep-sea ecosystems. Most ecological knowledge on this

species relies on samples from areas where direct fishing is allowed, whereas in areas

closed to fishing, such as the Antarctic Peninsula (AP), there are still key ecological gaps to

ensure effective conservation, especially regarding our understanding of its trophic relation-

ships within the ecosystem. Here, we present the first comprehensive study of the feeding

behavior of Antarctic toothfish caught in the northern tip of the AP, during two consecutive

fishing seasons (2019/20 and 2020/21). Stomach content was analyzed according to size-

classes, sex and season. Macroscopic morphological analysis was used to identify prey,

whereas DNA analysis was used in highly digested prey items. Fatty acid analysis was con-

ducted to determine the prey’s nutritional composition. The diet mainly consisted of Macro-

uridae, Cephalopoda, Anotopteridae, and Channichthyidae. Other prey items found were

crustaceans and penguin remains; however, these were rare in terms of their presence in

stomach samples. Sex had no effect on diet, whereas size-class and fishing season influ-

enced prey composition. From 27 fatty acid profiles identified, we observed two different

prey groups of fishes (integrated by families Anotopteridae, Macrouridae and Channichthyi-

dae) and cephalopods. Our results revealed a narrow range of prey items typical of a gener-

alist predator, which probably consumes the most abundant prey. Understanding the diet

and trophic relationships of Antarctic toothfish is critical for a better comprehension of its

role in the benthic-demersal ecosystem of the AP, key for ecosystemic fisheries manage-

ment, and relevant for understanding and predicting the effect of climate change on this

species.
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Citation: Pérez-Pezoa K, Cárdenas CA, González-
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Introduction

The Southern Ocean is characterized by extreme physical conditions that have shaped a

unique, endemic, and highly adapted fauna [1, 2]. An example is its fish fauna, characterized

by relatively low species richness and diversity, dominated by the suborder Notothenioidei, a

group highly adapted to cold waters [1, 3]. Among this group, Dissostichus mawsoni com-

monly known as Antarctic toothfish (hereafter TOA) is a species with a circumpolar distribu-

tion south of 60˚S latitude, inhabiting cold waters (with temperaturas below 0˚C) at depths up

to 3000 meters along the shelf and continental slope [4–6]. Individuals can exceed 2 m in

length and 100 kg in weight [7, 8], lasting over 30 years, with a first sexual maturation between

12 and 16 years of age [5, 9]. The TOA is by far the largest fish species, playing a key ecological

role in the trophic web, both as a food source for marine mammals such as cetaceans [10] and

seals [11], and as a top predator in deep-sea ecosystems, structuring the size and population

dynamics of prey species through predation [8, 12].

TOA is a valuable fishing resource targeted by an international bottom-set longline fleet

that is managed by the Commission for the Conservation of Antarctic Marine Living

Resources (CCAMLR), whose main objective is to achieve a balance between the rational use

and conservation of fishing stocks. CCAMLR also promotes ecosystem-based fisheries man-

agement, through conservation measures based on exploitation levels that ensure recruitment

stability and ecological relationships functioning to avoid irreversible changes in the marine

ecosystems [13]. At present, TOA is targeted throughout almost their entire distribution

range, with a total annual catch of around 4000 tons occurring mostly in the Ross Sea, East

Antarctica and the Weddell Sea [14]. The only exception is the Antarctic Peninsula (AP, FAO

Statistical Subarea 48.1), where direct fishing for notothenioid is prohibited, due to population

collapses after overexploitation in the 1970s and 1980s and still no evidence of population

recovery [15]. Nowadays, CCAMLR only allows exploratory fisheries with minimum catch

limits aimed to obtain information on the biological and ecological interspecific relationships

for ecosystem-based purposes [8, 5, 16, 17].

The prohibition of regular fishing activities has determined knowledge gaps regarding the

population and community dynamics of the TOA in Subarea 48.1; thus the CCAMLR Scien-

tific Committee has asked for new studies to reduce uncertainty [18]. Information on trophic

dynamics is scarce, and diet analysis based on prey composition is necessary to understand

population dynamics and its interaction with the surrounding community [17]. Macroscopic

morphological analysis of stomach contents is a widely used technique for prey identification.

Despite limitations associated with quick digestion of some fragile prey items, that could be

undetected macroscopically, and therefore nutritionally underestimated [19], it can provide

useful information on intra- and interspecific predator-prey relationships. Across the South-

ern Ocean, where fisheries regularly occurs, several dietary studies have been conducted using

macroscopic and molecular prey identification [8, 20] with recent studies using a combination

of both, providing new information that have improved the understanding of TOA trophic

ecology [21]. This type of approach complemented with other methods such as fatty acid anal-

yses (lipids as biomarkers) has proven to be a powerful tools to infer trophic interactions and

obtain longer-term information on energy flow through the ecosystem [21–24]. Fatty acids

(Fas) are a major source of nutrients and energy in aquatic food webs [25]. FAs can be

expressed in relative terms (proportional abundance of the total fatty acid content), where

higher proportions of some essential ones, such as eicosapentaenoic (EPA) and
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docosahexaenoic (DHA), or the proportion between the polyunsaturated ones (n-3/n-6), can

be directly correlated with the nutritive value of a certain prey [26].

Feeding patterns described from TOA stomachs using both macroscopical prey composi-

tion and fatty acid profiles [22, 23] have indicated that this species is an opportunistic predator,

whose diet depends on the availability of prey in a given habitat [5, 27]. Based on this, current

scientific consensus supports the idea of TOA as a generalist predator [18], whose diet compo-

sition varies ontogenetically, due to changes in vertical distribution throughout its life history

[8, 28]. In addition, considering that its diet can vary regionally, is necessary to evaluate these

assumptions in less-explored areas such as the Antarctic Peninsula.

Understanding the feeding ecology of TOA is crucial for assessing its ecological role, which

is key for ecosystem-based fishery management to avoid indirect adverse effects. A research

program conducted by Ukraine in Subarea 48.1 allowed us to analyze stomachs collected over

two consecutive summer seasons (2019/20 and 2020/21). Thus we performed the first compre-

hensive study of feeding ecology through stomach content and fatty acid analyses. In this

study, we identified the prey composition of TOA in the AP using macroscopic guides and

DNA for digested prey, tested the effect of size-class length, fishing season, and sex on diet var-

iability, and characterized the nutritional prey contribution from fatty acid profiles. We

hypothesized that diet composition changes with size-class length, resulting in an ontogenetic

changes in feeding habits.

Materials and methods

Study area and sample collection

The stomach contents of 159 TOA individuals were analyzed from catches made by the Ukrai-

nian commercial vessel Calipso in Subarea 48.1 (northern tip of the Antarctic Peninsula,

Fig 1). Fishing operations were carried out in February 2020 (n = 89 stomachs) and February

2021 (n = 70 stomachs) using spanish bottom longlines at depths between 924–1560 meters in

2019/20 and between 1075–1371 meters in 2020/21 (S1 Table). The squid Dosidicus gigas (cut

into rectangular pieces) was used as bait, and therefore were not considered in the subsequent

stomach content analysis. Each TOA individual was weighted (in grams, g), sexed and sized

(total length in cm) onboard. Extracted stomachs were stored frozen at -20˚C and sent for

analysis to the Bioresources Laboratory of the Chilean Antarctic Institute (INACH) in Punta

Arenas, Chile.

Stomach content analysis

Whole stomachs were thawed, and content was weighed (mST) to the nearest 0.01 g using an

electronic scale. Examination of prey included records of digestion status, taxonomic identifi-

cation, wet weight (g), length (cm), and FA composition.

Digestion status was noted using a five-point scale: not digested (entire prey), slightly

digested (low degree of digestion), moderately digested (intermediate degree of digestion),

advanced digested (high degree of digestion but identifiable fleshy remains), and heavily

digested (accumulated unidentifiable prey remains). Prey up to moderately digested status

were measured in length (cm) and also used to take tissue for FA analyses. Identification was

to the lowest taxonomic level through macroscopic morphological analysis (MID) using iden-

tification keys [4, 27]. Moderately to advanced digested prey were identified using genetic pro-

cedures (GID) following the procedure described by [29]. Tissue samples from dorsal muscle

were collected (*10 g) and stored in ethanol (90%) at -20˚C. DNA extraction was performed

from 0,150 g of tissue using DNeasy1 PowerSoil1 Pro Kit (Cat# 47016, QIAGEN, Hilden,

Germany) following the manufacturer’s protocol. Each sample was quantified using
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NanoQuant microplate Infinite M200pro. To amplify the mitochondrial 16s gene, primers

were synthesized and purified by HPLC at Macrogen (Korea), using the sequence described by

[30] (forward: 5’-CGAGAAGACCCTRTGGAGCT-3’ and reverse: 5’-GGATWGCGCTGT

Fig 1. Locations of the fishing hauls carried out in the northern tip of the Antarctic Peninsula (Subarea 48.1). Boxes show CCAMLR research blocks

48.1_1 (red) and 48.1_2 (yellow), explored by the Ukrainian research program during fishing seasons 2019/20 and 2020/21. Map created in ArcMap 10.8.2

(https://www.esri.com/), using the online Ocean Basemap (https://www.arcgis.com/;itemid=5ae9e138a17842688b0b79283a4353f6). Subarea 48.1 and research

blocks shapefiles downloaded from the CCAMLR geographical data available on github (https://github.com/ccamlr/data/tree/main/geographical_data).

https://doi.org/10.1371/journal.pone.0287376.g001
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TATCCCT-3’). PCR was performed using InvitrogenTM PlatinumTM SuperFiTM II DNA

Polymerase and the following thermocycling cycle: initial denaturation at 98˚C for 5 min, 35

cycles of initial denaturation at 98˚C for 10 s, annealing at 56˚C for 5 s, extension at 72˚C for

45 s, and a final extension at 72˚C for 5 min. Each PCR product was run on a TBE agarose gel

at 1.8%, and then purified using the UltraClean1 15 DNA Purification Kit (Cat# 12100–300,

MO BIO Laboratories, Inc.), following the manufacturer’s protocol. The purified PCR prod-

ucts were quantified, and 10 ng of DNA were sent to sequencing at Macrogen using forward

and reverse primer. The sequences obtained were joined and analyzed using the CLC Main

Workbench (version 8.0). Taxonomic identification was performed by using BLAST with a

99% degree of similarity between the obtained sequences and reference sequences in the NCBI

database.

For FA analysis, 10 g of prey muscle tissue was stored in 15 ml falcon tubes, frozen at -20˚ C

and lyophilized. Samples were analyzed at the Nutrition Laboratory of the Department of Agri-

cultural and Aquaculture Sciences of the Universidad de Magallanes (Punta Arenas, Chile).

FA composition of prey was carried out by transforming them into methyl esters (FAMES)

and subjected to gas chromatographic analysis, following the methodology proposed by [31],

and modified by [32]. 40 mg of lyophilized sample was transferred into a test tube containing 2

mL of freshly prepared transesterification reagent (methanol: acetyl chloride, 20:1 v/v) along

with 1 mL of hexane. The tubes were heated at 100˚C for 10 min in order to obtain a single

methanol/hexane phase. After cooling the tubes to room temperature, 2 ml of distilled water

was added to separate the mixture into two immiscible layers. The upper hexane layer (con-

taining the methyl esters) was transferred by pipette to a chromatography vial, dried with a

nitrogen stream, and finally resuspended with 300 μl of hexane.

Gas chromatography analysis was conducted using an Agilent 7890B chromatograph

equipped with an autosampler and FID detector was used. In addition, a HP-88 high polarity

column (60 m x 0.20 μm x 0.25 mm) was used. The carrier gas (H2) flow rate was 1 ml/min

and the flow split injection system with a 50:1 vent ratio was used. The injector temperature

was 250˚C and the detector temperature was 280˚C. The oven temperature program was

120˚C for 5 min, with a ramp of 3˚C/min up to 220˚C (5 min). The injection volume was 1 μl

and a blank was performed for every other analysis. All transesterification was performed in

duplicate. Abbreviated notations of form A:B (n-x) were used, where A represents the number

of carbon atoms, B represents the number of double bonds, and x gives the position of the first

double bond counting from the terminal methyl group. The concentration of each fatty acid

was expressed as the relative percentage of the total fatty acid content (% FAs) ± standard

deviation.

Indicators of diet composition

The diet was analyzed only in samples with stomach contents, excluding empty stomachs. Diet

composition and the importance of each prey item were calculated according to the percentage

of frequency of occurrence (F%), weight (W%) and number (N%), respectively expressed as:

F% ¼
Ai
A
� 100 W% ¼

Wi
Wt
� 100 N% ¼

Ni
Nt
� 100

Ai is the number of individuals that consumed prey i, and A is the total number of stomachs

examined. Wi corresponds to the total wet weight of the prey i, and Wt is the total wet weight

of the prey. Ni is the total number of prey i, and Nt is the total number of prey.
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From these indicators, the importance of each type of prey within the diet was calculated

using the index of relative importance (IRI) [33], expressed as:

IRI ¼ ðW% þ N%Þ � F%

For a better interpretation of the relative contribution of each dam, we calculated the rela-

tive importance index as a percentage (IRI%) [34], expressed as:

IRI% ¼
IRIt

Xn

i
IIR
� 100

In order to analyze diet among predator length, the IRI% was calculated into three size-

class groups, G1: <100 cm, G2: 100–140 cm, and G3: 140 cm.

Feeding intensity was evaluated according to the repletion index (RI) [35], expressed as:

RI ¼
mST
mDM

� 100

Where mST is the weight of the stomach contents, and mDM is the total weight of the

individual.

Statistical analysis

A Spearman’s correlation test was used to measure the predator-prey length relationship using

log-transformed data.

A multivariate generalized linear model (MGLM) was conducted to test variability in the

prey specific numeric abundance (N) according to sex, fishing season and size-class. MGLM

provides a multivariate test for the former factors and a univariate test for each prey item. The

lowest Akaike’s information criterion (AIC) was selected to identify the model that best

explained the amount of variation in N. MGLM was run with Poisson distribution and 999

Monte-Carlo permutations using mvabund v.4.2.1 R package [36]. Statistical differences were

further analyzed by pairwise post hoc comparisons between size classes using the pairwise.

comp option of the anova.manyglm function. To graphically visualize variability among fac-

tors, a non-metric multidimensional scaling ordination (nMDS) plot based on Bray-Curtis dis-

tances was run using vegan v.2.6–4 R package [37].

Differences in the repletion index were assessed between sex, fishing season, and size-class,

using sqrt function in a one-way analysis of variance (ANOVA).

A permutational analysis of variance (PERMANOVA) test, based on Bray–Curtis distance

matrix was used to assess for differences among FAs composition of prey composition. A simi-

larity percentage analysis (SIMPER) was also used to identify the fatty acids contributing most

to differences between prey items, and a nMDS plot was used to graphically illustrate observed

patterns.

All statistical analyses were performed using Rstudio 2022.12.0+353.

Results

TOA individuals sampled in 2019/20 ranged from 64 to 174 cm TL (mean 125.1 ± 26.6 SD),

with 70.5% females and 29.5% males. In 2020/21 sizes ranged from 66 to 176 cm TL

(140.4 ± 24.8 cm), with 58.6% females and 41.4% males (Fig 2). From 89 stomachs sampled in

2019/20, 75 (84.3%) had contents, with a total of 186 prey items (2.5 ± 2.1 items per stomach).

The prey length ranged from 4.5 to 97 cm (Fig 3A), exhibiting a significant positive predator-

prey length relationship (Spearman, ρ = 0.29, p< 0.01) (Fig 3B). From 70 stomachs collected
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in 2020/21, 58 (82.8%) had contents, with a total of 140 prey items (2.4 ± 2.0 prey items per

stomach). The prey length ranged from 5 to 67 cm (Fig 3C), with no significant predator-prey

length relationship (ρ = 0.06, p = 0.69) (Fig 3D).

In 2019/20, 4.9% of prey items were not digested, 14.2% slightly digested, 22.9% moderately

digested, 39.8% advanced digested and 18.0% highly digested. In 2020/21, 5.5% of prey were

not digested, 21.1% slightly digested, 27.5% moderately digested, 33.0% advanced digested,

and 12.8% highly digested (S1 Fig).

Diet composition

Fifteen taxonomic groups were recorded from stomach contents. A total of 200 prey items

were identified (168 mid, 32 gid) including fishes (Anotopterus pharao, Chionobathyscus
dewitti, Macrourus whitsoni, Muranolepis orangensis, Chionodraco rastrospinosus,

Fig 2. Size structure of Dissostichus mawsoni individuals caught in the northern tip of the Antarctic Peninsula (Subarea 48.1) during the fishing seasons

2019/20 and 2020/21.

https://doi.org/10.1371/journal.pone.0287376.g002
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Neopagetopsis ionah, Notothenia coriiceps, Trematomus eulepidotus, Lepidonotothen squami-
frons), crustaceans (Eurythenes gryllus, Nematocarcinus lanceopes), anthozoa, cephalopods,

skates Rajidae and birds Spheniscidae (Table 1).

The TOA diet was dominated by fishes (91.0% in 2019/20, 86.3% in 2020/21) and secondar-

ily by cephalopods (7.8% in 2019/20, 13.1% in 2020/21). Unidentified fish in advanced diges-

tion accounted for 48.8% and 60.3% IRI for each fishing season, respectively. Among the

identified fish species, Macrouridae was the most important item (32.4% in 2019/20, 25.1% in

2020/21), followed by Anotopteridae (7.4%), Channichthyidae (3.0% in 2019/20, 0.4% in 2020/

21) and Nototheniidae (0.1% in 2019/20, 0.03% in 2020/21). Crustacea, Rajidae, and penguin

remain reached up 0.15%, 0.06%, and 0.03% IRI, respectively (Table 1).

The MGLM showed that the prey specific numeric abundance was best explained by the

additive (non-interaction) effect, where size-class and fishing season showed significant effects

Fig 3. Size structure of prey items preyed by Dissostichus mawsoni individuals caught in the northern tip of the Antarctic Peninsula during fishing season

2019/20 (A) and 2020/21 (C). Predator-prey length relationship in both seasons (B-D) was analyzed by using a Spearman correlation test.

https://doi.org/10.1371/journal.pone.0287376.g003
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(Table 2). The nMDS plot showed that prey specific abundance was different between G2 and

G3 size groups than for G1, showing differences in diet between size groups (Fig 4). The

observed differences were confirmed by MGLM analyses indicating that the diet composition

differed significantly among size-class and fishing season (Table 2). Pairwise comparisons

showed that diet differed mainly between G2 and G3 (S2 Table). The variable sex was dis-

carded during the AIC selection process, in order to obtain the most parsimonious approach

(that is, to select a model that better explains our data using fewer parameters) (S3 Table).

Among identified prey, a significant effect of size-class was recorded on cephalopod con-

sumption (Table 2) that was slightly present in groups G2 and G3 in 2019/20, being more rele-

vant in 2020/21, especially G1 exceeding 55.0% IRI (Fig 5). On the other hand, a significant

effect of the fishing season was found on Anotopteridae consumption (Table 2), which

Table 1. Diet composition of Dissostichus mawsoni in the northern tip of the Antarctic Peninsula (Subarea 48.1) during seasons 2019/20 and 2020/21, according to

percentage frequency of occurrence (F%), weight percentage (W%), number percentage (N%) and the index of relative importance (IRI%). Parenthesis shows the

number of prey items identified by macroscopic identification (MID) and genetic identification (GID).

2019/20 2020/21

Prey F% N% W% IRI% F% N% W% IRI%

Anthozoa (MID = 1) - - - - 1.72 0.71 0.01 0.02

Mollusca 26.6 12.90 4.45 7.88 27.59 20.00 13.08 13.17

Cephalopoda (MID = 52) 26.67 12.90 4.45 7.88 27.59 20.00 13.08 13.17

Crustacea 5.33 3.23 0.11 0.15 6.90 4.29 0.16 0.15

Eurythenes gryllus (MID = 3) - - - - 1.72 2.14 0.10 0.06

Nematocarcinus lanceopes (MID = 6) 2.67 2.15 0.09 0.10 3.45 1.43 0.04 0.07

Unidentified crustacea 2.67 1.08 0.02 0.05 1.72 0.71 0.02 0.02

Pisces 90.67 83.33 95.16 91.95 93.10 72.14 84.54 86.33

Anotopteridae 26.67 15.59 4.91 7.39 - - - -

Anotopterus pharao (MID = 26, GID = 03) 2.67 1.61 1.09 0.12 - - - -

Unidentified Anotopteridae 24.00 13.98 3.81 7.27 - - - -

Channichthyidae (MID = 17, GID = 5) 13.33 6.45 13.67 3.06 8.62 3.57 5.60 0.41

Chionobathyscus dewitti (GID = 2) - - - - 3.45 1.43 1.88 0.16

Chionodraco rastrospinosus (GID = 1) 1.33 0.54 1.65 0.05 - - - -

Neopagetopsis ionah (GID = 2) 1.33 0.54 1.01 0.04 1.72 0.71 1.15 0.05

Unidentified Channichthyidae 10.67 5.38 11.02 2.98 3.45 1.43 2.56 0.20

Macrouridae 48.00 23.66 54.62 32.46 43.10 22.14 53.22 25.13

Macrourus whitsoni (MID = 17, GID = 19) 17.33 8.06 28.98 10.93 25.86 15.00 36.36 19.16

Unidentified Macrouridae 30.67 15.59 25.63 21.52 17.24 7.14 16.86 5.97

Muraenolepididae 1.33 0.54 0.54 0.02 5.17 2.14 3.34 0.41

Muranolepis orangensis (GID = 4) 1.33 0.54 0.54 0.02 5.17 2.14 3.34 0.41

Nototheniidae 2.67 2.69 4.38 0.16 1.72 0.71 0.38 0.03

Lepidonotothen squamifrons (MID = 4) 1.33 2.15 3.56 0.13 - - - -

Nothotenia coriiceps (GID = 1) 1.33 0.54 0.82 0.03 - - - -

Trematomus eulepidotus (GID = 1) - - - - 1.72 0.71 0.38 0.03

Rajidae 1.33 0.54 2.06 0.06 - - - -

Unidentified Rajidae 1.33 0.54 2.06 0.06 - - - -

Unidentified pisces 58.67 33.87 14.98 48.80 63.79 43.57 22.01 60.35

Bird - - - - 5.17 2.14 2.07 0.31

Spheniscidae (MID = 3) - - - - 5.17 2.14 2.07 0.31

Other 1.33 0.54 0.28 0.02 1.72 0.71 0.13 0.02

Unidentified 1.33 0.54 0.28 0.02 1.72 0.71 0.13 0.02

https://doi.org/10.1371/journal.pone.0287376.t001
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dominated G1 in 2019/20 (67.65% IRI) and was absent in 2020/21 (Fig 5). Although no signifi-

cant effect of size group on other species was found, it can be seen that Macrouridae was less

present in group G1 (29.99% IIR in 2019/20), but dominated the diet of groups G2 and G3

Fig 4. Nonmetric multidimensional scaling (nMDS) plot of prey specific numeric abundance among size-classes (G1:<100 cm (n = 16); G2: 100–140 cm

(n = 64); G3:>140 cm (n = 43)). Ordination based on Bray-Curtis distance matrix.

https://doi.org/10.1371/journal.pone.0287376.g004

Table 2. Results of MGLM testing effect of size-class and fishing season on the prey specific numeric abundance in the stomachs of the Antarctic toothfish from the

northern tip of the Antarctic Peninsula during fishing seasons 2019/20 and 2020/21. Ceph = Cephalopods, Ano = Anotopteridae, Cha = Channichthyidae,

Mac = Macrouridae, Raj = Rajidae, Not = Nototheniidae, Mur = Muranoloepididae, Sph = Spheniscidae, Cru = Crustacea.

Multivariate Univariate

Factors Res.Df Df.diff Dev p (>Dev) Cep Ano Cha Mac Raj Not Mur Sph Cru

(Intercept) 132

Size class 130 2 59.31 0.01* 0.01* 0.94 0.88 0.55 0.94 0.17 0.94 0.94 0.88

Fishing season 129 1 48.35 0.00* 0.87 0.00* 0.66 0.87 0.86 0.60 0.69 0.39 0.87

https://doi.org/10.1371/journal.pone.0287376.t002
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with 74.44% to 66.86% IRI, respectively, and Channichthyidae were particularly important to

G1 in 2020/21 (28.87% IRI) (Fig 5).

Feeding intensity was low (Repletion Index = 1.23% ± 1.42 SD) with no significant differ-

ences between fishing season (ANOVA, F(1, 154) = 0.0004 p = 0.994), sex (ANOVA, F(1, 154)

= 0.057, p = 0.812) and size classes (ANOVA, F(2, 153) = 0.102 p = 0.902).

Fatty acid composition of prey items

A total of 29 fatty acids were identified for Anotopteridae, Channichthyidae, Macrouridae and

Cephalopoda. At the species level, we identified profiles for Chionobathyscus dewitti and Macro-
urus whitsoni (Table 3). Overall, prey items were rich in PUFA acids (ranging from 39.8% for

Macrouridae to 49.3% for cephalopods), with a high contribution of docosexanoic acid (C22:6

n-3) and eicosapentaenoic (C20:5 n-3). Secondarily, MUFA acids (ranging from 24.5% for

Fig 5. Diet composition of Dissostichus mawsoni according to size classes G1:<100 cm (n = 16); G2: 100–140 cm (n = 64); G3:>140 cm (n = 43), collected in

the northern tip of the Antarctic Peninsula (Subarea 48.1) during fishing seasons 2019/20 and 2020/21.

https://doi.org/10.1371/journal.pone.0287376.g005
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cephalopods to 35.2% for Macrouridae) with oleic acid (C18:1 n-9) being higher in fishes

(10.8% for Anotopteridae and 16.7% for Macrouridae) than cephalopods (5.4%), and conversely

the eicosanoic acid (C20:1 n-9) was higher in cephalopods (9.1%) than fishes (2.2% and 4.0%

for Anotopteridae and Macrouridae, respectively). Thirdly, SAFA acids (ranging from 22.7%

for Macrouridae to 24.8% for cephalopods), dominated by palmı́tic acid (C16:0) of similar val-

ues for Macrouridae (16.8%), Anotopteridae (18.1%) and cephalopods (19.0%). The nMDS

analysis revealed two prey groups of fishes (Anotopteridae-Macrouridae-Channichthyidae) and

Table 3. Fatty acid (FA) composition (% of total FA, mean ± sd) of prey items in the Dissostichus mawsoni diet from individuals collected in the northern tip of the

Antarctic Peninsula. (SAFA are saturated fatty acids, MUFA are monounsaturated fatty acids and PUFA are polyunsaturated fatty acids).

Macrouridae M. whitsoni Anotopteridae Channichthyidae Cephalopoda

n = 9 n = 5 n = 1 n = 2 n = 11

Fatty acid mean sd mean sd mean sd mean sd

C14:0 1.91 0.46 1.63 0.47 1.90 3.62 4.19 2.48 0.82

C15:0 0.02 0.07 0.00 0.00 0.00 0.16 0.23 0.01 0.03

C16:0 16.83 3.14 18.59 1.46 18.10 15.82 1.28 19.06 2.56

C17:0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07

C18:0 3.77 0.92 4.62 0.38 3.70 3.07 2.21 3.15 0.95

C21:0 0.19 0.38 0.00 0.00 0.00 0.00 0.00 0.08 0.27

Ʃ SAFA 22.73 3.22 24.84 1.71 23.70 22.68 0.93 24.80 2.15
C14:1 0.02 0.07 0.00 0.00 0.00 0.25 0.36 0.00 0.00

C16:1n7 5.77 2.09 4.09 1.26 3.60 6.68 6.11 1.92 1.33

C17:1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09

C18:1n9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03

C18:1n9cis 16.70 4.35 13.87 4.03 12.80 14.03 8.61 5.44 2.61

C18:1n7 5.68 0.93 4.50 1.02 8.90 7.16 0.20 4.51 0.63

C20:1 n9 4.04 2.29 3.54 1.64 2.20 1.73 0.16 9.11 1.11

C22:1n9 1.93 0.86 2.06 0.59 2.30 2.89 3.09 3.22 1.17

C24:1n9 1.10 0.32 1.46 0.17 1.00 1.03 0.89 0.27 0.30

ƩMUFA 35.23 8.45 29.52 6.28 30.70 33.76 10.73 24.50 5.09
C16:3 n4 0.06 0.12 0.00 0.00 0.00 0.11 0.15 0.01 0.03

C18:2n6 0.00 0.00 0.00 0.00 0.00 0.17 0.25 0.00 0.00

C18:2n6cis 1.38 0.21 1.21 0.19 1.30 2.04 0.48 0.14 0.28

C18:3n3 0.12 0.23 0.00 0.00 0.00 0.55 0.78 0.00 0.00

C18:4n3 0.84 0.42 0.59 0.53 0.00 1.31 1.86 0.09 0.22

C18:3n6 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C20:2n6 0.03 0.10 0.00 0.00 0.00 0.00 0.00 0.91 0.67

C20:3n6 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C20:3n3 0.00 0.00 0.26 0.59 0.00 0.00 0.00 0.12 0.20

C20:4n6 1.04 0.79 0.59 0.46 0.00 0.44 0.23 1.69 1.16

C20:4n3 0.12 0.24 0.11 0.15 0.30 0.19 0.27 0.00 0.00

C20:5n3 14.22 4.00 14.93 1.63 13.80 15.65 4.44 16.92 2.03

C22:5n3 0.98 0.23 1.30 0.34 1.50 0.64 0.07 0.98 0.57

C22:6n3 21.03 6.01 25.99 4.19 28.40 20.34 12.82 28.51 7.89

Ʃ PUFA 39.84 7.88 44.97 5.24 45.30 41.45 14.27 49.36 5.29
Ʃ FAs 97.78 2.61 99.31 1.09 99.70 97.90 2.60 98.65 1.50
Ʃ ω3 37.31 8.73 43.18 5.79 44.00 38.69 14.42 46.61 5.84

Ʃ ω6 2.48 1.01 1.80 0.60 1.30 2.66 0.00 2.74 0.88

ω3/ω6 15.06 8.65 27.34 12.78 33.85 14.56 5.42 19.08 7.79

https://doi.org/10.1371/journal.pone.0287376.t003
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Cephalopoda (Fig 6), that were statistically different (F(4, 20) = 4.58; p<0.001). According to

the SIMPER analysis, the fatty acids that contributed most to the dissimilarities between groups

were oleic C18:1 n9cis, eicosanoic C20:1 n9, docosexanoic C22:6n3 DHA, linoleic C18:2 n6cis,

palmitoleic C16:1n7 and octatetradenoic C18:4n3 (S4 Table).

Discussion

The present study provides the first comprehensive description of the feeding behavior of the

Antarctic toothfish by combining stomach content identification with fatty acid analysis, pro-

viding a wider understanding of the feeding ecology and role of TOA in the Antarctic Penin-

sula. Trophic dynamics is a prerequisite for ecosystem-based fisheries management and

necessary to assess potential fishing impacts on target species, which is especially relevamt in

the Antarctic Peninsula, where direct fishing for notothenioids has been prohibited.

Feeding behavior

In the Antarctic Peninsula, TOA feeds mainly on fishes, a prey of high nutritional value and

often the most available, being usually the most important prey item for top predators in Ant-

arctica [27, 38]. From these fishes, Macrouridae was the most important prey, similar to what

has been described in previous studies from other regions, where Macrourus whitsoni and

Macrourus caml, a sympatric species inhabiting the same depth range with TOA (900 and

1900 m depth), frequently appears in TOA diet and as bycatch in the fishery [5, 8, 16, 23, 27,

39–41]. Considering that the TOA diet is dominated by locally abundant fish species [5, 42],

and based on the high contribution of Macrouridae to the TOA diet observed in this study, we

can assume that this group is probably the most abundant fish in the AP. Although there are

no direct biomass estimations for Macrouridae in the AP, previous evidence has shown that

this group is the most widespread representative of bycatch in 2019/20 and 2020/21 [43].

Cephalopods were reported as an important prey item [8, 5], whereas Channichthyidae was

an important prey among fishes. Within this group, we identified Chionobathyscus dewitti, a

species reported as one of the main prey of TOA in the Lazarev Sea and the Ross Sea [5, 39],

which is commonly found between 600 to 1600 m depth in the Antarctic Peninsula [44, 45],

and over 2000 m depth in the Weddell Sea [45, 46]. From the fishery data, Channichthyidae is

the second most abundant bycatch group in the Antarctic Peninsula [43].

Surprisingly, we observed a low contribution of Nototheniidae, even in individuals <100

cm, compared to the diet of individuals from East Antarctica where it can reach up to 35% [8].

It is possible that for greater energy efficiency, individuals prey on a smaller number of larger

and heavier Macrouridae individuals, rather than a larger number of smaller and lighter

Nototheniidae [8]. Another explanation could be that the fish community in the AP is heavily

dominated by Macrouridae, with reduced availability of Nototheniidae as a consequence of

the population collapse in past decades [15]. Although, there was an important amount of

highly digested unidentified fish prey (which reached up to 60% IRI) where Nototheniidae

could be present. In addition, reduced presence of Notheniidae was also observed in the fishery

with low bycatch estimates in the area [43].

Benthic crustaceans such as Nematocarcinus lanceopes and Eurythenes gryllus were also

found. Both species are relatively rare and have been recorded at depths between 500 and 2031

m for N. lanceopes [47, 48], whereas E. gryllus has been reported between 550 to 7800 m depth

[49, 50], overlapping with TOA depth range. Another less important item was penguin remains

(found in two stomachs), suggesting that part of the diet may have come from carrion. Also, we

found coral and rock fragments, which is indicative of benthic foraging habits [8, 16, 27].
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The former prey composition is representative of benthopelagic fauna [4, 45], confirming

TOA as a demersal feeder whose feeding preferences are restricted to the abundance of differ-

ent prey [5, 8, 16]. Also, the presence of Anotopterus vorax has previously been associated with

migration to shallow waters [27]. This information confirms that the TOA is a top predator

capable of impacting and controlling the bentho-pelagic ecosystem in the Antarctic Peninsula.

A positive correlation was observed between TOA size and prey size, with prey size increas-

ing as predator size increased. This is common as predator-prey interactions often depend on

body size, due to the morphological limitations of the predator in agreement with the morpho-

logical ontogenetic changes in the feeding apparatus [51, 52]. In other diet studies, TOA sub-

adults showed a diet composed of a variety of smaller prey, such as smaller fishes and benthic

crustaceans, while adult individuals preyed mostly on larger demersal fishes, such as Macrouri-

dae [16]. One point of variability was the weak predator-prey relationship as illustrated in

Fig 6. Nonmetric multidimensional scaling (nMDS) plot of fatty acid data (expressed as the percentage of total fatty acids, %FAs) from the four

identified prey groups recorded in stomachs of Dissostichus mawsoni. Ordination based on Bray-Curtis distance matrix.

https://doi.org/10.1371/journal.pone.0287376.g006
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Fig 3B and 3D, resulting from the presence of Anotopteridae, which, although exaggerated in

length, can generally be considered small prey, and therefore consumed by small TOA

individuals.

Significant differences in diet composition were found between size groups, with dietary

variability being greater in adults (>100 cm) than in juveniles (<100 cm). This can be related

to changes in buoyancy and depth range distribution [28]. It is known that TOA juveniles

have a negative buoyancy, constraining depth range to shallower waters and benthic habitats,

while adults have neutral buoyancy, being capable to move across a wider depth range from

shallow to deep waters [4, 6, 16, 28]. This adaptation would allow TOA to avoid predators and

generate changes in accessibility to different prey items. Some prey, such as Cephalopoda and

Channichthyidae, have benthic-pelagic habits [45, 53], thus being important for juveniles. On

the other hand, prey such as Macrouridae are abundant in deep waters [40], becoming more

important for TOA adults. Other studies have also found changes in diet with predator length

[5, 8, 17, 54], which could demonstrate that there are ontogenetic changes in the diet of Ant-

arctic toothfish. However, because all fishes in this study were caught deeper than 900 m

depth, juveniles were not represented and the smallest individuals analyzed were 80 cm; hence,

it is necessary to extend to smaller sizes probably on shallow waters to obtain more determi-

nant results.

Other sources of variability in TOA diet have been attributed to different areas and depth

strata [8, 21], but interannual variability is rarely analyzed. Considering that the TOA diet can

strongly reflect local fish assemblages [42], it is interesting the changes in prey composition

between two consecutive fishing seasons observed in this study. In Antarctica, demersal fish

assemblages can vary according to water temperature [55], however this was not assessed in

this study. The ongoing oceanographic changes well-described along the Antarctic Peninsula

[56], could also be impacting the deep-water fish assemblage; hence it is important to measure

physical factors to assess if they are driving changes in the distribution of prey in the area.

Fatty acids prey composition

Overall, PUFA was twice as numerous as MUFA and SAFA in all analyzed prey, which is com-

mon in high-latitude ecosystems [57]. SAFA and MUFA are used as metabolic energy in the

lipoproteins synthesis [58], whereas PUFAs are incorporated into lipoproteins [59], being used

to synthesize the tissues of the developing organism [60]. PUFAS are fatty acids with more

than two double bonds and 18 carbons in their chemical constitution, making them highly

nutritious. We also observed higher content of w3 than w6 (high w3/w6 ratio), characteristic

of marine ecosystems [61], being beneficial for cell membranes of most tissues, since it is

known that w3 acids are much more useful for energy expenditure than for tissue construction

[60]. For example, specifically, the n-3/n-6 balance of membranes and micro domains of lipid

membranes strongly influences cellular processes by modulating the expression of different

genes affecting cell survival [62] and therefore can mean a higher or lower survival success.

Fish and cephalopod prey showed similar amounts of saturated fatty acids (SAFAs), mostly

dominated by palmı́tic acid (C16:0), one of the most common FAs in marine organisms, key

to providing metabolic energy during growth and spawning [63]. Among MUFAs there were

higher values in fishes rather than cephalopods, especially oleic acid (C18:1), a fatty acid com-

monly found in prey that lives at great depths [64, 65]. Both fishes and cephalopods were prey

rich in PUFAs eicosapentaenoic (C20:5) and docosahexaenoic (C22:6 or DHA), often consid-

ered essentials acids as most aquatic animals are not capable of synthesizing [63]. In particular,

DHA (which contributed upon 20% of FA composition in all measured prey) is indicative of

optimal animal health increasing individual survival and reproductive success [63, 66]. DHA
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plays a major role in the maintenance of tissue cell membranes, especially those of the retina

and brain [67], and for example in marine fish larvae, its absence are related to abnormal neu-

ral and visual development [68]. According to results, TOA is therefore assimilating DHA

through the diet by consuming prey of high nutritional value.

Also, TOA feeds on prey with a high proportion of MUFAs and PUFAs, where both fishes

and cephalopods can supply similar amounts of energy, so there could be no need for a special-

ist behavior, potentially explaining the generalist strategy commonly associated with TOA

feeding. Other predators tend to have a selective behavior as the differential energetic contri-

bution among different prey [69]. Since we were not able to analyze predator tissues we could

not compare the fatty acid signatures among the predator and their prey; this would have pro-

vided us with important information of quantitative trophic predator–prey relationship [70].

However, the information provided here still constitutes key information to improve our

understanding of energy flow and carbon transfer pathways in relation to the role of TOA in

the benthic-demersal ecosystem of the Antarctic Peninsula.

Management consideration

Antarctic toothfish has been consistently managed by the CCAMLR as a key component in the

food web dynamics of the Antarctic ecosystem [5, 22]; however, issues including the popula-

tion status, the effect of environmental change on its complex life cycle, and ecosystem impacts

of the fisheries are still to be well understood [71]. Moreover, climate change projections sug-

gest that warming will negatively affect toothfish and other benthopelagic dwelling species

[72]; however, the effects of climate change on TOA are still unclear as while some studies sug-

gest this species will respond negatively to warming due to its physiology, others suggest it

may be able to adapt considering its capacity to inhabit different habitats [73]. For this reason,

a complete understanding of feeding dynamics and trophic connections is relevant for ecosys-

tem-based stock management in order to develop fishing activities while maintaining ecosys-

tem structure and functioning. One risk in the toothfish fishery is the predation release, where

fishing-induced changes in predator-prey relationship may generate the unbalanced prolifera-

tion of one species, destabilizing the structure and function of the food-web [21]. This process

could be of particular concern in environments already modified by overexploitation, such as

the Antarctic Peninsula, where it is unknown how TOA and the surrounding bentho-demersal

community will respond to fishing pressure, also considering the impacts of climate change in

the area.

Conclusion

This study described for the first time the diet of TOA in the Antarctic Peninsula, where fishes

and cephalopods dominated the diet, especially Macrouridae which is probably the most abun-

dant fish in the AP. Diet varied between size-classes suggesting a ontogenetic change in prey

preferences from Anotopteridae in smaller individuals to Macrouridae in higher ones, show-

ing preference for prey items with high nutritional value (rich on PUFA DHA), suggesting

that TOA assimilates essential fatty acids through the diet in order to maintain optimal health.

Results presented here are relevant for fisheries management as TOA’s prey also constitutes

bycatch species, which is particularly relevant for the benthic-demersal fish communities at

the Antarctic Peninsula. Since some of these species were overexploited in the past, and con-

sidering nowadays it is still unknown the extent of its recovery and how TOA population is

shaping by predation. As CCAMLR effort are focused on managing fish stocks in a precaution-

ary and ecosystemic manner, and considering the uncertainty associated with the projected
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climatic changes in the area and its effects on the ecosystem, more studies on predation inter-

action, energy flow and structure stability of the entire food web are needed.
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