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Abstract

Phylogenetic trees are fundamental for understanding evolutionary history. However, find-

ing maximum likelihood trees is challenging due to the complexity of the likelihood land-

scape and the size of tree space. Based on the Billera-Holmes-Vogtmann (BHV) distance

between trees, we describe a method to generate intermediate trees on the shortest path

between two trees, called pathtrees. These pathtrees give a structured way to generate and

visualize part of treespace. They allow investigating intermediate regions between trees of

interest, exploring locally optimal trees in topological clusters of treespace, and potentially

finding trees of high likelihood unexplored by tree search algorithms. We compared our

approach against other tree search tools (PAUP*, RAXML, and REVBAYES) using the highest

likelihood trees and number of new topologies found, and validated the accuracy of the gen-

erated treespace. We assess our method using two datasets. The first consists of 23 pri-

mate species (CytB, 1141 bp), leading to well-resolved relationships. The second is a

dataset of 182 milksnakes (CytB, 1117 bp), containing many similar sequences and com-

plex relationships among individuals. Our method visualizes the treespace using log likeli-

hood as a fitness function. It finds similarly optimal trees as heuristic methods and presents

the likelihood landscape at different scales. It found relevant trees that were not found with

MCMC methods. The validation measures indicated that our method performed well map-

ping treespace into lower dimensions. Our method complements heuristic search analyses,

and the visualization allows the inspection of likelihood terraces and exploration of tree-

space areas not visited by heuristic searches.

1 Introduction

Evolutionary trees, or phylogenetic trees, have been used extensively throughout systematic

biology and other fields to represent the evolutionary history of species. How to compute the

best tree and how to characterize the uncertainty of estimates of the branch lengths and the

topology is an on-going challenge. Generally tree search methods seek a globally best tree

under some optimization criteria (e.g. parsimony [1], distance methods [2, 3], or maximum

likelihood [4]), but the number of potential trees grows exponentially relative to the number of
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leaves [5]. Furthermore, it is NP-hard to compute the maximum likelihood tree [6, 7] or most

parsimonious tree [8], so except for small numbers of taxa where exhaustive search is possible,

heuristic methods must often be used to search the treespace. These methods explore locally

best trees in the hope that the best local tree found is equivalent to the global best tree (e.g.

maximum likelihood programs RAXML [9], PHYML [10], and PAUP* [11]). Similarly, Bayesian

inference programs use tree rearrangement moves to generate proposals to estimate the poste-

rior probability (e.g. Bayesian inference programs MRBAYES [12], REVBAYES [13], and BEAST

[14]).

Initially, many optimality criteria to compare trees were developed, the most prominent

being parsimony [1], distance methods [2, 3], and maximum likelihood [4]. Computational

power has increased considerably since then, so computationally intense probabilistic methods

such as maximum likelihood and Bayesian inference have supplanted faster but less accurate

methods. Researchers now commonly use maximum likelihood programs, such as RAXML

[9], PHYML [10], and PAUP* [11], or Bayesian inference programs, such as MRBAYES [12],

REVBAYES [13], and BEAST [14].

Both Bayesian inference and maximum likelihood methods use random changes in the tree

topology to search the treespace. Even when we record all visited trees in a maximum likeli-

hood search or look at all collected trees in a Bayesian Markov chain Monte Carlo run, the

trees are not evenly distributed throughout treespace: some regions are heavily sampled, while

other regions are sampled sparsely or not at all (for example, see Fig 2). While treespace is

much too large to sample entirely, an MCMC may not explore the space or posterior distribu-

tion efficiently due to revisiting trees topologies [15] or due to low posterior nodes separating

peaks [16]. While in an ML tree search, Money and Whelan [17] show that different rearrange-

ment moves correspond to discretized treespaces with different numbers of local optima.

While the concept of treespace is often used informally to mean the set of all possible phylo-

genetic trees meeting some condition, such as having n leaves, a treespace can be formally

defined as a discrete or continuous metric space (ie. a geometric space with a distance measure

between points meeting certain conditions) where each point corresponds to a tree (see [18]

for a comprehensive review of treespaces). In this paper, we use the Billera-Holmes-Vogtmann

(BHV) treespace [19], which is a continuous, piece-wise Euclidean space containing all trees

with branch lengths and n leaves. This space contains unique shortest paths, or geodesics,

between any two points, with the lengths of these paths being the Billera-Holmes-Vogtmann

(BHV) distance. Both the BHV distance and geodesics between trees can be computed in poly-

nomial time [20]. The weighted Robinson-Foulds distance (wRF) [21] corresponds to using an

L1 metric instead of an L2 metric on the piecewise-Euclidean orthants of BHV treespace. The

wRF distance does not have unique geodesics but is faster to compute than the BHV distance

and is at most a multiplicative factor of
ffiffiffi
2
p

larger than the BHV distance [22]. The Robinson-

Foulds (RF) distance [23] is the same as the weighted Robinson-Foulds distance when all edge

lengths are set to be 1.

A landscape is a configuration space or a metric space of trees (with or without branch

lengths) T and an associated real-valued cost or fitness function f : T ! R. Landscapes were

first defined by Bastert et al. [24] on trees without branch lengths, so the metric space T was a

graph. A landscape on trees without branch lengths can be visualized as a colored graph,

where the trees are the nodes, colored by the fitness function value, and edges represent a min-

imal rearrangement move between trees, such as Subtree-Prune and Regraft (SPR) [16]. Alter-

natively, for trees with or without branch lengths, distances can be computed between the

trees, and visualized in 2 or 3 dimensions using Multi-Dimensional Scaling (MDS). MDS

approximates the pairwise distances between points by mapping them in a lower-dimensional
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Euclidean space [25], and was first applied to sets of phylogenetic trees by Amenta and

Klingner [26] and popularized by Hillis et al. [27]. Trees in an MDS visualization can be col-

ored by a qualitative descriptor (e.g. associated cluster [28–30], topology [28] or gene [27]) or

by a quantitative descriptor (e.g. likelihood [27], posterior probabilitiy [31], or minimum

implied gap (MIG) score, which measures congruence with the fossil record [32]). Different

tree distance metrics have also been used, including RF [27, 29, 32], wRF [27], the Kendall-

Colijn metric [28, 30], BHV [29], and Nearest-Neighbor Interchange [31].

We use MDS to visualize landscapes where the fitness function is the log likelihood, but

approach the visualization in a different way from previous work. For a given area of interest

in treespace, such as the region bounded by the trees from an MCMC run, we sample trees

along certain geodesics crossing this area to get a representative set of trees (“pathtrees”). We

then use MDS to map these pathtrees into 2 dimensions, color them by their likelihood or

topology, with the shade determined by their optimized log likelihood, and use interpolation

to estimate the likelihood landscape in the treespace area of interest. We also show the land-

scape function as a 3-D surface over the 2-D MDS plot and call this a likelihood surface. Thus,

our visualizations try to illustrate the overall landscape tendency in the part of treespace of

interest, instead of only point values of the fitness function, possibly unevenly distributed.

There are several recent packages or programs for visualizing trees using MDS, but they

focus on coloring the points by cluster rather than a fitness function. TREESCAPER [33] is a

standalone GUI that allows different tree distance functions, cost functions for dimensionality

reduction, and non-linear dimension reduction algorithms to be used. TREESPACE [30] is an R

package that allows a wide variety of tree metrics and methods for clustering trees to be used.

Smith [34] evaluated the performance of multiple aspects of low-dimensional representations

of sets of trees, and provides an R package TreeDist for users to do the same. Finally, R We

There Yet (RWTY) [35], a package for analyzing Bayesian analyses convergence, can produce

nonlinear MDS visualization of landscapes using the RF or path difference distance [36] and

colored by the likelihood. Some authors [34, 37, 38]) have analyzed how well MDS visualizes

treespace, and suggested validation measures. There are other ways to visualize sets of related

trees beyond dimensionality reduction, such as super-imposing the trees on each other, as in

DensiTree [39], or sophisticated tree comparison visualizers, like ADView [40].

The audience for our method and software are biologists who need to analyze their data

and generate trees and describe potential alternative topologies and need to be able to compare

the best tree found by heuristic searches or Bayesian inference with potential alternatives. We

will focus on likelihood as the optimality criterion for the rest of this paper. While there is a

closed-form expression to compute the likelihood of a given tree, given sequence data, the like-

lihood function itself is very complex with multiple local optima [41, 42]. Finding the best tree

in the presence of multiple local and global optima and the presence of regions of trees with

similar, high likelihood, such as islands [43, 44] and terraces [45, 46] is difficult. Our method

can deliver additional support for other heuristic methods by investigating the relationship

among trees in the BHV space and visualizing the landscape at different scales in an area of

interest in treespace using MDS. We apply our method to two datasets, and discover novel

high likelihood tree topologies. We distribute our approach in the Python package PATHTREES.

2 Materials and methods

We developed a method to generate and visualize the log-likelihood landscape in an area of

interest in a treespace, which can sometimes find trees of high likelihood unexplored by tree

search algorithms. We sample trees (“pathtrees”) along the shortest paths in BHV treespace

between points on the vertices of a convex hull enclosing the area of interest, and also compute
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the optimized branch lengths for each tree topology found. We then use MDS to map all of

these trees into two dimensions and use splines to interpolate the log-likelihood in the spaces

between trees to visualize the relationship of the trees and their landscape. For the rest of this

paper, we use “treespace” to refer to the Billera-Holmes-Vogtmann (BHV) treespace, unless

otherwise specified.

2.1 Billera-Holmes-Vogtmann (BHV) treespace and shortest paths

The Billera-Holmes-Vogtmann (BHV) treespace models all phylogenetic trees with a fixed set

of leaves. It is formed from a set of Euclidean regions, called orthants. Each orthant contains

only trees with the same topology. Each tree topology consists of a unique set of splits [47], and

each of these splits is assigned to one of the dimensions of the orthant. Each branch length in a

tree becomes the coordinate in the orthant along the dimension corresponding to the branch’s

split. Two orthants with corresponding tree topologies that share splits are adjacent in the tree-

space, and their shared boundary orthant contains all trees containing exactly the shared splits.

All orthants contain the origin, which corresponds to the star tree, so the space is connected.

The length of a path between two trees is computed by measuring the Euclidean length of

the path in each orthant it passes through, and summing those lengths. There is a unique

shortest path, or geodesic, connecting two phylogenetic trees T1 and T2 in BHV treespace [19],

and it can be computed in polynomial time O(n4), where n is the number of leaves in the trees,

by the Geodesic Treepath Problem (GTP) algorithm [20].

If trees T1 and T2 have no common splits, then the GTP algorithm starts with a simple ini-

tial path, called the cone path, which connects trees T1 and T2 to the origin (a star tree), and

hence each other, by straight lines. Then, the cone path is transformed into a series of succes-

sively shorter paths until the geodesic is obtained. At each step, the algorithm identifies one

new orthant that the current path can be modified to pass through to yield a shorter path.

When trees T1 and T2 have splits in common, the algorithm first subdivides T1 and T2 along

the common splits, and runs the GTP algorithm described above on each pair of subtrees. The

shortest paths between the subtrees are then combined into the overall geodesic between T1

and T2. Fig 1 demonstrates an example of a geodesic between two trees, and the geometric

representation of treespace. Fig 1A shows a starting tree (T1), an ending tree (T2), and the two

trees where the geodesic between T1 and T2 crosses orthant boundaries. Fig 1B shows the geo-

desic, the cone path, parts of the three orthants that the geodesic passes through, and an exam-

ple tree of each orthant. Moving along the geodesic from start tree T1 to end tree T2, the

intermediate tree branches shrink to zero length at orthant boundaries, and new branches

begin to grow.

2.2 Sampling trees on the shortest path between tree pairs

Our method samples trees along the shortest paths (geodesics) between points on the bound-

ary of our area of interest. The topologies and edge lengths for these sampled trees on the geo-

desic between trees T1 and T2 are given by Theorem 2.4 of Owen and Provan [20] and

Theorem 1.2 of Miller et al. [48]. First let (A1, A2, . . ., Ak) be a partition of the splits in T1 that

are not in T2, where Ai is the set of splits whose branches shrink to zero length at the i-th

orthant boundary along the geodesic. Let (B1, B2, . . ., Bk) be a partition of the splits of T2 that

are not in T1, where Bi is the set of splits whose branches begin growing from zero length at the

i-th orthant boundary. Let C be the set of splits common to T1 and T2, and parameterize the

geodesic between T1 and T2 by 0� λ� 1. For split e in tree T, denote its branch length in T by

|e|T and for the set of splits S in tree T, let jjSjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

e2Sjej
2

T

q

. Then by Theorem 2.4 of [20] and
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Theorem 1.2 of [48], a tree Ti on this geodesic at position λ in the i-th orthant contains exactly

the splits

S ¼ C [ B1 [ . . . [ Bi [ Aiþ1 [ . . . [ Ak; ð1Þ

such that split e 2 S has branch length

jejTi ¼

ð1 � lÞjjAjjj � ljjBjjj

jjAjjj
jejT1

e 2 Aj

ljjBjjj � ð1 � lÞjjAjjj

jjBjjj
jejT2

e 2 Bj

ð1 � lÞjejT1
þ ljejT2

e 2 C

8
>>>>>>>><

>>>>>>>>:

ð2Þ

Thus, the trees along the geodesic between T1 and T2 can only contain splits from T1 and

T2, and any split common to T1 and T2 appears in all trees along the geodesic between them.

Additionally, as shown in Fig 1 where the geodesic passes through the quarter plane formed by

the axes e3 and e4, a geodesic can non-trivially pass through lower-dimensional orthants, corre-

sponding to trees with 0 length edges. Each tree Ti generated along the path is then stored in

the standard Newick format. Some trees on the geodesic are not bifurcating trees.

Fig 1. Shortest path (geodesic) between two trees in the BHV treespace. (A) A start tree T1 and an end tree T2 with two intermediate trees

B1 and B2 on the boundaries of orthants, axis e3 and the quarter-plane formed by axes e4 and e6, respectively. (B) Black dots mark the trees

in Panel A; the cone path is the black dotted line; the geodesic is the red dotted line; each colored region is part of a different orthant

containing the geodesic; and an example tree with arbitrary branch lengths is shown for each orthant.

https://doi.org/10.1371/journal.pone.0287350.g001

PLOS ONE Geodesics to characterize the phylogenetic landscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0287350 June 23, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0287350.g001
https://doi.org/10.1371/journal.pone.0287350


2.3 Finding the starting trees for PATHTREES

Our method visualizes the landscape in an area of interest in treespace. The boundary of this

area is defined by a set of trees. We compute the shortest path between each pair in this set of

trees, and sample trees along these paths to get the pathtrees. Our package can generate ran-

dom starting trees, but with a larger number of taxa, these random trees span a very large sec-

tion of treespace. Instead of random starting trees, we use a large set of trees generated by

another method, for example, by REVBAYES using Markov chain Monte Carlo. We calculate the

BHV distance between these trees and map them to two dimensions using MDS. The trees

that are on the vertices of the convex hull, the smallest convex polygon enclosing all of the

trees in the 2-D MDS plane, are then extracted and used as the starting trees for PATHTREES.

The pathtrees will only depend on the trees on the convex hull. Ideally, we would want to cal-

culate the hull in treespace and not the 2-D MDS space but currently, there is not an algorithm

to achieve that. For example, we collected 50,000 trees using the program REVBAYES and the

primate dataset (outlined in more detail in Section 2.7) and then extracted 1000 trees from the

last 1/10 of the MCMC chain. Fig 2 shows the space of 1000 trees and the trees on the vertices

of the corresponding convex hull.

2.4 Visualizing treespace and generating pathtrees

The largest orthants in the BHV treespace for n-leaf rooted trees have dimension 2n − 3, so

landscapes on this treespace cannot be visualized directly. Instead, we follow precedent [26]

and we generate a distance matrix for all N trees we wish to visualize, and use this distance

matrix as input into a multidimensional scaling (MDS) algorithm [49] to compress the higher

dimensional treespace into two dimensions. The BHV tree space is high dimensional and com-

pressing this space using MDS to 2 dimension may bring unrelated trees close to each other.

We evaluated this mapping by comparing the 2-D MDS coordinate distance matrix with the

tree distance matrix using correlation measures, such as Pearson’s r. We show the goodness of

fit of a Shepard diagram [50] by calculating the correlation measures Pearson r, Spearman rho,

and Kendall tau between the original distances and the MDS distances [34]. Since we are inter-

ested not only in the relationship among the trees but also in how well they fit the data, we cal-

culate the log-likelihood for each tree and add this dimension to the 2-D MDS visualization

either as contours or a third coordinate axis. For a smooth representation of the likelihood sur-

face, we interpolate the log-likelihood values between the N trees. We used two different meth-

ods: the cubic spline interpolation method [51] and the radial basis function (RBF) thin-plate

spline interpolation [52]. The differences between the two interpolation methods (cubic spline

interpolation and the thin-plate spline interpolation) are discussed in Section 3 in S1 File.

The MDS procedure is time-consuming for large distance-matrices. We experimented with

two different distance metrics for visualization: the BHV distance and the weighted Robinson-

Foulds (wRF) distance [21]. The wRF distance is faster to compute than the BHV distance and

is, at most, a multiplicative factor of
ffiffiffi
2
p

larger than the BHV distance. In general, the tree dis-

tance used can have an effect on the MDS visualization, which is not well understood and an

area of active research [27, 34].

The distribution of the sampled trees shown in Fig 2 highlights that some areas of treespace

were sampled less well than others. In contrast, choosing trees along geodesics allow us to visu-

alize trees that are evenly spaced between two arbitrary end-point trees. We demonstrate these

pathtrees in Fig 3 where we selected three trees (colored triangles) from the 1000 sample trees

visualized in Fig 2 and generated 20 trees on the shortest path in the BHV treespace between

each pair of them and then visualized the contour and the surface of all 1060 trees in 2-D MDS

space. The pathtrees bridge the gaps between the sampled trees. The selected three trees are
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provided in S1 Fig in S1 File. The Shepard diagrams and the correlations between tree distance

and MDS coordinate distances for Figs 2 and 3 are given in Section 4.1 in S1 File.

2.5 Optimizing the branch-length of pathtrees

The pathtrees lay on the shortest path between a start and end tree (anchor trees). This path is

constructed by refinement of the cone path as discussed in Section 2.1, so the resulting path-

trees will more commonly have short branches. To find the best tree and also find potential

local likelihood maxima, we need to find all distinct pathtree topologies and then optimize the

Fig 2. An example of sample treespace and its convex hull. Left: A log-likelihood contour plot of the first two multidimensional scaling (MDS)

coordinates of the sampled trees. The log-likelihood contour is a cubic spline interpolation of the log likelihoods of all trees in the MDS plane; the MDS

coordinates are computed from the BHV distances between trees. Each dot is a tree; the lighter the dot, the higher the likelihood of the tree. Right: the

convex hull of the set of trees. The red dots are the vertices of the convex hull, displaying the sample trees on the boundary of the treespace.

https://doi.org/10.1371/journal.pone.0287350.g002

Fig 3. An example of pathtrees between three arbitrary trees in the treespace. Cubic spline interpolation of the log likelihood was used for the

contour color (left) and the surface height (right) of the space inside the convex hull. 20 pathtrees (red dots) were generated on the shortest path

between each pair of 3 trees (triangles).

https://doi.org/10.1371/journal.pone.0287350.g003
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branch lengths for each different topology. We apply the unweighted Robinson-Foulds dis-

tance [23] to detect the different topologies; then we use PAUP* to optimize the branch lengths

of a tree in each topology cluster. Fig 4 shows the locations of the pathtrees and their corre-

sponding optimized trees. If the anchor trees have different topologies, they are located in dif-

ferent orthants. The pathtrees can have different intermediate topologies that, when

optimized, will be located away from the shortest path. Unoptimized trees that start in low

likelihood areas of treespace may move particularly far away, whereas trees that start on a

ridge may not move far.

2.6 Software implementation

Our method is implemented in the Python package PATHTREES. The method uses the Java pack-

age GTP [20] to generate the geodesic between pairs of trees, the program PAUP* [11] for likeli-

hood optimization, the Python modules DendroPy [53] for the Robinson-Foulds metric, and

several other standard Python modules, such as SCIPY and NUMPY [54, 55].

We summarize the tree searching strategy of our package PATHTREES in the algorithm:

Input: Sequence data in PHYLIP format and N rooted, non-ultrametric trees in plain New-

ick format sampled in connection with the sequence data (e.g. from a MCMC Bayesian analy-

sis chain of the sequence data). The parameters m and n are the number of trees on the

geodesic between each pair of starting trees and the number of trees to select with the highest

likelihoods among the current sample trees, respectively.

Fig 4. An example of pathtrees and their corresponding optimized trees. Each pathtree is connected to its corresponding

optimized tree (black circles).

https://doi.org/10.1371/journal.pone.0287350.g004
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Output: Trees on the shortest paths through treespace between all pairs of starting trees;

branch-length optimized trees for different topologies; and MDS visualization of treespace and

likelihood landscape inside the convex hall of input trees.

Algorithm:

1. Compute all pairwise distances between N sample trees, and compute their MDS

coordinates.

2. Extract the trees on the vertices of the convex hull of the N sample trees in the 2-D MDS

plane and consider them as starting trees.

3. Generate m equally spaced trees on the geodesic between each pair of starting trees. Put all

starting trees and generated pathtrees in the set current sample trees.

4. Calculate the likelihood of all current sample trees.

5. Select n trees with the highest likelihood among current sample trees and classify them with

respect to their topologies. Let there be t topologies among them.

6. For each topology cluster, optimize the branch lengths for that topology and add these t
optimized trees to the current sample trees.

7. Visualize the contour and surface of the current sample trees by creating a distance matrix

using either the weighted Robinson-Foulds or the BHV distance metric, interpolating log-

likelihood values, and recomputing the MDS coordinates. The landscape and all current

sample trees are colored according to the likelihood color bar. Then, the n selected trees

and the optimized trees are colored according to the purple spectrum color bar to distin-

guish different topologies. The lighter the purple color, the lower the likelihood value of the

tree for that topology.

8. Return the current sample trees, the pathtrees, and the visualization; or continue with step

3 to zoom in the area of optimized trees of the current iteration.

2.7 Application to real data

We evaluate our approach PATHTREES using two datasets that were previously published: D1 is a

dataset of primates used in the tutorial for the program REVBAYES [56]. The dataset consists of

1141 base pairs of the mitochondrial cytochrome b gene of 23 primate taxa. D2 is a larger mito-

chondrial cytochrome b dataset of 182 milksnakes (1117 bp) [57, 58]. We chose the two differ-

ent datasets because they represent very different situations. D1 is a relatively small dataset but

still too large to consider an exhaustive tree search. The species in the dataset are well defined,

and the dataset contains enough variability to establish a phylogeny with branch lengths that

are neither zero nor huge. In contrast, D2 has about eight times more individuals than D1;

these individuals are only from a few species or subspecies, and many individuals share the

same DNA sequence with others in the dataset. We deliberately did not remove individuals

that have identical sequences, anticipating that the many zero branch lengths would be a stress

test for our method.

For the primate dataset D1, we collected 50,000 trees using the program REVBAYES. We used

the instructions from the tutorial of REVBAYES [56], which are shown in Section 5 in S1 File.

We selected every 38th tree from the last 3/4 of the total 50,000 sample trees (around 1000 sam-

ple trees) and then extracted the trees on the vertices of the convex hull of these sample trees

(14 trees) as starting trees for PATHTREES. These trees were the starting trees for two experi-

ments: (1) 1 pathtree between each pair of starting trees and (2) a higher number of 15
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pathtrees between each pair of starting trees to show a more detailed treespace. We used the

BHV distance between trees for MDS for the first experiment and the faster wRF distance for

the second experiment to make the computations tractable.

For the snake dataset D2, we collected 10,000 trees using the program REVBAYES. After

removing the first 300 trees as burn-in, we selected every 20 trees and extracted 500 trees to be

considered in convex hull analysis. The 14 trees on the vertices of the convex hull were used as

starting trees in PATHTREES. For D2, more complex dataset with 182 individuals, we deliberately

gathered a smaller sample of 10,000 trees from REVBAYES, in contrast to the primate dataset D1.

We burned in a minor portion of these trees to confirm that generating an extensive chain of

REVBAYES trees and a large burn-in is not necessary to achieve a satisfactory treespace for gen-

erating initial trees for PATHTREES. We computed 4 pathtrees along the shortest path between

each starting tree pair and selected the 100 trees with the highest likelihood to classify by topol-

ogy for branch length optimization. We then performed a second iteration of our method

(“zoomed in”) by computing the convex hull of the 100 optimized trees of the first iteration.

The vertices of this convex hull became the starting trees for our second iteration, and in this

iteration we computed 5 pathtrees along each shortest path between starting tree pairs. For

both iterations, we used the wRF distance between trees as input for MDS, and used thin-plate

spline interpolation to visualize the likelihood landscape.

2.8 Comparison of PATHTREES with heuristic tree searches

We compared the highest likelihood trees found by PATHTREES with those generated by the

maximum likelihood software PAUP* 4.0a (build 168) [11], RAXML 8.2.12 [9], and the Bayesian

inference software REVBAYES 1.1.1 [13]. These programs perform heuristic searches. PAUP* and

RAXML search will swap on new tree topologies until a local maximum has been reached and

no new tree topologies need further evaluations. These heuristics do not guarantee to recover

the global maximum likelihood tree but usually deliver good results [9]. In contrast, REVBAYES

uses Markov chain Monte Carlo to evaluate the posterior probability of a tree while collecting

trees along a Markov chain. The run time is user-determined and needs to be long enough to

sample good candidate trees. These trees are then used to estimate the maximum a posteriori
tree.

We conducted several experiments to evaluate whether the number of intermediate path-

trees for each pair of anchor trees affects the accuracy of the MDS reconstruction of the likeli-

hood surface and how well we can recover the best tree. We use the Jukes-Cantor mutation

model for the likelihood calculation throughout all analyses. Using such a simple model

reduces potential difficulties introduced by parameter fitting.

We compared PATHTREES with PAUP* and REVBAYES for the primate dataset D1 because we

were confident that the REVBAYES analysis converged. For the snake dataset D2, we compared

PATHTREES with PAUP* and RAXML because even long runs of REVBAYES did not deliver stable

results. Both PAUP* and RAXML were run without improving parameters that tune the heuris-

tic search. All generated pathtrees were compared with all the evaluated trees in REVBAYES to

investigate whether our approach can find topologies that were not visited by REVBAYES.

3 Results

We use our methods for landscape generation, visualization, and finding high likelihood trees

to examine the two datasets D1 and D2. Fig 5 shows the contour and surface plots of the visual-

ized treespace landscape for the primate dataset D1, generated with one pathtree per pair of

starting trees (14 starting trees and 91 total pathtrees), and using the BHV distance for MDS

input and thin-plate spline interpolation of the log-likelihood values of all plotted trees. Fig 5A
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shows the 15 trees with the highest likelihood (small pink/purple colored disks) selected from

the 91 pathtrees +14 starting trees. These 15 trees contained 4 different topologies, and the

branch lengths in each topology cluster were optimized (medium-size circles). These 15 trees

are colored by their topology, according to the purple spectrum color bar. The lighter the pur-

ple color, the lower the likelihood value of the optimized tree for that topology. Among locally

optimal trees associated with different topologies, we found the best tree with the log likeli-

hood of −15795.1817 (red square). We find the same tree as PAUP* (big white circle) as the

optimal tree and also find the same tree as the maximum Carlo to evaluate the posterior proba-

bility of a tree while collecting trees along a Markov chain. The run time is user-determined

and needs to be long enough to sample good candidate trees. These trees are then used to esti-

mate the maximum a posteriori tree (MAP) in REVBAYES (big black circle) as a locally optimal

tree. In the plots, we see higher likelihood areas near the outside of the convex hull and a lower

likelihood region in the middle. The 15 highest likelihood trees selected for topology analysis

and their optimized topology trees are also towards the edges of the convex hull.

Fig 5. Contour and surface plots of PATHTREES for dataset D1 when generating one pathtree per starting tree pair (91 pathtrees), using BHV

distances for the MDS input, and thin-plate spline interpolation for the landscape. The vertices of the convex hull of the selected 1000 sample trees

are the starting trees (14 triangles). (A) 15 trees with the highest likelihood were selected from the 91+ 14 trees and classified based on their topologies

(4 topologies with the relative likelihoods of their branch-length optimized trees given by the purple spectrum). Each medium-size circle with a purple

color shows one of these locally optimal trees. The red square shows the best likelihood tree in the treespace found by PATHTREES. The large white disk

shows the best tree of PAUP*, which is identical to PATHTREES’ optimal tree. One of PATHTREES’ locally optimal trees matches the MAP tree (big black

circle). (B) All 91+ 14 trees were selected and classified based on their topologies (30 topologies). Medium-size disks on a purple spectrum show the 30

locally optimal trees and their relative likelihoods. The big red square shows the best likelihood tree of PATHTREES.

https://doi.org/10.1371/journal.pone.0287350.g005
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Fig 5B shows the same 91 pathtrees and 14 starting trees as Fig 5A, but optimized branch

lengths have been computed for all their different topologies (30 topologies in total). Among

all locally optimized trees (30 local optima corresponding to different topologies), we found

again the best tree with the log likelihood of −15795.1817. In the plots, we still see a lower like-

lihood region in the middle of the convex hull, along with some points of higher likelihood

corresponding to optimized trees. The orientation of the landscape is flipped from Fig 5A, but

this is a possibility with MDS.

Fig 6 shows the contour and surface plots of the visualized treespace landscape for dataset

D1, generated with 15 pathtrees per starting tree pair, and using the wRF distance for MDS

input and thin-plate spline interpolation of the log-likelihood values of all plotted trees. We

generated a total of 1365 pathtrees with 43 different topologies to show a detailed treespace

with a high number of trees. After optimizing the branch lengths for all 43 topologies, PATH-

TREES found the same best tree as PAUP*, as previously found, with the log likelihood of

−15795.1817. With a higher number of pathtrees, we have a surface where trees are evenly

spread out, and the gaps are filled. The best trees detected by PATHTREES, PAUP*, and REVBAYES

were added to S2 Fig in S1 File. We still see a lower likelihood region in the middle of the plots.

Pathtrees with the same topology are generally grouped together, and the sampling is dense

enough that we can see the path of the geodesics (curved lines of pathtrees) in some cases.

For the snake dataset D2, Fig 7 shows the contour and surface plots of the likelihood land-

scape from two iterations of PATHTREES, with the second iteration zooming in on the top 100

optimized trees from the first iteration. Fig 7A shows the first iteration plots, generated using 4

pathtrees per shortest path between starting trees (14 starting trees) and selecting the 100 trees

with the highest likelihood to classify by topology. All selected trees have different topologies,

giving 100 optimized trees. PATHTREES found a similar tree to the best tree from PAUP*, both

with the log likelihood −5225.5856. Fig 7B shows the second iteration plots, zooming in on the

convex hull of the 100 optimized trees from the first iteration. The 11 trees on the vertices of

this convex hull became the starting trees for the second iteration. After generating 5 pathtrees

between each starting tree pair and classifying the generated pathtrees based on topology, we

found 154 different topologies, which we optimized. Despite additional topologies, we found

the same tree with highest likelihood as in the first iteration. In Fig 7A, we see only a small area

of high likelihood trees, separated into two peaks, near the center. In Fig 7B, zoomed in on this

high likelihood section, we still see a lower likelihood chasm dividing the convex hull. The

optimized topology trees are near the edges of the convex hull.

A comparison of the three optimal trees, namely ours, the best PAUP* tree, and the best

RAXML tree, revealed that all trees are different from each other. Table 1 shows the weighted

and unweighted Robinson-Foulds distances between the trees and their log likelihoods. Our

tree and the PAUP* tree are close and only differ by four splits, whereas the RAXML tree differs

from both our tree and the PAUP* tree by nine splits. The wRF distances between these three

trees show similar relationships. The RAXML tree is different because its topology was found

by applying the option GTRCAT and constraining for the JC69 model (RAXML does not have

an equivalent to the simple JC69 model without site rate variation). We then used PAUP* to

find the optimal branch lengths for the RAXML topology, and the plain JC69 model to com-

pute the likelihoods. The log likelihoods for all these ‘best’ trees are very similar, and compar-

ing their location on the surface in Fig 7 also shows that the best PATHTREES and PAUP* trees are

close, whereas the RAXML tree seems to be on a different local maximum on the surface. S3

Fig in S1 File contains all three trees showing their topology differences.

We used MDS to visualize the BHV treespace. This compression of the high dimensional

space to 2 dimensions may lead to artifacts, or spurious errors, in the visualization. We vali-

dated the accuracy of our visualizations using correlation analyses between the distance matrix
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in BHV space and the MDS distance matrix using the first and second coordinates. For the pri-

mate dataset D1, the Pearson correlation for Fig 5B was 0.9237 (additional correlation mea-

sures and the Shepard diagrams are shown in Section 4.1 in S1 File). For the snake dataset D2,

the Pearson correlation coefficient for Fig 7A (first iteration), was lower than for Fig 7B (sec-

ond iteration), 0.6856 and 0.9702 respectively, because the first figure covers a much larger

area of trees than the second (more correlation measures and the Shepard diagrams are shown

in Section 4.2 in S1 File).

For the primate dataset D1, there are 168 different topologies among 50,000 RevBayes trees,

and for the snake dataset D2, all 10,000 RevBayes trees are having different topologies. Our

pathtrees are only based on the trees on the convex boundary, and one may wonder whether

this reduces the chance to find relevant new trees. For dataset D1, Fig 5B, PATHTREES starting

out with 14 starting trees and generating 91 pathtrees found a total of 28 different topologies

among 91 pathtrees, 4 of which were different from all topologies found by 50,000 sampled

REVBAYES trees. A comparison with all 10,000 sampled REVBAYES trees for dataset D2 revealed

that our method found all 364 pathtrees with new topologies in Fig 7A (first iteration), all of

which were different from topologies found by REVBAYES. In Fig 7B (second iteration), PATH-

TREES found a total of 145 different topologies among 275 pathtrees, again all different from the

total topologies found by 10,000 sampled REVBAYES trees.

4 Discussion

Our approach uses the Billera-Holmes-Vogtmann treespace framework to generate and visual-

ize treespace, including the likelihood landscape, in an area of interest, and to augment the

search for the maximum likelihood tree by investigating global and local maxima found by our

method in this area. While there are other programs and packages for MDS visualizations of

treespace under various distance metrics, PATHTREES is the only recent tool to include compre-

hensive visualization of phylogenetic likelihood landscapes over an area of interest. Our

method can be used at different scales (e.g., see Fig 7) to better understand the spatial relation-

ship between the highest likelihood trees. For example, in Fig 7, the initial landscape shows the

highest likelihood trees are close together within the MCMC searched area of treespace; zoom-

ing in allows us to see that these trees form two high likelihood ridges, with a lower-likelihood

Fig 6. Contour and surface plots of PATHTREES for dataset D1 when generating 15 pathtree per starting tree pair, using weighted Robinson-Foulds

distances for the MDS input, and thin-plate spline interpolation for the landscape. After optimizing branch lengths for the 43 different topologies

(colored by relative likelihood of this optimized tree using the purple spectrum), PATHTREES found the best tree (red square) with the log likelihood

−15795.1817, which is the same as the optimal tree of PAUP* (white circle).

https://doi.org/10.1371/journal.pone.0287350.g006
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Fig 7. Contour and surface plots from PATHTREES for dataset D2, using weighted Robinson-Foulds distances for the MDS input, and thin-plate

spline interpolation for the landscape. (A) The vertices of the convex hull of the selected 500 sample trees are the starting trees (14 triangles). Four

trees were generated on the geodesic of each pair of starting trees (364 pathtrees). Among them, 100 trees with the highest likelihood were selected

to be classified based on topology. All 100 selected trees have different topologies (small circles, colored from the purple spectrum by the relative

likelihood of their optimized tree). Each medium circle with a color from the purple spectrum shows the optimized tree with the corresponding

topology. Among optimized trees, the red square shows the highest likelihood tree in the treespace, which is close but not identical to the best tree of

PAUP* (white circle). The RAXML tree (large black circle) is different. (B) This plot displays the treespace after zooming in on the optimized trees.

The vertices of the convex hull of 100 optimized trees from the first iteration are the starting trees (11 triangles). Five pathtrees were generated

between each starting tree pair (275 trees) and then all of them were selected to be classified by topology.

https://doi.org/10.1371/journal.pone.0287350.g007

Table 1. Comparison of the best tree found by PATHTREES, PAUP*, and RAXML using the data D2.

Tree uRF / wRF ln L

PATHTREES PAUP* RAXML

PATHTREES - 4 9 -5225.5856

PAUP* 0.0054 - 9 -5225.5856

RAXML 0.0343 0.0325 - -5225.8638

Above the diagonal is unweighted Robinson-Foulds (uRF) for all pairs and below the diagonal is the weighted Robinson-Foulds distance (wRF). The last column is the

log likelihood for each tree.

https://doi.org/10.1371/journal.pone.0287350.t001
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region between them. Secondly, our method can find trees with the same maximal likelihood

as other tree search programs, including one with a different topology for dataset D2. These

results suggest PATHTREES could potentially be used to understand treespace islands and ter-

races better.

A limitation of our method is the need for starting trees, due to the enormity of treespace.

For our two example datasets, treespace has 5.6 × 1026 orthants and 4.7 × 10384 orthants,

respectively, so we cannot start with the full treespace and just zoom in. We decided to use a

sample of trees from a Bayesian phylogenetic inference program, REVBAYES. In principle, any

set of reasonably close trees to the best tree may work as a starting point. Using the convex hull

in MDS space to start our approach helped reduce the geodesic distance matrix size used to

create the visualizations. In a way, we treat the convex hull in MDS space as an approximation

of the convex hull in treespace [59, 60]. However, we believe that the hull defined by MDS

allows us to investigate good and best trees within its boundary. In our examples, the best tree,

found by other procedures and ours, is within this MDS hull.

A second limitation of our method is that tree topologies along geodesics can only contain

splits that are in one of the two endpoints trees and contain all splits that are in both of the end-

point trees. However, we argue this constraint is not onerous—there can still be exponentially

many topologies fitting this description—but means that the intermediate tree topologies

explored are relevant. The successful coalescent-based species tree estimation program

ASTRAL had a similar split constraints [61]. Additionally, trees on a geodesic between two

starting trees are unlikely to be in the set of best trees because this geodesic defines their branch

lengths and topology. Thus, our method takes these pathtrees as starting points and optimizes

their branch lengths (once per topology). This procedure allows us to describe the tree land-

scape along the path and describe the maxima for specific topologies. Using many pathtrees

that were optimized or not optimized will give a precise picture of the tree landscape (for exam-

ple, Figs 5–7). Our method provides a simple framework for exploring landscapes of phyloge-

netic trees and visualizing their relationship in a continuous and low-dimensional projection

facilitated by multidimensional scaling and an interpolation method, cubic spline or thin-plate

spline interpolation, to reveal potential tree islands. The visualization gives a good impression

of the likelihood landscape: general patterns can be shown with few trees, but details may need

many more trees to create a more smooth surface. However, even with many trees, the visuali-

zation may contain artifacts in areas where there are no trees, for example, the spikes in Fig 7.

A Bayesian inference method evaluates trees according to the posterior probability, which

is dominated by the likelihood of the tree when we assume vague prior distributions. It is fair

to say that even a long inference run will not explore all possible topologies. Even our small

dataset of 23 primate species has too many different topologies to explore all in a Bayesian con-

text in a reasonable time. Of course, most of these topologies will have an inferior fit to the

sequence data, but even those trees that fit the data relatively well are many. In contrast to

Bayesian inference and heuristic search methods, our method does not depend on an optimal-

ity criterion to pick trees that lie on the shortest path between two arbitrarily chosen trees.

This allows exploring topologies that were never visited with a good Bayesian run or any other

heuristic search as we have shown.

We picked the two datasets because they represent very different situations. The primate

dataset D1 is relatively small. However, it is still too big to be solved exhaustively. It provides

many mutational differences allowing good resolution of branch lengths and branching pat-

terns. The snake dataset D2 has eight times more individuals that are closely related. Many

sequences are identical, leading to many multifurcations.

Heuristic searches for D1 and D2 are fast, and even an MCMC run with REVBAYES does not

need a long time for D1. However, we had difficulties estimating a MAP tree for D2 because we

PLOS ONE Geodesics to characterize the phylogenetic landscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0287350 June 23, 2023 15 / 19

https://doi.org/10.1371/journal.pone.0287350


had difficulty running to convergence. PATHTREES generates independent trees, evenly spaced

along geodesics, to help visualize treespace, find optimal trees, and explore the likelihood sur-

face near these optimal trees. PATHTREES optimizes its pathtrees and finds local maxima for the

evaluated topologies; these are the same as those found by PAUP* and REVBAYES for D1. Interest-

ingly, the MAP tree and the PAUP* tree differ by two splits but when the branch lengths are

optimized deliver log likelihoods that are very similar. Even ten times longer runs in REVBAYES

deliver the same MAP tree. So while it may seem difficult for REVBAYES to explore that particu-

lar topology with the highest likelihood, the difference is only 0.07 log units. We certainly

would not exclude the MAP tree in a likelihood ratio test. The snake dataset D2 reveals that

many trees will be good candidates for the best likelihood tree. The PAUP*, RAXML,

and PATHTREES best trees have all different topologies but very similar log likelihoods. These

trees are also very similar, with only 4 or 9 different splits between them. PATHTREES helps give

insights about the likelihood surface, such that it is rather flat and therefore will have many

potential trees with similar likelihoods.

We believe that our method, implemented in PATHTREES, complements heuristic search phy-

logenetic analyses and allows visualization of the treespace and finding alternative trees with

log likelihoods that are potentially better than those of heuristic searchers. For example, a new

way to propose topologies for tree search could be by sampling pathtrees along a geodesic

between two trees, or in a region, of interest. Alternatively, pathtrees could become starting

trees themselves for a maximum likelihood search. The visualization of the likelihood surface

also allows the discussion of local likelihood maxima, which we hope will lay the groundwork

for improving search algorithms.
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