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Abstract

Objective

This review aimed to summarize the use of machine learning for predicting the potential ben-

efits of stroke rehabilitation treatments, to evaluate the risk of bias of predictive models, and

to provide recommendations for future models.

Materials and methods

This systematic review was conducted in accordance with the PRISMA statement and the

CHARMS checklist. The PubMed, Embase, Cochrane Library, Scopus, and CNKI data-

bases were searched up to April 08, 2023. The PROBAST tool was used to assess the risk

of bias of the included models.

Results

Ten studies within 32 models met our inclusion criteria. The optimal AUC value of the

included models ranged from 0.63 to 0.91, and the optimal R2 value ranged from 0.64 to

0.91. All of the included models were rated as having a high or unclear risk of bias, and most

of them were downgraded due to inappropriate data sources or analysis processes.

Discussion and conclusion

There remains much room for improvement in future modeling studies, such as high-quality

data sources and model analysis. Reliable predictive models should be developed to

improve the efficacy of rehabilitation treatment by clinicians.

Introduction

Stroke remains one of the most common diseases that causes functional impairment, especially

due to the rapidly growing number of older adults [1]. Due to the increasing prevalence of
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patients suffering from the effects of stroke, the importance and burden of stroke rehabilitation

are high [1, 2]. In recent years, many effective stroke rehabilitation treatments have been pro-

posed through randomized trials, such as task-oriented training treatment, functional strength

training, and robot-assisted treatment [3–5]. Nonetheless, clinicians often face the challenge of

choosing the most adequate rehabilitation treatment for patients since the benefits of treat-

ments vary across individuals with different characteristics [6]. The precise prediction of reha-

bilitation treatment is therefore important for properly distributing rehabilitation resources

and delivering patient-specific rehabilitation [7, 8].

Machine learning is a type of artificial intelligence that focuses on constructing computer-

ized algorithms to automatically improve performance through experience. In recent decades,

machine learning has shown an ability to effectively deal with high-throughput data, and it has

become a popular method in many fields, ranging from biology to social science [9, 10]. Many

kinds of research based on machine learning have also evolved in the medical field due to its

ability to handle health care data and thus aid clinical workflows. In the stroke field, machine

learning methods are currently applied in early detection, diagnosis, and outcome prediction

[11, 12]. Recently, an increasing number of studies have examined machine learning methods

with the aim of predicting outcomes and identifying stroke patients who might benefit from

specific rehabilitation treatments. A systematic review that evaluates the quality of these studies

would be beneficial for further similar studies.

Objective

This review aimed to systematically summarize studies that used machine learning methods to

build models as well as externally validated studies that predicted the potential benefits of

patients following stroke rehabilitation treatments. We also aimed to evaluate the risk of bias

of the included models and therefore propose potential improvements, which might provide

evidence for further modeling studies and thus aid the decision-making process in stroke reha-

bilitation clinical settings.

Materials and methods

Protocol

This review was performed in accordance with the PRISMA statement and the CHecklist for criti-

cal Appraisal and data extraction for systematic Reviews of prediction Modelling Studies

(CHARMS) [13, 14]. The CHARMS checklist was developed to support the design of systematic

reviews of predictive modeling studies and provides guidance for forming the review question,

study selection, and data extraction. The aim of our review was summarized into key items, as

presented in Table 1. In addition, our systematic review has been registered on PROSPERO (ID

number: CRD42022299195, available at https://www.crd.york.ac.uk/PROSPERO/).

Table 1. CHARMS guidelines for the formation of review question.

Key item Definition

Intended scope of the review Studies aimed at predicting clinical outcomes after specific rehabilitation

treatment for stroke patients

Type of prediction modelling studies Model development or validation studies

Target population to whom the

prediction model applies

Post-stroke patients that had received rehabilitation treatment

Outcome to be predicted Motor functional outcomes measured by standardized scales

Intended moment of using the model Before rehabilitation treatment

https://doi.org/10.1371/journal.pone.0287308.t001
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Table 1 shows the aim of this review according to the CHARMS guidelines.

Inclusion and exclusion criteria

Given the aim of this review, the eligibility criteria were as follows:

Inclusion criteria

� Studies focused on the development or validation of prediction models for recovery poten-

tial after stroke rehabilitation

�Models based on machine learning methods

� Patients in the primary studies must have received specific stroke rehabilitation treatment

regardless of the stroke stage and age of the patients

� The predicted outcomes of the model must be motor functional outcomes assessed

through standard tools

� The prediction model was designed for use before rehabilitation treatment

Exclusion criteria

� Studies aimed at identifying predictors related to outcomes rather than predicting clinical

outcomes for individual patients

� Studies aimed at evaluating the impact of using predictive models in clinical settings

� Full-text article was not available

�Model methods were not reported in detail, including study protocol, conference

abstracts, letters, etc.

� Reviews or comments without original research

Search strategy

Two authors independently searched the PubMed, Embase Cochrane Library, Scopus, and

CNKI (China National Knowledge Infrastructure) databases up to December 15, 2021

(updated on April 08, 2023) to identify relevant studies. ‘Stroke’, ‘machine learning’, ‘rehabili-

tation’, and their synonyms were used as MeSH terms or free-text words to identify eligible

studies. An example search strategy for PubMed is provided in the S1 Table. We also manually

searched the reference lists and citations of the included studies as well as Google Scholar to

obtain additional resources.

After removing duplicates, we selected eligible studies based on titles and abstracts in accor-

dance with the inclusion and exclusion criteria described above. The full texts were then

screened by two reviewers, and any disagreements were resolved by consulting a third

reviewer.

Data extraction and quality assessment

A data extraction sheet was used to address any information that would increase the risk of

bias of the models. Briefly, the extracted data included the source of data, participants, pre-

dicted outcomes, predictors, model development, model performance, and model evaluation

methods, as recommended in the CHARMS checklist [14]. We extracted discrimination and

calibration data as primary metrics to describe model performance. Discrimination is often

estimated by the area under the receiver-operating characteristic curve (AUC-ROC) for logis-

tic regression models and should reflect the ability of a model to distinguish between individu-

als with or without the outcome of prediction models. Calibration is often estimated by

calculating the Hosmer–Lemeshow goodness-of-fit test with a calibration pot and should

reflect the agreement between the predicted and the observed outcome [15, 16]. We entered

the details into the data extraction sheet, which is provided in the S2 Table.
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PROBAST (Prediction model Risk Of Bias ASsessment Tool) was used to guide the risk of

bias assessment in this review [15]. The PROBAST tool was mainly designed to estimate the

quality of the individual prediction model in systematic reviews. The prediction models were

explicitly classified into three types in this tool and relevant signaling questions were proposed

for evaluating different types of prediction models. Furthermore, the signaling questions were

grouped into four domains of the potential source of bias: participants, predictors, outcome,

and analysis. If one of the four domains had high risk of bias (ROB), the overall judgement

would be a high ROB [17]. The unit of evaluation applied in this review was model rather than

study, since some studies might develop or validate several models.

Results

Search results

The PRISMA flowchart (Fig 1) presents the selection process of eligible studies in this

review. In total, 3639 records were obtained based on the search strategy. After deleting

duplicates, 2289 records were then screened according to the title and abstract. The majority

of studies were excluded at this stage because their aims, designs, and outcomes were out-

side the scope of this review. Twenty-one full-text studies that met the inclusion and exclu-

sion criteria were then examined and excluded for the reasons shown in the flowchart.

Finally, 10 studies were included in this narrative review, and 32 models were included in

the risk of bias assessment.

Fig 1. PRISMA flow chart. Fig 1 shows the selection process of eligible studies in this review according to PRISMA.

https://doi.org/10.1371/journal.pone.0287308.g001
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Characteristics of included studies

We summarized the characteristics of the included studies in Table 2. All ten studies described

model development, and one of them also considered external validation for previous models

[18]. Only two studies used data from randomized trials [19, 20], whereas the majority of the

studies used electronic medical records as the data source for model development or valida-

tion. Five studies utilized multicenter data within their country as data sources [19–23]. Four

of the included articles were conducted in the United States [19, 22–24], four were conducted

in Europe [18, 21, 25, 26], and two were conducted in Asia [20, 27].

Table 2 described the characteristics of included studies.

Regarding the participants included in the primary studies, two studies selected chronic

stroke as one of the inclusion criteria for patients [19, 20], and two studies only included

patients who had been admitted within 90 days of onset of stroke [18, 21]. Two studies

included subacute phase stroke patients [25, 26], whereas the remaining four studies had no

restrictions on the stage or type of stroke; however, one study explicitly excluded acute stroke

patients [27]. Furthermore, all of the participants had completed an organized physical reha-

bilitation program, one of the studies involved transcranial magnetic stimulation [19], and two

studies used robot-assisted rehabilitation [25, 27].

Among the included studies, regression was the most common method implemented to

develop models. Specifically, logistic regression was used in six studies [18, 19, 21–23, 27], lin-

ear regression was used in two studies [25, 26], and a single study used Lasso regression [24].

Other common machine learning approaches, such as artificial neural network, k-nearest

neighbors, and random forest were used in three studies [19, 20, 26], as presented in Table 2.

Four studies provided models with external validation [20–23], four studies considered inter-

nal validation [19, 24–26], and a single study did not mention the validation process [27].

Moreover, one study externally validated two existing models in a previous study using data

from a different country and also developed a novel model with internal validation using the

same database [18]. The optimal AUC value of the included models ranged from 0.63 to 0.91.

Four studies chose the R2 value to describe the discrimination of models, and it ranged from

0.64 to 0.91 [19, 24–26]. These outcomes suggest that the discriminative ability of the included

models varied.

Quality assessment of included studies

According to the PROBAST tool, all the models demonstrated an overall high (n = 30) or

unclear (n = 2) risk of bias (Fig 2). This indicates that the performance and usability of each

model might be overoptimistic. Nearly all the models were biased from participants and analysis

domains, and the common causes of downgrading were inappropriate data sources or analysis

processes. Models from the same study have a common risk of bias in terms of participant

domain since they share the same data source. Among the included models, only twelve models

in two studies that used randomized trail data were rated as having a low risk of bias in the par-

ticipant domain. Twenty models were rated as an unclear risk of bias or high risk of bias in the

outcome domain. All the models had a low risk of bias for the predictor domain, which indi-

cates that all the predictors selected could be obtained before treatment and tend to be assessed

in similar ways. However, in the analysis domain, all the remaining models were rated as having

a high risk of bias, except two models were considered to have an unclear risk of bias.

Discussion

In recent years, as machine learning has emerged as an attractive approach to address big data

in health care, many related studies have bene published, especially studies of stroke patients.
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Table 2. Characteristics of included studies.

Study Number

of models

Study type Data source Sample size

Stroke stage

Rehabilitation

treatment

Outcome Number and type of

predictors in the final

model

Model

development

method

Optimal

model

performance

results

Tozlu

et al.,

2020

10 Model

development

Multicenter

randomized

trial

N = 102

Chronic

stroke

Repetitive TMS

and physical

therapy

Post-intervention

UE-FMA

93

Demographic

variables, clinical

variables, 2 TMS-based

neurophysiological

measures, and

structural

disconnectivity

measurements for 86

regions

EN

ANN

SVM

CART

RF

R2 0.910

RMSE 0.362

FMA changed

<5.5

(nonresponder)

or�5.5

(responder)

MCID = 5.5

93

Demographic

variables, clinical

variables, 2 TMS-based

neurophysiological

measures, and

structural

disconnectivity

measurements for 86

regions

EN

ANN

SVM

CART

RF

LR

AUC 0.63

Scrutinio

et al.,

2017

2 Model

development

Electronic

medical

records

Derivation

Cohort

(n = 717);

Validation

Cohort

(n = 875)

Acute and

subacute

stroke

Physical and

occupational

therapy

M-FIM score of

>61 points at

discharge

5

Age, Time since onset,

Unilateral neglect,

Motor-FIM score,

Cognitive FIM score

LR AUC 0.883

HL test 4.12

(P = 0.249)

physical

independence

grade�5 (FIS)

5

Age, Time since onset,

Male gender, Motor-

FIM score, Cognitive

FIM score

LR AUC 0.913

HL test 1.20

(P = 0.754)

Lee et al.,

2021

2 Model

development

Electronic

medical

records

N = 86

Subacute

stroke

Robot-assisted

therapy using

InMotion2 along

with conventional

therapy

FMA changed�9

(responder)

MCID = 9

2

Time since onset

Hand Movement Scale

LR AUC 0.658

N = 58

Chronic

stroke

FMA

changed�5.25

(responder)

MCID = 5.25

2

Time since onset

Hand Movement Scale

LR AUC 0.739

Garcı́a-

Rudolph

et al.,

2021

2 External

validation

Electronic

medical

records

N = 710

Acute and

subacute

stroke

Inpatient

rehabilitation

program

M-FIM score of

>61 points at

discharge

5

Age, Time since onset,

Unilateral neglect,

Motor-FIM score,

Cognitive FIM score

LR AUC 0.873

HL test 6.07

(P = 0.63)

External

validation

Electronic

medical

records

N = 710

Acute and

subacute

stroke

Inpatient

rehabilitation

program

physical

independence

grade�5 (FIS)

5

Age, Time since onset,

Male gender, Motor-

FIM score, Cognitive

FIM score

LR AUC 0.803

HL test 8.91

(P = 0.34)

Model

development

Electronic

medical

records

N = 710

Acute and

subacute

stroke

Inpatient

rehabilitation

program

M-FIM score of

>61 points at

discharge;

physical

independence

grade�5 (FIS)

5

Age, Time since onset,

Unilateral neglect,

Motor-FIM score,

Aphasia

LR AUC 0.894

HL test 10.40

(P = 0.23) for

primary

outcome

AUC 0.845

HL test 6.94

(P = 0.54) for

secondary

outcome

(Continued)
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Table 2. (Continued)

Study Number

of models

Study type Data source Sample size

Stroke stage

Rehabilitation

treatment

Outcome Number and type of

predictors in the final

model

Model

development

method

Optimal

model

performance

results

Bates

et al.,2015

PART 1

1 Model

development

Electronic

medical

records

N = 4020

No

limitation

consultative or

comprehensive

treatment

physical grade IV

(FIM)

7

Age, clinical variables,

type of rehabilitation,

recovery time, acute

procedure

LR AUC 0.84

HL test P = .93

Bates

et al.,2015

PART 2

1 Model

development

Electronic

medical

records

N = 5416

No

limitation

consultative or

comprehensive

treatment

physical grade VI

(FIM)

7

Age, clinical variables,

type of rehabilitation

recovery time, acute

procedure

LR AUC 0.83

HL test P = .38

Harari

et al, 2020

4 Model

development

Electronic

medical

records

N = 50

No

limitation

Inpatient

rehabilitation

program

FIM 10

Demographic

information, stroke

characteristics, and

scores of the clinical

tests

Lasso

regression

R2 0.76

MAE 7.6

Ten-Meter Walk

Test

6

Demographic

information, stroke

characteristics, and

scores of the clinical

tests

R2 0.70

MAE 0.26

Six-Minute Walk

Test

4

Demographic

information and scores

of the clinical tests

R2 0.70

MAE 73.2

Berg Balance

Scale

8

Demographic

information, stroke

characteristics, and

scores of the clinical

tests

R2 0.77

MAE 6.4

Thakkar

et al.,

2020

2 Model

development

Randomized

controlled

trials

N = 239

Chronic

stroke

Contemporary

task-oriented

interventions

FMA changed�4

(high responders)

FMA changed<4

(low responders)

MCID = 4

3

Time since stroke,

baseline FIM scores

and FMA scores

KNN

ANN

Accuracy

85.42%

AUC 0.89

Goffredo

et al.,

2022

6 Model

development

Electronic

medical

records

N = 66

Subacute

stroke

InMotion2 based

upper limb

Robot-assisted

Therapy (ulRT)

along with

conventional

therapy

Post-intervention

MIELBOW

4

RMK metrics

MLR R2 0.683

RMSE 5.547

Post-intervention

MISHOULDER

4

RMK metrics

R2 0.640

RMSE 5.294

Post-intervention

MIUL

4

RMK metrics

R2 0.765

RMSE 13.859

(Continued)
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In this review, we systematically searched studies aimed at using machine learning methods to

predict recovery potential following stroke rehabilitation treatments. Based on our results, we

will discuss the possible bias of the included models and its impact from the four important

aspects of constructing models specified by the PROBAST tool, and we will suggest future

research directions.

Table 2. (Continued)

Study Number

of models

Study type Data source Sample size

Stroke stage

Rehabilitation

treatment

Outcome Number and type of

predictors in the final

model

Model

development

method

Optimal

model

performance

results

Gandolfi

et al, 2023

2 Model

development

Electronic

medical

records

N = 95

Subacute

stroke

tailored upper

limb

rehabilitation

treatment

UE-FMA at

discharge

24

demographic and

clinical domains;

cognitive; body

function and disability

domains

MLR

RF

R2 0.807

RMSE 6.17

TMS, transcranial magnetic stimulation; MCID, minimal clinically important difference; UE-FMA, upper-extremity Fugl-Meyer Assessment; FIM, Functional

Independence Measure; FIS, Functional Independence Staging system; ANN, artificial neural network; CART, classification and regression trees; EN, elastic net; RF,

random forest; SVM, support vector machine; KNN k-nearest neighbors; LR, logistic regression; RMSE, root of mean squared error; AUC, area under the receiver

operating characteristic curve; HL test, the Hosmer–Lemeshow test; MAE, Mean Absolute Error; MIELBOW, Motricity Index affected elbow flexion; MISHOULDER,

Motricity Index affected shoulder abduction; MIUL, Motricity Index affected Upper Limb; RMK, Robot-Measured Kinematic; MLR, multiple linear regression; SSV,

Split Sample Validation; LOOCV, Leave-One-Out Cross-Validation.

https://doi.org/10.1371/journal.pone.0287308.t002

Fig 2. Risk of bias summary. Fig 2 shows the percentage risk of bias ratings for each aspect of the included models

according to the PROBAST tool." high", "unclear" and "low" represent a high, unclear, and low risk of bias, respectively.

https://doi.org/10.1371/journal.pone.0287308.g002
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Participants

Most of the included studies used electronic medical records (EMRs) as the data source for

prediction model development; however, the inherent biases of EMRs should be noted [17].

For example, since routine care data are usually measured by general practitioners, measure-

ment definitions may differ between individuals, particularly among multicenter practitioners

[28, 29]. While data from randomized control trials are usually the gold standard for collecting

data, they may not always reflect the real world due to their narrow inclusion criteria [30].

Thus, leveraging both interventional data from trials and observational data from the real

world could be considered for further studies [31, 32]. Furthermore, stroke type and stage

were not restricted and classified in some studies we reviewed. Although a larger scope of the

target population would increase the generalizability of models, confounders could also

increase to some extent. For example, an ambiguous time since stroke might influence the

accuracy of prediction models because spontaneous biological recovery efficiency is not con-

sidered [33–35]. The recovery potential of a certain treatment for patients might differ between

those who are fitters of the “proportion recovery rule” and nonfitters [36]. Consequently, we

believe that a well-defined recruitment criterion of participants in original modeling studies

should be applied and reported to enhance the model interpretation [37].

Predictors

To date, with the growing interest in predicting stroke rehabilitation outcome, variables such

as age, initial motor impairment, stroke severity, biomarkers, and imaging data have been

identified as significant factors for predicting stroke outcome [8, 38–40]. The candidate predic-

tors selected in the included models varied. Demographic characteristics and clinical measures

including age, sex, side of impairment, and baseline functional stages were commonly selected

for analysis. Notably, treatment measures were not included as separate predictors during the

variable selection process in most included studies; however, previous studies showed that a

predictive model that does not include treatment as a predictor might omit intervention

effects, thus leading to an inaccurate outcome [41, 42]. Although a concrete treatment strategy

cannot be prospectively obtained before treatment, we recommend that a rehabilitation treat-

ment plan tailored to patients could serve as a predictor in models to inform the potential

recovery of individuals. In addition, given that the inconsistency among types of treatments

for patients with stroke might increase the heterogeneity of results, we recommend that future

studies report the details of structured interventions and facilitate the consistency of

interventions.

Outcome

Ideally, the outcome should be independently measured without information from predictors

to reduce bias [17]. Due to the natural feature of the existing data source used in the included

models, it is unclear whether the measurement of outcome was blindly recorded without infor-

mation on predictors. Another concern is that nearly all the models included in this review

assessed the outcome at post-treatment or discharge as a single endpoint, while other research-

ers propose that a single endpoint could not fully account for the improvement following reha-

bilitation if participants were recruited in wide time windows after stroke. The discharge

timepoint is also inappropriate since it is often limited by local rehabilitation resources [34,

43]. Thus, we suggest that follow-up endpoints might be obtained to detect the longer-term

benefits of a treatment and to ensure that the model’s predictive ability is as accurate as

possible.
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Model analysis

The analysis process, which is also the main source of bias in the included models according to

the PROBAST tool, could be improved in several aspects. First, a sufficient sample size for

developing models, especially regression models, is usually based on the events per variable

(EPV), which could be calculated by the number of candidate predictors [15, 44]. Generally,

EPV less than 10 is considered insufficient, while the most adequate EPV is still being debated

[45, 46]. The insufficient sample size may lead to overfitting in modeling studies [47–49].

Another aspect concerns how missing data were handled in the included models. Models that

excluded patients with incomplete data rather than properly handled missing data might result

in a selective sample and thus overestimated model performance [17, 50, 51]. Additionally,

among the reviewed models, the most frequent method used during the predictor selection

process was backward selection. However, overfitting should be quantified through internal

validation if the model was developed based on an insufficient sample size [16, 17]. Previously

published models that used univariate analysis to determine predictors should be avoided in

future studies since this approach could lead to inaccurate predictor selection [16, 52, 53]. In

future studies, researchers could combine both nonstatistical methods and statistical methods

to identity the candidate predictors [16, 17].

Moreover, as for the method for developing models, the most frequently used method in

the included studies was logistic regression, which is consistent with a recent review, indicating

a preference for logistic regression models in this specific field [54]. Other machine learning

algorithms, such as support vector machines, neural networks, and nearest neighbors, have

only been used in studies published in recent years. Conventional regression models and novel

machine learning models each have their own advantages. For example, while regression can

enhance the interpretability of a model, its predictive performance may not be as good as that

of novel machine learning algorithms, and vice versa [54]. Thus, future studies could explore

other interpretability methods to explain the black-box model, such as one of the included

studies in our review, which used four Explainable Artificial Intelligence (XAI) approaches to

interpret the results of machine learning methods [26]. Finally, as for the model performance,

in addition to the discrimination and calibration that should be appropriately assessed, a vali-

dation process is also essential to examine the reliability of models. Validation can be divided

into internal and external validation. The former method, such as cross-validation and boot-

strapping, attempts to quantify the model bias using the same database with model develop-

ment. External validation aims to quantify any model bias through a database at the new

participant level (e.g., from a different country, setting, recruitment time span), which is exter-

nal to the model development database [15]. Although we mentioned four studies that had

conducted external validation, three of them just randomly divided a single database into a

development and a validation database, which is criticized as an inefficient external validation

form. In this situation, the two split databases may differ by chance, and the sample size would

be reduced [17, 29]. As it is increasingly recognized that the model predictive ability might

vary across countries, participants, and periods, effective external validation is always recom-

mended to present the possibility of heterogeneity in the predictive model [14, 20, 42, 43].

Implications

With the development of machine learning in the field of medicine, there is a growing interest

in the field of stroke rehabilitation. However, the number of high-quality models that meet the

reporting rules and can be widely used is still limited, and future model development studies

need to improve the quality of models in several ways and report the model development pro-

cess according to the principle of transparency [55]. It is important to note that in the clinical
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setting, predictive models can only be used as a tool to assist physicians in decision-making,

and the specific rehabilitation plan for the patient needs to be developed by the physician in

the context of the patient’s actual condition.

Limitations

This systematic review is limited by small sample sizes and suboptimal data sources for the

included models, and thus the reported model performance may be overly optimistic. More-

over, due to large heterogeneity among studies, we did not conduct a meta-analysis, nor did

we use quantitative methods to detect publication bias, so the results of this review should be

treated with caution. Another limitation is that the rehabilitation treatment administered to

patients varies across countries and rehabilitation settings, which may reduce the generalizabil-

ity of the models.

Conclusions

This review reveals potential gaps between ideal models and current models, and it is exciting

to see that the included models have all shown relatively positive performances; however, exist-

ing modeling studies are constrained by small sample sizes and inconsistent results, indicating

that there is still room for improvement. We believe that data sharing and coordinated efforts

among countries could help future research in this area. Furthermore, as the number of proven

significant predictors grows, prediction models should be dynamically updated. Applicable

and reliable prediction models should help clinicians improve the implementation of patient-

specific stroke rehabilitation treatment.
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