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Abstract

Purpose

Differentiation of fat-poor angiomyolipoma (fp-AMLs) from renal cell carcinoma (RCC) is

often not possible from just visual interpretation of conventional cross-sectional imaging,

typically requiring biopsy or surgery for diagnostic confirmation. However, radiomics has the

potential to characterize renal masses without the need for invasive procedures. Here, we

conducted a systematic review on the accuracy of CT radiomics in distinguishing fp-AMLs

from RCCs.

Methods

We conducted a search using PubMed/MEDLINE, Google Scholar, Cochrane Library,

Embase, and Web of Science for studies published from January 2011–2022 that utilized

CT radiomics to discriminate between fp-AMLs and RCCs. A random-effects model was

applied for the meta-analysis according to the heterogeneity level. Furthermore, subgroup

analyses (group 1: RCCs vs. fp-AML, and group 2: ccRCC vs. fp-AML), and quality assess-

ment were also conducted to explore the possible effect of interstudy differences. To evalu-

ate CT radiomics performance, the pooled sensitivity, specificity, and diagnostic odds ratio

(DOR) were assessed. This study is registered with PROSPERO (CRD42022311034).

Results

Our literature search identified 10 studies with 1456 lesions in 1437 patients. Pooled sensi-

tivity was 0.779 [95% CI: 0.562–0.907] and 0.817 [95% CI: 0.663–0.910] for groups 1 and 2,

respectively. Pooled specificity was 0.933 [95% CI: 0.814–0.978]and 0.926 [95% CI: 0.854–

0.964] for groups 1 and 2, respectively. Also, our findings showed higher sensitivity and

specificity of 0.858 [95% CI: 0.742–0.927] and 0.886 [95% CI: 0.819–0.930] for detecting
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ccRCC from fp-AML in the unenhanced phase of CT scan as compared to the corticomedul-

lary and nephrogenic phases of CT scan.

Conclusion

This study suggested that radiomic features derived from CT has high sensitivity and speci-

ficity in differentiating RCCs vs. fp-AML, particularly in detecting ccRCCs vs. fp-AML. Also,

an unenhanced CT scan showed the highest specificity and sensitivity as compared to con-

trast CT scan phases. Differentiating between fp-AML and RCC often is not possible without

biopsy or surgery; radiomics has the potential to obviate these invasive procedures due to

its high diagnostic accuracy.

Introduction

According to GLOBOCAN data from 2018, an estimated 403,000 persons are diagnosed with

kidney cancer each year, accounting for 2.2 percent of all cancer cases [1]. In recent decades,

the increased use of abdominal imaging has led to a rise in the number of small renal inciden-

talomas [2]. Although the majority of these lesions are renal cell carcinomas (RCCs), 20% of

them may be benign, with the most common subtype being angiomyolipoma (AML) [3,4].

Renal angiomyolipoma (AML) consists of blood vessels, smooth muscle, and adipose tissue

[5]. AMLs can thus generally be diagnosed radiographically on the basis of fat in their lesions.

Nevertheless, about 5% of renal AMLs have scant amount of fat, creating a diagnostic dilemma

in differentiating between these so-called fat-poor angiomyolipomas (fp-AMLs) and RCC, the

latter of which is most commonly clear cell (75% of all RCC cases) [6,7]. Many imaging prop-

erties of fp-AML and ccRCC are similar, notably in homogenous ccRCC (hm-ccRCC,

regarded as ccRCC without apparent necrosis, cyst, or hemorrhage). Often, tissue procure-

ment, either through biopsy or surgery, is needed for confirmation of suspected diagnosis in

these situations [5].

Quantitative texture analysis is a branch of radiomics that extracts and evaluates features

from digital images, detects subtle changes and heterogeneity that human vision misses, and

provides an objective method in analyzing the intensity, distribution, and relationship of pixels

within a digital image [8]. Due to the volume and complexity of generated data, machine learn-

ing is often utilized to develop a prediction model based on these image features. Recently, CT

radiomics has been applied to differentiate fp-AML from RCC. We conducted a systematic

review and meta-analysis of such studies to characterize the performance of CT radiomics in

regards to this diagnostic conundrum and thereby determine whether this analysis should be

integrated into the clinical setting.

Methods

Search strategy

We searched PubMed/MEDLINE, Google Scholar, Cochrane Library, Embase, and Web of

Science for papers published in English between January 2011–2022. In a search approach that

incorporated a combination of keywords and medical subject headings (MeSH)/EMTREE

terms, the following phrases were used: (Radiomics OR Artificial Intelligence OR Machine

Learning OR Deep Learning) AND (Kidney OR Renal) AND (angiomyolipoma OR AML).
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Eligibility criteria

Studies were chosen based on the following criteria: (1) Full-text original papers on CT radio-

mics clinical investigations, including diagnostic case-control trials, to examine the accuracy

of differentiating fp-AML and RCCs, (2) Absolute numbers of patients with true positive (TP),

false positive (FP), true negative (TN), and false negative (FN) results that were either present

or could be calculated. (3) Patients’ histopathological data was available, which served as a gold

standard for comparing model performance.

Study selection and data extraction

The papers were assessed independently by the two authors (NG, FH) using Covidence sys-

tematic review software (Veritas Health Innovation, Melbourne, Australia, available at

www.covidence.org) based on the titles and abstracts; those that did not match the inclusion

criteria were discarded. Any discrepancies between the two screeners in included articles

were resolved by discussion and submission to a third author (FDF). Following this initial

step, two authors (NG, FDF) independently assessed the full texts of all remaining papers

for inclusion or exclusion in the final study. References in review articles were checked, and

the fulltext was assessed for those that had not previously been screened but were deemed to

be pertinent. Conflicts were addressed in the same manner as they were during the initial

screening. Each research’s study characteristics were retrieved by two writers (FH, FDF).

Author, year of publication, AI model, machine learning method, study design, accuracy,

validity, sensitivity (SEN), specificity (SPE), PPV, NPV, and area under the curve (AUC)

were all included in the data.

Quality assessment of included studies

We used modified questions from the Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) criteria because no existing quality assessment tool focused on studies utilizing

machine learning [9].

Data analysis

For identifying fp-AML and RCCs, published data was extracted and translated into a data-

sheet utilizing the reported or calculated SEN and SPE. The pooled SEN and SPE with 95 per-

cent confidence intervals for model diagnosis were obtained using a random effects model for

the meta-analysis. Forest plots and risk of bias graphs were created using datasets. A funnel

plot and symmetry analysis as well as Deek’s test were used to assess the risk of publication

bias. R software, version 3.5.1, was used to conduct all statistical analyses (R Foundation for

Statistical Computing, Vienna, Austria, 2018).

Assessment of heterogeneity

Statistical heterogeneity was first assessed informally using the forest plots of study estimates,

and then more formally using the I2 statistic (I2> 50% indicates considerable heterogeneity).

The hierarchical summary receiver operating characteristic curve was used to depict all of the

studies as a circle. The included studies’ heterogeneity was examined. In general, an I2 test

with a I2 >50%, p<0.05 indicated considerable heterogeneity.
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Results

Research and selection of studies

A total of 250 articles were initially identified from all databases using the search terms as

described above. 105 duplicate articles were excluded. Additionally, 60 articles were removed

after reading their titles and abstracts and being deemed irrelevant. Subsequently, after reading

the full texts, 69 articles were found to be reviews or to have no relevant data, and six articles

were unavailable for data extraction. Ultimately, ten articles were included. Fig 1 summarizes

the article selection process.

Quality assessment and publication bias

The included studies’ quality was assessed using the QUADAS-2 checklist, and the findings

are given in Fig 2. Overall, the quality of included studies was satisfactory. In terms of ’risk of

Fig 1. Prisma chart for included studies.

https://doi.org/10.1371/journal.pone.0287299.g001
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bias’ concerns, it was discovered that ’patient selection’ exhibited significant flaws, which

could indicate bias in terms of inclusion (2 studies in group 1 and 4 studies in group 2). Based

on Deek test, there were no publication bias between studies.

Heterogeneity test

Heterogeneity was tested using Cochran-Q and I2 (S1–S4 Figs). These results indicated high

heterogeneity in pooled sensitivity and specificity among the included studies when we used

the best performance of model in differentiating fp-AML from RCCs and fp-AML from

ccRCC, but there is low heterogeneity between ccRCC from fp-AML when classified based on

unenhanced and enhanced CT scan phases in three categories of unenhanced CT scan, corti-

comedullary, and nephrographic phases of CT scan (S1 and S2 Figs).

Study characteristics

The characteristics of the included studies are shown in Table 1. All ten studies were retrospec-

tive cohort studies. The total number of patients was 1437 with 1456 lesions observed. The

average age of patients in studies ranged between 47 and 63 years. In the 7 studies that had

information about CT slice thickness, 71% (n = 5) had slice thickness of 1–3 mm, with the

remainder utilizing CT with 5 mm slice thickness. The results of the meta-analysis are pre-

sented in S1–S4 Figs. Pooled sensitivity, specificity, and odds ratio for detection of fp-AML

from RCCs were 0.779 [95% CI (confidence interval): 0.562–0.907], 0.933 [95% CI: 0.814–

0.978], and 41.822 [95% CI: 12.788–136.777], respectively (S1 and S2 Figs). Pooled sensitivity,

specificity, and odds ratio for detection of fp-AML from ccRCCs specifically were 0.817 [95%

CI: 0.663–0.910], 0.926 [95% CI: 0.854–0.964], and 58.6729 [95% CI: 15.125–227.607],

Fig 2. Summary of QUADAS-2 assessments of included studies.

https://doi.org/10.1371/journal.pone.0287299.g002
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respectively (S3 and S4 Figs). Also, our findings showed higher sensitivity and specificity of

0.858 [95% CI: 0.742–0.927] and 0.886 [95% CI: 0.819–0.930] for detecting ccRCC from fp-

AML in the unenhanced phase of CT scan as compared to the corticomedullary (CMP) and

nephrographic (NP) phase of CT scans, respectively (0.755 [95% CI: 0.628; 0.850] and 0.781

[95% CI: 0.656; 0.870] for sensitivity, and 0.882 [95% CI: 0.814; 0.927] and 0.832 [95% CI:

0.734; 0.899] for specificity, respectively).

Discussion

Renal cell carcinoma (RCC) is the ninth most common cancer worldwide, and is often diag-

nosed as an incidental mass detected on cross-sectional imaging. In this setting, RCC needs to

be distinguished from benign lesions such as AML, which can be difficult based on imaging

alone, as in the case of fp-AML. In order to avoid the morbidities of biopsy or surgery,

improvements in our ability to non-invasively diagnose fp-AML is warranted, with quantita-

tive texture analysis emerging as a promising method [5].

To our knowledge, this study represents the first meta-analysis of CT radiomics for differ-

entiating between fp-AML and RCCs, with additional subgroup comparison between fp-AML

and ccRCC. The results indicate that CT radiomics has a high diagnostic performance in dif-

ferentiating between fp-AML and RCCs (sensitivity and specificity of 0.779 and 0.933, respec-

tively) as well as between fp-AML and ccRCC (sensitivity of 0.817 and specificity of 0.926,

respectively). When we used the best model performance in distinguishing ccRCC from fp

AML, we found considerable heterogeneity in pooled sensitivity and specificity among the

included studies, but lower heterogeneity when we classified based on unenhanced and

enhanced CT phases. Also, we found that there was no significant publication bias between

studies.

Previous studies have noted that the majority of the best feature subsets were from the

unenhanced (UP) and NP CT phases. As Yang et al [10] showed, the highest AUC; accuracy;

sensitivity; and specificity (0.90, 0.82, 0.83, and 0.82, respectively) for fp-AML and RCCs dis-

crimination was the combination of both UP and NP CT phases with the discriminative

model of combination of SVM with Relief. They used eight robust classifiers,and 28 feature

selection approaches were merged, providing 224 alternative combinational discrimination

models for evaluations. Additionally, texture analysis was used by Hodgdon et al. [11] to deter-

mine the accuracy of texture analysis in distinguishing fp-AML from RCC using unenhanced

CT, and they found an AUC of 0.89. With UP employing texture analysis for discriminating of

fp-AML and ccRCC, Yan et al. [12] found a tendency toward better lesion categorization (mis-

classification rates of 0.00–5.81 percent). Our finding showed better pooled sensitivity and

specificity once we classified based on UP and enhanced CT phases (CMP, NP) in the sub-

group analysis (0.86, 0.75, and 0.78 for sensitivity, 0.89, 0.88, and 0.83 for specificity,

respectively).

A variety of algorithms were used in studies to analyze texture analysis data, including sup-

port vector machine (SVM), logistic regression models, random forest (RF), k-nearest neigh-

bor (kNN), sparse radial basis function neural networks (sRBFNN), sequential feature

selection, and different logistic classifiers [1–14]. The greatest overall performances of five clas-

sifiers including RF, kNN, SVM, AdaBoost and sRBFNN were reported in a study by Yang

et al. For delayed phase CT scan images, sRBFNN has the greatest AUC (0.92) and specificity

(100), whereas AdaBoost has the highest accuracy (91.67) and sensitivity (83.33) for arterial

phase CT images. A specificity of 100 percent is significant since it suggests that all cases of

ccRCC are accurately identified, implying that images with ccRCC will receive appropriate

treatment. Lee et al. [13] showed that in distinguishing fp-AML from clear cell ccRCC, kNN
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and SVM classifiers using ReliefF feature selection approach beat the other combinations, with

an AUC of 0.782 and 0.717, respectively.

Takahashi et al. [14] also found that fp-AML has lower entropy than RCC and developed a

logistic regression model to distinguish small fp-AML from RCC with sensitivity and specific-

ity of 50% and 98 percent, respectively. High sensitivity and specificity were reported in the

study by Feng et al that showed the machine learning classifier from three-phase images had a

high sensitivity and specificity of 87.8 and 100%, respectively based on CT texture features

including nine histogram features and five Haralick texture features (energy, contrast, correla-

tion, homogeneity and entropy). SVM classifiers enhanced the sensitivity of categorization in

Feng et al. investigation when compared to Takahashi et al results. Despite the fact that the

SVM-RFE classifier had a reasonably good accuracy, the classifier’s low sensitivity meant that

patients with minor fp-AML could be misdiagnosed or possibly endure unneeded surgery.

The imbalance of the dataset in Feng et al. study was thought to be the primary culprit for the

low sensitivity. In an unbalanced dataset, the SVM algorithm tends to sacrifice the minority

group in order to gain higher accuracy, resulting in fp-AML instances being misclassified. In

previous studies by Feng et al. [15] and Cui et al. [16], synthetic minority oversampling tech-

nique (SMOTE) were used to resample the fp-AML group so that their sample size were equiv-

alent to that of the RCC and ccRCC groups, resulting in a rebalanced dataset and reported a

high sensitivity and specificity (87.8 and 95% for sensitivity, and 100 and 91% for specificity,

respectively) [17]. The combination of SMOTE with an SVM-RFE classifier increased sensitiv-

ity while maintaining high specificity, resulting in fewer misdiagnoses and improved classifica-

tion performance. Nevertheless, the SMOTE process only generates new samples from the

existing dataset, which could result in overfitting of data and thus poor external validation.

Improved sensitivity and specificity in detecting fp-AML from ccRCC compared to fp-

AML from RCCs is likely due to differential model performance in discrimination of ccRCCs

as compared to non-ccRCCs. For instance, in the study by Cui et al., the machine learning clas-

sifier had higher accuracy in discriminating ccRCCs from fp-AMLs (AUC 0.97 and ACC

93.29%) as opposed to non-ccRCCs (AUC 0.89 and ACC 84.38%). Non-ccRCCs are homoge-

neous and hyperattenuating, much like fp-AML, accounting for model difficulties with classifi-

cation between these two entities.

Radiomics features refer to different parameters, including histogram, texture, form factor,

gray-level co-occurrence matrix (GLCM), and gray-level run-length matrix (RLM) parame-

ters. These features have been used to predict the Fuhrman grade of RCC by using CT-based

radiomics features [18]. Previous studies have shown that radiomics analysis is highly accurate

in distinguishing between fp-AML from RCCs (Table 1). However, ccRCC tends to have a

more inhomogeneous texture [19] and a more rounded appearance shape [20] than fp-AML.

Despite this, the histogram analysis of attenuation measurement cannot distinguish fp-AML

from RCC with 100% specificity, which means that radiomics-only analysis is not enough for

diagnosis making. Nonetheless, the radiomics signature associated with conventional CT anal-

ysis has become a major trend.

Although radiomics is a promising and powerful addition to the diagnostic armamentar-

ium, there are limitations in the design and execution of the studies that limit its translation

into clinical practice. Primarily, all studies in this meta-analysis were done in a single institu-

tion center, with the developed model not tested on an outside dataset. The lack of external val-

idation thus limits generalizability of models; indeed, their performances may be overstated

due to overfitting. Low sample size, generally seen in these studies, particularly with the pro-

portion of fp-AMLs, increases the likelihood of overfitting. The studies in this meta-analysis

utilized different imaging modalities and machine learning algorithms; we recognize that com-

bining heterogenous study designs for a pooled analysis may create undue noise, affecting its
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validity. At present however, components of the workflow for radiomic analysis (image acquisi-

tion, segmentation, feature selection, machine learning algorithm selection and implementa-

tion, and statistical analysis) are not standardized. An additional limitation in this meta-analysis

was the small number of studies considered, as we had to exclude studies which were comparing

different subgroups and reporting different outputs in their results i.e. mean sensitivity and

specificity. In addition, we excluded studies which used MRI to detect these categories. Lastly,

due to the limited number of studies available in this area and the absence of comprehensive

studies on radiomics features, we were unable to perform a meta-analysis of each category and

CT radiomics feature. Moreover, it was difficult to compare CT radiomics features, including

first-order, higher-order, and shape features, as well as different signs of CT radiomics, such as

texture analysis, enhancement pattern, calcifications, size and shape, and attenuation values.

This was due to differences in various parameters, such as CT phase, MLA classifier, and sample

sizes, across various studies similar to previous meta-analysis in this area [21].

Conclusion

This study found that CT radiomics has a high degree of accuracy in distinguishing RCCs vs.

fp-AML, especially in detecting clear cell RCCs vs. fp-AML Also, an unenhanced CT scan

showed the highest specificity and sensitivity as compared to the corticomedullary and

nephrogenic phase of CT scan, suggesting that it might be used as a non-invasive tool to offer

critical information for detecting fp-AML. However, to translate CT radiomics into clinical

practice, standardization of image acquisition; processing; and analysis between institutions is

warranted in order to improve sample size and external validation to allow for more robust

prediction models.
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S1 Checklist. PRISMA-P 2015 checklist.

(PDF)

S1 Fig. Forest plot for sensitivity of CT radiomics for differentiating between fp-AML

from renal cell carcinomas.

(TIF)

S2 Fig. Forest plot for specificity of CT radiomics for differentiating between fp-AML

from renal cell carcinomas.

(TIF)

S3 Fig. Forest plot for sensitivity of CT radiomics for differentiating between fp-AML

from clear cell renal cell carcinomas.

(TIF)

S4 Fig. Forest plot for specificity of CT radiomics for differentiating between fp-AML

from clear cell renal cell carcinomas.

(TIF)

S1 Table. Pooled sensitivity, specificity, and odds ratio for differentiating between AMLs

without visible fat (fp-AML) from renal cell carcinomas (group 1) and clear cell renal cell

carcinomas (group 2).

(DOCX)

S2 Table. Pooled sensitivity, specificity, and odds ratio for differentiating between AMLs

without visible fat (fp-AML) from clear cell renal cell carcinomas (group 2) based on
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