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Abstract

One of the various sorts of damage to asphalt concrete is cracking. Repeated loads, the

deterioration or aging of material combinations, or structural factors can contribute to the

development of cracks. Asphalt concrete’s crack resistance is represented by the CT index.

107 CT Index data samples from the University of Transport Technology’s lab are mea-

sured. These data samples are used to establish a database from which a Machine Learn-

ing (ML) model for predicting the CT Index of asphalt concrete can be built. For creating the

highest performing machine learning model, three well-known machine learning methods

are introduced: Random Forest (RF), K-Nearest Neighbors (KNN), and Multivariable Adap-

tive Regression Spines (MARS). Monte Carlo simulation is used to verify the accuracy of

the ML model, which includes the Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2).

The RF model is the most effective ML model, according to analysis and evaluation of per-

formance indicators. By SHAPley Additive exPlanations based on RF model, the input

Aggregate content passing 4.75 mm sieve (AP4.75) has a significant effect on the variation

of CT Index value. In following, the descending order is Reclaimed Asphalt Pavement con-

tent (RAP) > Bitumen content (BC) > Flash point (FP) > Softening point > Rejuvenator con-

tent (RC) > Aggregate content passing 0.075mm sieve (AP0.075) > Penetration at 25˚C (P).

The results study contributes to selecting a suitable AI approach to quickly and accurately

determine the CT Index of asphalt concrete mixtures.

1. Introduction

Asphalt concrete is one of the most common types of pavement surface materials used in the

world. Asphalt concrete mixtures are materials with many advantages, such as being easy to

construct with high productivity, open to traffic immediately after construction, good quality,

uniform, and easy to repair. However, asphalt concrete mixtures are a typically temperature
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and humidity sensitive material, so in the operation process, under the effect of heavy loads,

large vehicle traffic combined with environmental impacts such as high temperatures and

humidity, asphalt pavement is easily degraded in quality leading to damage, rutting, perma-

nent deformation, cracking. Cracking is one of many types of damage to asphalt concrete.

Cracks develop due to repeated loading, deterioration or aging of material mixtures or struc-

tural conditions. All these factors affect the durability of the pavement. Cracks are not early

treated, it will widen and grow. Rainwater will penetrate the crack, causing further cracking

and possibly leading to structural damage.

An extensive literature review conducted as part of the National Cooperative Highway

Research Program (NCHRP) 9–57 identified various crack tests [1]. Seven cracking tests were

finally selected by the NCHRP 9–57 members and invited experts for further field validation,

namely bending beam fatigue (BBF) test, overlay test (OT), disk-shaped compact tension

(DCT) test, indirect tensile creep and strength test (IDT-CST) with full instrumentation, and

three versions of semi-circular bend (SCB) tests [2]. The above tests have disadvantages such

as: cutting samples, long testing time, high cost of equipment, etc.

In 2017, Zhou et al. [2] researched and developed a new test for cracking of asphalt concrete

mixture called IDEAL-CT (indirect tensile asphalt cracking test) for determining the CT index

representing the crack resistance of asphalt concrete. The IDEAL-CT test is sensitive to the

composition of the asphalt concrete mixture and has been carried out at the State Departments

of Transportation and in the contractors’ laboratories in the United States. Compared with the

above seven concrete cracking test methods, the IDEAL-CT method can be easily imple-

mented with the following advantages: no instrumentation, cutting, gluing, drilling, or notch-

ing of specimens) and practicality (minimum training needed for routine operation), and

repeatability (coefficient of variance less than 25%) [3, 4]. It is also reported that the CT Index

measured in the IDEAL-CT test correlated well with the field performance in terms of fatigue

cracking from the FHWA accelerated loading facility full-scale testing.

Yan et al. [5] studied and compared the cracking tolerance index of asphalt concrete mix-

tures between 3 test methods SCB-IFIT, un-notched SCB-IFIT, and IDEAL-CT. The cracking

tolerance index (CT index) results from IDEAL-CT correlate very well with the FI from SCB-I-

FIT. CT index results show less variation than the FI results (average COV of 5.3% versus

23.0%). Since the IDEAL-CT requires no specimen cutting or notching, it could be a promis-

ing alternative to evaluate the cracking resistance of asphalt mixtures.

Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture

Using the Indirect Tensile Cracking Test at Intermediate Temperature ASTM D8225-19 has

been promulgated by ASTM in 2019. Experimental tests can evaluate the material properties

and physical and mechanical properties of the asphalt mixture. However, the time to carry out

these tests is quite long and does not provide nearly complete information about the main and

essential factors among the variables. Accidentally, in the process of making an error at a cer-

tain step, the experiment will have to be repeated, which causes a great loss in cost and time.

Therefore, it is necessary to use new approaches to overcome such obstacles.

In the past few years, artificial intelligence or Machine Learning (ML) model has been one

of the advanced techniques in the industrial 4.0 era that has been applied in many fields of

technical science and natural science to solve real-life problems, initially showing outstanding

effectiveness and benefits. These methods also predict many essential pavement parameters in

the transport sector. Le et al. [6] developed an alternative numerical tool using an artificial

neural network (ANN) to predict SMA mixtures’ Marshall Stability and Marshall Flow.

Nguyen et al. [7] used an adaptive open neural inference system to predict the international

roughness index IRI. Le et al. [8] developed three AI models, namely GAANFIS, PSOANFIS,

and Support Vector Machine (SVM), to predict the Marshall Parameters of Stone Matrix
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Asphalt. The ability and effectiveness of artificial intelligence techniques or ML model in pre-

dicting asphalt concrete problems have also been evaluated and confirmed in many other stud-

ies [9–11]. Using a classification and regression tree (CART), Arifuzzaman et al. [12]

examined the aging behavior of asphalts treated with styrene-butadiene-styrene (SBS) and sty-

rene-butadiene (SB), and carbon nanotube (CNT). Additional explanatory connections

between numerous factors that affect how oxidized asphalt behaves at different levels of the

tree are revealed by the CART analysis. And it was shown to be more accurate than the out-

comes of the regression model. The above studies show that it is feasible to apply artificial

intelligence techniques to predict the CT index of asphalt concrete mixtures. Liu et al. [13]

used ANN and SVM combining dimensionality reduction techniques as Principal Component

Analysis (PCA) for predicting alligator cracking and longitudinal cracking of asphalt pave-

ment. Five different ML algorithms including SVM, RF, ANN and Gradient Boosting (GB),

and multiple linear regression were proposed to predict rutting depth of asphalt pavement

[14]. In the investigation of Liu et al. [15], international roughness index (IRI) of asphalt pave-

ment is also successfully predicted by machine learning models including SVR, ANN, GB, RF,

Gaussian process regression and Extra-trees.

In this study, 107 data samples of CTIndex were used, each CTIndex data sample was deter-

mined as the average of three individual samples in the laboratory. The experimental proce-

dure is described in the section 3. Based on these data samples, a database is created to build

Machine Learning model to predict CT index of asphalt concrete. Three popular Machine

Learning algorithms such ash Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-

variable Adaptive Regression Spines (MARS) are introduced for building the best performance

ML model. The performance of the ML models was assessed using four performance indexes

such as the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), and coefficient of determination (R2). The performance of ML

model is validated by Monte Carlo simulation. Based on the best performance ML model,

SHAPley Additive exPlanations (SHAP value) [16] is a visualization tool that is introduced to

make machine learning model’s output more understandable. Therefore, in order to make

clear the effect of each input variable including 8 factors such as (1) Aggregate content passing

4.75 mm sieve (AP4.75), (2) Aggregate content passing 0.075 mm sieve (AP0.075), (3) Bitumen

content (BC), (4) Penetration at 25˚C (P), (5) Flash point (FP), (6) Softening point (˚C), (7)

Reclaimed Asphalt Pavement content (RAP) and (8) Rejuvenator content (RC) on the CTIndex,

the feature importance analysis will be performed by SHAPley Additive exPlanations in the

last section. The study’s results contribute to selecting a suitable AI approach to quickly and

accurately determine the CT index of asphalt concrete mixtures.

2. Significance research

CT index is a relatively new index introduced to determine the shear resistance of asphalt

pavement. However, the experiment to determine CT index of asphalt pavement is relatively

expensive and time consuming. Application of machine learning models has been carried out

to study many properties of pavement. However, the study of CT index by machine learning

model has not been proposed. Therefore, this study focuses on proposing to build a high per-

formance machine learning model to evaluate CT index from 8 input boundaries including (1)

Aggregate content passing 4.75 mm sieve (AP4.75), (2) Aggregate content passing 0.075 mm

sieve (AP0.075), (3) Bitumen content (BC), (4) Penetration at 25˚C (P), (5) Flash point (FP),

(6) Softening point (˚C), (7) Reclaimed Asphalt Pavement content (RAP) and (8) Rejuvenator

content (RC), and evaluate and quantify the influence of these input variables on the CT index

value.
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3. Experimental procedure and experimental results

3.1. Material used

The asphalt mixtures used in the evaluation are shown in Table 1 with Dense Graded Asphalt

(DGA) and gab-grade of Stone Matrix Asphalt (SMA). The two sources of aggregate used for

the mixtures are designated type I and type II, respectively. The properties of these two aggre-

gate sources are shown in Table 2.

Valdés et al. [17] shows the acceptable range of Reclaimed Asphalt Pavement (RAP) varying

from 10% to 50% weight of asphalt pavement. Three types of rejuvenator consisting of sasobit,

Zycotherm and Prephalt are used as additive binder for Dense Graded Asphalt (DGA) Accord-

ing to Anderson et al. [18], the sasobit content as 1.5% weight of binder should be used. Ayazi

et al. [19] proposed the used Zycotherm to be equal to 0.15% weight of binder. Three contents of

prephalt including 3.0, 5.0 and 7.0% weight of binder are recommended to use according to Shi

et al. [20]. Therefore, the study also used cracking test data of Warm Mixtures Asphalt (WMA)

and Hot Mixtures Asphalt (HMA) with RAP content of 0%, 20%, 30%, 40% and 50% weight of

binder, respectively, to analyze accumulate. The WMA uses Sasobit and Zycotherm additives,

HMA uses Prephalt rejuvenator additive at the contents of 3%, 5% and 7% respectively. The

properties of the virgin and modified binders in unaged condition are shown in Table 3.

Flash point should have the significant effect on performance of asphalt pavement at high

temperature, and Penetration at 25˚C seems to have not any meaningful of binder perfor-

mance. In this study, the results of CT index testing of asphalt mixes using 5 types of bitumen

binder are described in Table 1. To distinguish 5 types of bitumen binder for the CT index

evaluation test in unaged condition, four properties including Flash point, Penetration at

25˚C, Softening point and Ductility at 25˚C described in Table 3 are considered, properties of

bitumen binder for Short-term aged (RTFO) and Long-term aged (PAV) are not considered

in this investigation. Ductility at 25˚C of the 5-bitumen binders has similarity value (> 100

Table 1. Labels of various mixtures in database.

Mixture type Code RAP content Asphalt type Rejuvenator Aggregate source(*)

DGA B1 0% PMB III - I

DGA B2 0% PMB III 1.5% Sasobit I

SMA B1 0% PMB III - I

SMA B2 0% PMB III 1.5% Sasobit I

DGA B3 0% 60/70 1.5% Sasobit II

DGA B3 20% 60/70 1.5% Sasobit II

DGA B3 30% 60/70 1.5% Sasobit II

DGA B3 40% 60/70 1.5% Sasobit II

DGA B3 50% 60/70 1.5% Sasobit II

DGA B4 0% 60/70 0.15% Zycotherm II

DGA B4 20% 60/70 0.15% Zycotherm II

DGA B4 30% 60/70 0.15% Zycotherm II

DGA B4 40% 60/70 0.15% Zycotherm II

DGA B4 50% 60/70 0.15% Zycotherm II

DGA B5 30% 60/70 3.0% Prephalt II

DGA B6 40% 60/70 5.0% Prephalt II

DGA B7 50% 60/70 7.0% Prephalt II

(*)aggregate source: Type I: Khau Dem, Lang Son, Vietnam, Type II: Tan Cang, Bien Hoa, Dong Nai, Vietnam.

https://doi.org/10.1371/journal.pone.0287255.t001
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cm). Evaluating the influence of bitumen binders’ properties on CT index by ML technique-

SHAP value is also the aim of this study.

Therefore, 3 input variables including Flash point, Penetration at 25˚C and Softening point

are used to build a machine learning model to determine and evaluate the CT index.

The study used asphalt mixtures currently used in Vietnam, these mixtures were designed

according to the Marshall method. When preparing the CTindex test sample, the gyratory com-

paction is used to ensure the air voids of the mixture according to the regulations of ASTM

D8225 is equal to be 7±0.5%. There are 17 mixtures of DGA and SMA designed according to

Marshall method, the specifications of the mixtures all meet the specifications according to

MS-02 and AASHTO M325. Fig 1 shows the gradation curves of a mixture of SMA and DGA

designed using aggregate type I and II.

3.2 Methodology of experiment

The IDEAL-CT was used to determine the intermediate-temperature cracking resistance of

asphalt mixtures. The indirect tensile asphalt cracking test was recently developed as a practical

cracking test that could be routinely used in asphalt mix design as well as for quality control/

quality assurance (QC/QA) [2]. The test is performed on 150-mm diameter and 62-mm high

gyratory specimens that are typically compacted to a target air void level of 7 ± 0.5 percent.

Test specimens are conditioned for two hours at 25˚C, and then tested using an indirect ten-

sion load frame. A minimum of three replicates are typically tested for a mixture. Testing can

be performed using a stand-alone servo-hydraulic machine capable of sampling load and

Table 2. Aggregate properties.

Properties Agg.19 Agg.12.5 Agg.9.5 Agg.4.75

I II I II I II I II

Bulk Specific Gravity (g/cm3) 2.865 2.724 2.847 2.734 2.824 2.726 2.794 2.702

Apparent Specific Gravity (g/cm3) 2.923 2.773 2.918 2.753 2.876 2.753 2.894 2.740

Water absorption, % 0.697 0.65 0.846 0.204 0.741 0.366 1.248 0.517

Los Angeles abrasion, % 9.4 16.25 11.8 20.5 10.53 15.32 - -

Flat and elongation, % 8.7 6.88 10.4 11.1 7.82 11.25 - -

Clay, dust content, % 0.5 0.62 0.9 0.31 0.47 0.76 1.8 1.7

Sand Equivalent-SE, % - - - - - - 88.1 74.6

Fine Aggregate Angularity, % - - - - - - 51.7 49.3

According to AASHTO M323, Agg.19: Nominal Maximum Aggregate Size of 19 mm; Agg.12.5: Nominal Maximum Aggregate Size of 12.5 mm; Agg.9.5: Nominal

Maximum Aggregate Size of 9.5 mm; Agg.4.75: Nominal Maximum Aggregate Size of 4.75 mm.

https://doi.org/10.1371/journal.pone.0287255.t002

Table 3. Properties of asphalt binders.

Virgin binder

(Bitumen 60/

70)

B1 (Bitumen

PMB III)

B2 (Bitumen

PMB III with

1.5% Sasobit)

B3 (Bitumen 60/

70 with 1.5%

Sasobit)

B4 (Bitumen 60/70

with 0.15%

Zycotherm)

B5 (Bitumen 60/

70 with 3.0%

Prephalt)

B6 (Bitumen 60/

70 with 5.0%

Prephalt)

B7 (Bitumen 60/

70 with 7.0%

Prephalt)

Penetration at

25˚C

64 52 42 52 64 61 63 66

Flash point,

˚C

254 249 271 247 259 248 242 237

Softening

point,˚C

49.6 88 94 69.8 50.7 54 51.4 49.3

Ductility at

25˚C, cm

>100 >100 >100 >100 >100 >100 >100 >100

https://doi.org/10.1371/journal.pone.0287255.t003
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displacement data at a rapid rate (40 Hz), as shown in Fig 2(A). Specimens are loaded mono-

tonically at a rate of 50 mm/min in load line displacement (LLD) until failure. A plot of load

versus LLD is shown in Fig 2(B). The plot of load versus displacement is then analyzed to

determine the CT index:

CTindex ¼
t
62
�

Gf

jm75j
�

l75
D

� �

ð1Þ

Fig 1. Mixture gradation aggregates: (a) Stone Mastic Asphalt (SMA) samples, (b) Dense Graded Asphalt (DGA)

samples.

https://doi.org/10.1371/journal.pone.0287255.g001
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where:

Gf−fracture energy, J/m2

|m75| - slope at 75% peak load, N/m

D - specimen diameter, mm

t - specimen thickness, mm

l75 - displacement corresponding to 75% of the peak load at the post-peak stage, mm

The specimen diameter D is the standard value 150 mm; therefore, this is a constant which

can be neglected. Moreover, the Eq (1) helps to calculate experimentally CT index value in the

experimental part (2.1 and 2.2 of this study). Therefore, the specimen diameter D is not con-

sidered in for building Machine Learning model in the next sections.

3.3. Experimental results and analysis

In this study, the database on cracking tolerance index CTIndex was collected from experimen-

tal studies in the laboratory of the University of Transport Technology. The database includes

107 records on the CTIndex cracking tolerance index of asphalt mixtures, SMA mixes, and

Reclaimed asphalt pavement (RAP) using common asphalt, polymers, and additives, such as

Sasobit, Zycotherm, and Prephalt.

The input data includes 8 variables: (1) Aggregate content passing 4.75 mm sieve (AP4.75),

(2) Aggregate content passing 0.075 mm sieve (AP0.075), (3) Bitumen content (BC), (4) Pene-

tration at 25˚C (P), (5) Flash point (FP), (6) Softening point (˚C), (7) Reclaimed Asphalt Pave-

ment content (RAP) and (8) Rejuvenator content (RC) on the CTIndex. The output data is the

cracking tolerance index CTIndex (CT).

The dataset used in the study was randomly divided into two sub-datasets using a uniform

distribution, in which 70% of the data was used to build the training model and 30% of the

data was used for verification. The statistical parameters such as minimum, median, maximum

and standard deviations. . . are presented in detail in Table 4.

Fig 3 depicts the distribution of input parameters in this study. The plots for the distribu-

tion of the data for the parameters are shown through the histograms from Fig 3A–3H. Most

Fig 2. IDEAL-CT Test Device and Typical Result: (a) Test Device; (b) Recorded Load (P) versus Load-Line Displacement Curve according to Zhou et al [2].

https://doi.org/10.1371/journal.pone.0287255.g002

PLOS ONE Machine Learning Approaches for Predicting Cracking Tolerance Index (CTIndex)

PLOS ONE | https://doi.org/10.1371/journal.pone.0287255 October 26, 2023 7 / 21

https://doi.org/10.1371/journal.pone.0287255.g002
https://doi.org/10.1371/journal.pone.0287255


of the variation in the number of samples has a relatively large distribution, often concentrated

in a relatively narrow range of values. Aggregate content passing 4.75 mm sieve (AP4.75) var-

ied from 24.8% to 53.1%, with most samples in the 50% content range. Aggregate content pass-

ing 0.075 mm sieve (AP0.075) ranges in content from 6.4% to 9.6%. A fairly large number of

samples are concentrated in the 7% range, others in the 8–9% range. Bitumen content (BC)

has a large number of samples in the 5% range. Penetration at 25˚C (P) has the number of sam-

ples located mainly in the range of 60–65 g/cm3. Flash point (FP) ranges from 247-362(mm),

but most data points are in the 250–275 mm range. Softening point has distribution values

concentrated mainly at 50˚C. With Reclaimed Asphalt Pavement content (RAP) and rejuvena-

tor content (RC) visible, most samples are concentrated in the 0% range. The distribution of

the number of samples of the output variables in the experimental data (Fig 3I) shows that

most of the samples have the CT index value of cracking tolerance index in the range of 0–200.

The correlation matrix of the input experimental data is depicted in Fig 4. As can be seen,

most of the parameters have an influence on the output CT index. The highest observed corre-

lation coefficient between input and output variables is -0.87. In addition, the input parameters

also have a significant correlation with each other, expressed through the correlation coeffi-

cients between them, with the highest coefficient equal to -0.96. Therefore, the relationships

between these variables need to be analyzed further.

In actuality, the quantity, quality, and number of features (number of input variables) are

the key determinants of a machine learning model’s accuracy. The quantity of data and num-

ber of characteristics might vary depending on each situation, such as a medical, pharmacolog-

ical, or civil engineering challenge. For instance, there are a ton of Machine Learning research

into the mechanical characteristics of concrete, such as compressive strength, elastic modulus,

shear strength, and tensile strength, as well as the properties of soil, such as UCS, CBR, resilient

modulus, and coefficient of permeability. Jeremiah et al. [21] identified 23 Machine Learning

experiments for soil parameters, with data ranging from 49 to 283 samples and features from 4

to 14. Chaabene et al. [22] compiled the results of 47 Machine Learning experiments on the

mechanical characteristics of concrete. In the 47 investigations, there are between 74 and 2817

samples of data, and there are between 4 and 13 characteristics. The computing time is signifi-

cantly influenced by the number of characteristics. The accuracy and performance of a

machine learning model with the same quantity of data and features heavily depend on the

machine learning method. As a result, even when there are limited data and numerous fea-

tures, choosing the right Machine Learning method can assist to increase the model’s capacity

for prediction.

Table 4. Description of database used in this study.

Sym Count Mean Std Min Q25% Median Q75% Max Skw

Aggregate content passing 4.75 mm sieve (%) AP4.75 107 46.93 7.09 24.80 45.20 49.50 50.70 53.10 -2.29

Aggregate content passing 0.075 mm sieve (%) AP0.075 107 8.02 1.03 6.40 7.10 8.40 8.80 9.60 -0.09

Bitumen content (%) BC 107 4.91 0.76 3.50 4.55 5.10 5.20 6.70 0.20

Penetration at 25˚C (mm) P 107 59.49 7.31 43.00 52.00 64.00 64.60 66.00 -0.98

Flash point (˚C) FP 107 290.54 48.39 247.00 248.00 259.00 351.00 362.00 0.54

Softening Point SP 107 59.38 15.94 48.00 48.20 50.70 69.80 95.00 1.22

Reclaimed Asphalt Pavement content (%) RAP 107 22.43 19.32 0.00 0.00 30.00 40.00 50.00 0.01

Rejuvenator content (%) RC 107 1.26 2.33 0.00 0.00 0.00 1.50 7.00 1.56

CTIndex CT 107 138.89 136.96 16.89 62.50 97.31 158.61 638.67 2.61

Sk = Skewness; Std = Standard deviation

https://doi.org/10.1371/journal.pone.0287255.t004
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The authors of this paper use 3 machine learning algorithms, Random Forest (RF), K-Near-

est Neighbors (KNN), and Multivariate Adaptive Regression Splines (MARS), with 107 data

points and 8 features to investigate the choice of the best machine learning model. In addition,

8 characteristics are required to study how each input affects the CT index using Shapley Addi-

tive Explanation based on ML models. Monte Carlo simulation has been used to confirm the

ML model’s dependability. The min-max value range of the variable indicated in Table 4 of the

revised paper should be the only range in which the Machine Learning model of this study is

used.

4. Machine learning methods

4.1 Random forest (RF)

Fig 5 presents briefly the process of Random Forest algorithm according to conception of Brei-

man [23]. The random forest (RF) algorithm is a supervised ML algorithm [23]. As the name,

it is used to somehow create a forest and make it random. The number of trees in the forest is

directly related to the results obtained by the algorithm: the more trees, the more accurate the

output. But it should be highlighted that creating a forest is not equivalent to using informa-

tion gain or creating an index to make a decision. It uses a tree-like graph to show possible

Fig 3. Distribution of input variable (a) Aggregate content passing 4.75 mm sieve (AP4.75), (b) Aggregate content passing 0.075 mm sieve (AP0.075), (c)

Bitumen content (BC), (d) Penetration at 25˚C (P), (e) Flash point (FP), (f) Softening point, (g) Reclaimed Asphalt Pavement content (RAP), (h) Rejuvenator

content (RC), and (i) CT Index.

https://doi.org/10.1371/journal.pone.0287255.g003
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results. If a training set with targets and features is input into a decision tree, it will show some

regularities. These regularities can then be utilized to make predictions. The process of collect-

ing these information nodes and forming rules is the process of using the information gain

method and Gini coefficient calculation. To obtain an objective estimate of the test set error in

RF, neither cross-validation nor a separate test set is required. Internally, it is computed using

extrapolation from the categorization of the excluded person. Numerous studies have shown

Fig 4. Pearson correlation between inputs variables and CTindex.

https://doi.org/10.1371/journal.pone.0287255.g004

Fig 5. Process of Random Forest algorithm according to conception of Breiman [23].

https://doi.org/10.1371/journal.pone.0287255.g005
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that the out-of-bag estimate is unbiased [24, 25]. The difference between the random forest

algorithm and the decision tree algorithm is that in the random forest, the process of finding

the root node and dividing the characteristic nodes will be carried out in a random manner.

4.2 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a common classification and regression algorithm. Determine

the kind of the object by looking at its neighbors. Based on the similarity in a covariate space

between the population unit for which a prediction is intended and the sample units for which

data are provided, the KNN technique and its modifications are intuitive, non-parametric

approaches to either univariate or multivariate prediction [26, 27]. Usually, the distance

between an object and its neighbors uses the Euclidean distance. In j-dimensional space

Euclidean distance of points a(x1, x12, . . ., x1j) and b(x2, x22, . . ., x2j) and N objects closest to

the object to be checked

dab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

j¼1

x1j � x2j

� �
v
u
u
t ð2Þ

A large collection of training data or objects of the known kind is required for KNN. The

premise is that if the nearest item is “a”, then the unknown thing must be “a”, but if the next j

nearest objects all is “b”, then the unknown object must be “b”. Normally, no simple voting

mechanism is used; each neighbor’s vote is weighted depending on its distance from the

unknown object, so closer objects have a greater voice in recognizing it. The disadvantage of

the k-neighbor algorithm is that it cannot give any basic structure information about the data,

so cannot know what characteristics the average instance sample and the typical instance sam-

ple have.

4.3 Multivariate Adaptive Regression Splines (MARS)

Multiple Adaptive Regression Splines (MARS) is a form of regression analysis introduced by

Friedman [28], which is a non-parametric regression technique that can be seen as an exten-

sion of a linear model that simulates the nonlinearity and interaction between variables, a gen-

eral insertion points for the MARS model. It is a nonlinear, nonparametric regression method

based on a segmentation strategy. This method does not need to assume a potential specific

functional relationship between the input variable and the output variable but divides the data

training set into independent sections, line segments, with different gradients, and each seg-

ment is called a basis function; the endpoint of each segment is nodes, a node marks the end of

one region of data and the beginning of the next. The resulting basis functions will give the

model greater flexibility, allowing bending and threshold values that deviate from linearity.

MARS generates basis functions through a stepwise search and uses an adaptive regression

algorithm to select node locations. The MARS algorithm is divided into two steps: forward

selection and backward pruning: the forward selection process is to divide the input sample

data, use the spline function instead of the divided cells to fit to get a new basis function, and

then get a fitting model; the backward pruning process is to screen the generated basis func-

tions, and eliminate the basis functions that contribute less to the model fitting, so as to avoid

overfitting and generate the optimal model. MARS is a data modeling process. Due to make

the model conform to the formula, the forward selection procedure should be performed on

the training set of the data to make the model conform to the formula. The training error is

reduced as much as possible by using the constant term and basis function pair to generate the

model; for a model containing N basis functions, the next pair of basis functions added to the
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model is obtained by the least square method. When a new basis function is added to the

model, its interaction with the existing basis functions in the model is also considered. If the

number of basis functions reaches the maximum number predetermined by the model, an

overfitting model will be generated. The numerator is the mean square error of the MARS

model data training set, and the denominator is the penalty function. The more the model

complexity, the greater the variance.

4.4 Performance evaluation of models

Model assessment is a crucial step in the development of a machine learning model that deter-

mines if the model is of high quality.

In order to use the proper assessment measures, model evaluation aids in the selection of

models that are appropriate for a given situation. The coefficient of determination (R2), the root

mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percent

error (MAPE) were the four statistical performance metrics employed in this investigation [25].

The following criteria establish these ratings:

R2 ¼ 1 �
SN

j¼1
Mj � Qj

� �2

SN
j¼1

Mj

� �2

2

6
4

3

7
5 ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
S
N

j¼1
Mj � Qj

� �2

s

ð4Þ

MAE ¼
1

N
S
N

j¼1
jMj � Qjj ð5Þ

MAPE ¼ 100
1

N

XN

j¼1

jMj � Qjj

Mj
ð6Þ

Where Mj is the experimental value of CT index, Qj is the predicted value and N is the num-

ber of samples.

4.5 Methodology flowchart

The general outline of the predicted cracking tolerance index of asphalt concrete mixtures is

detailed in Fig 6. This flowchart consists of three main steps, as follows: Step 1: The data used

in this study were collected from the laboratory with the 107 samples presented in Section 2.3

earlier. These data include 8 inputs: Aggregate content passing 4.75 mm sieve (AP4.75), aggre-

gate content passing 0.075 mm sieve (AP0.075), bitumen content (BC), penetration at 25˚C

(P), flash point (FP), softening point (SP), Reclaimed asphalt pavement content (RAP), and

rejuvenator content (RC). The output is the cracking tolerance index CTindex (CT). This data

is randomly split into two datasets, with 70% used for training the models and the remaining

30% for testing.

Step 2: The math facts are trained to perform the CT index prediction task, the model is

built, and it is selected with an appropriate structure.

Step 3: Validate the model. Models are tested and validated using test datasets. The predic-

tive ability of the models was evaluated through the criteria R2, RMSE, MAE, and MAPE. The
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model with optimal performance will be selected to predict the CT index and analyze the sensi-

tivity to evaluate the influence of input parameters on the CT index.

5. Results and discussion

5.1 Performance evaluation of predictive machine learning algorithms

Fig 7 shows the accuracy of the training and testing model. Predictive performance is evaluated

across four metrics, namely R2, RMSE, MAE, and MAPE. It can be observed that the RF and

MARS models have R2 values on the training and testing datasets that are relatively similar

(Fig 7A). Which, the RF model has a higher R2 value than the other two models with an aver-

age R2 value on the training set of 0.9927, and 0.9757 on the test data set. In the test data set,

Fig 6. Outline of model building.

https://doi.org/10.1371/journal.pone.0287255.g006
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RF model can achieve R2 max value up to 0.9953. Similarly, looking at Fig 7B–7D, it is easy to

see that the KNN model has the poorest performance with the RMSE, MAE, and MAPE

Fig 7. Performance value of machine learning models after 3000 simulations (a)R2, (b) RMSE, (c) MAE and (d) MAPE values.

https://doi.org/10.1371/journal.pone.0287255.g007
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indices always achieving much larger values than the two MARS and RF models. Indeed, the

average performance of the predictive models is presented in Table 5. The mean value of the

RMSE index for the KNN model on the training set is 25.2973 and RMSE = 34.7225 on the test

set. This is up to two times larger than RF with RMSE = 11.2123 on the training set and

RMSE = 17.4854 on the test set. Besides considering the mean value of the evaluation criteria,

the standard deviation of the performance values is also considered to comprehensively com-

pare the predictive performance of the models. The table of standard deviation values of the

three models on the two training and test data sets is listed in Table 5. The RF model has a

slightly smaller standard deviation score than the other two models with precision The stan-

dard deviations of the performance indicators R2, MAE, and MAPE are 0.0260, 2.8049, and

0.0294, respectively. This result shows that the RF model has superior accuracy compared to

MARS and KNN. In addition, the relatively small deviation avoids causing large differences in

the prediction performance of the model.

5.2 Prediction of typical machine learning algorithm

After the models’ rankings are validated by performance evaluation, the model that can run

consistently and with exceptional performance will be chosen. Fig 8 compares the actual value

and the predicted value of the RF model. Observe the difference between the experimental

value and the predicted value from the RF model. The predicted values of RF on the training

set are quite comparable to the training data as red round points. The prediction results

obtained on the test set are surprisingly accurate with the predicted values very close to the

true value (blue squares).

It can be observed that the predicted values are very close to the fit line with the evaluation

indexes on the experimental data set, which are R2 = 0.9953, RMSE = 8.7535, MAE = 7.2763,

and MAPE = 0.0795, respectively. The error values between the experimental value and the

predicted value for the training data set and the test data are compared in Fig 9. Based on the

brown frequency distribution line, the error frequency can easily be seen in samples in the

range. For the training database, the frequency of samples with errors in the range [-10;10] is

about 5. Similar to the testing set, the frequency of samples with errors in the range [-10;10] is

about 3. Finally, it can be concluded that the RF model is capable of predicting CT index of

asphalt mixtures with good performance and reliable results.

In Fig 8, eight data samples including 6 data samples for training dataset and 2 data samples

for testing dataset have CT index value higher than 200 are identified. These CT index value

belong to Stone mastic asphalt (SMA) mixtures using Sasobit and without Sasobit additive. The

SMA blend has a high binder content, while using cellulose fibers. The cellulose fibers in the

SMA blend have the ability to cross and cross, forming a spatial network structure, this type of

structure has the effect of transmitting force while preventing the slip between the particles, the

overall connection of the mixture, and the resistance. resist and retard the formation and

growth of cracks. Therefore, the SMA composite has better performance than the BTNC blend

in terms of top-down crack resistance, bottom-up crack resistance and thermal crack resistance.

This conclusion is consistent with the results of Wu et al. [29] and Habbouche et al. [30].

In this study, 3 machine learning algorithms including RF, KNN and MARS to build

machine learning models for predicting CT index. These machine learning algorithms have

hyperparameters which can be (i) tuned for each specific case or (ii) defaults values defined in

the open-source library of language programming Python [25]. In this study, the default

hyperparameters of three ML algorithms are used. Based on the database including 107 sam-

ples and 8 input variables, 3 algorithms are fitted on 70% of the database samples and 8 input

variables to predict CT index.
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Machine learning models can solve very complex problems, non-linear correlations such as

CT index prediction with high accuracy, but the disadvantage of RF, KNN and MARS machine

learning models cannot provide equations describing the correlation between outputs and var-

iables as empirical [31]. Therefore, in order to increase the applicability of the RF machine

learning model with high performance in predicting CT index and designing pavement com-

ponents, an excel file derived from the RF model allows predicting CT index by excel formulas

(including logic function) attached to this study (S1 File).

5.3 Feature importance analysis

The cracks, a common road surface disease, often do not attract people’s attention, and these

are only regarded as normal asphalt aging phenomena. However, in recent years, the

Table 5. Comparison of three algorithms for compressive prediction using mean performance value and Std performance value.

Algorithm Training dataset Testing dataset

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

Mean KNN 0.6778 17.8333 13.7243 0.1427 0.0205 16.9889 13.7467 0.1316

Min MARS 0.8986 13.0875 9.8979 0.1036 0.5267 12.0619 9.1206 0.0951

RF 0.909 8.0145 6.1945 0.0603 0.5827 8.7536 7.2763 0.0744

KNN 0.9599 25.2973 18.4408 0.1898 0.9168 34.7225 25.8973 0.2591

Average MARS 0.9826 17.2728 13.6917 0.1577 0.965 21.4317 16.91 0.1894

RF 0.9927 11.2123 8.3328 0.0838 0.9767 17.4854 13.3076 0.1356

KNN 0.9866 46.7155 25.1125 0.2387 0.9812 153.6081 88.6094 0.466

Max MARS 0.9922 33.2283 27.6053 0.3583 0.9921 295.3152 100.011 0.6597

RF 0.9971 21.9176 10.5877 0.1032 0.9953 86.686 48.7802 0.3402

StD KNN 0.0311 4.5074 1.6728 0.0143 0.0744 12.7486 6.8638 0.0479

MARS 0.0093 3.1811 2.4928 0.0316 0.0371 4.2467 3.1694 0.0434

RF 0.0032 0.9774 0.6221 0.0064 0.026 4.6759 2.8049 0.0294

https://doi.org/10.1371/journal.pone.0287255.t005

Fig 8. Comparison between true and predicted CT index of Random Forest model for training and testing set.

https://doi.org/10.1371/journal.pone.0287255.g008
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phenomenon of road surface subsidence caused by road cracks and traffic accidents has

occurred from time to time. The cracks like scars are dormant on the road, and with the ero-

sion of rainwater and the increase of vehicle load, they continue to spread vertically and hori-

zontally and may cause collapse at any time [13]. On the other hand, the appearance of cracks

will also increase road maintenance’s difficulty and the burden of later road maintenance.

Many studies on the influence of composition and manufacturing methods on the mechanical

behavior of asphalt mixtures [32–34]. In the study by Sangsefidi et al. [35], two gradations

(fine-graded and coarse-graded) were evaluated with two levels of binder content and air voids

content to reflect, respectively, construction variable levels of binder content and density. Rut-

ting, tensile cracking, and moisture susceptibility were the three characteristics of mixture per-

formance that were assessed. It has been discovered that for estimating rutting performance,

the volume content is more useful than the weight content and that the effective binder con-

tent should be considered rather than the overall binder content. Without further breakdown

Fig 9. Error value between predicted and true CT index of asphalt concrete (a) training part, (b) testing part.

https://doi.org/10.1371/journal.pone.0287255.g009

Fig 10. SHAP value for feature importance analysis of CT index prediction.

https://doi.org/10.1371/journal.pone.0287255.g010
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into effective binder content and absorbed binder content, the total binder content may ade-

quately characterize the indirect tensile strength (ITS) values for tensile cracking. Gradation

deviation had no discernible impact on cracking.

There are 8 data inputs including Aggregate content passing 4.75 mm sieve (AP4.75),

Aggregate content passing 0.075 mm sieve (AP0.075), Bitumen content (BC), Penetration at

25˚C (P), Flash point (FP), Softening point, Reclaimed Asphalt Pavement content (RAP), and

Rejuvenator content (RC). The SHAP values of these data are calculated, and the results are

summarized in Fig 10. These data are sorted from top to bottom according to their influence

on the CT index output (cf. Fig 10B). With the SHAP values, the picture of feature importance

is created clearer, and more abstract, with blue for low values, and gradually red for high values

(cf. Fig 10A). Looking at the plot, it is easy to see that SG is the least important feature, and

AP4.75 is the feature that has a great influence on the CT index. Based on color, with AP4.75

and RAP feature, with high values (red) SHAP values will be low, so it will push towards layer

0. By SHAPley Additive exPlanations based on RF model, the input Aggregate content passing

4.75 mm sieve (AP4.75) has a significant effect on the variation of CT Index value. In follow-

ing, the descending order is Reclaimed Asphalt Pavement content (RAP) > Bitumen content

(BC) > Flash point (FP) > Softening point > Rejuvenator content (RC) > Aggregate content

passing 0.075mm sieve (AP0.075) > Penetration at 25˚C (P).

6. Conclusions

In this study, RF, KNN, and MARS models are developed to predict the cracking tolerance

index of asphalt concrete mixtures. 107 experimental results were collected to build databases

and develop models. In which, 70% of the data is randomly selected for the training phase and

the remaining 30% is used for the testing phase of the machine learning models. Through anal-

ysis and evaluation of performance indicators, the RF model is the most stable and has predic-

tive results close to the real value. On the test set, the RF model has R2, RMSE, MAE, and

MAPE values of 0.9953, 8.7535, 7.2763, and 0.0795, respectively. Through sensitivity analysis,

it can be seen that the crack resistance CT index varies greatly for different combinations of

input variables. Of which, Aggregate content passing 4.75 mm sieve (AP4.75) has a significant

effect on the variation of CT Index output. Next is Reclaimed Asphalt Pavement content

(RAP)> Bitumen content (BC) > Flash point (FP) > Softening point > Rejuvenator content

(RC)> Aggregate content passing 0.075 mm sieve (AP0.075) > Penetration at 25˚C (P). In

addition, the correlation between the input variables is quite complex, which cannot be

reflected by a clear equation. The study has quantified the influence of the parameters on the

output results, supporting the design of the optimal composition for asphalt concrete in the

future. The number of data used in this study is relatively small, which affects the general appli-

cation of machine learning models in predicting CT index. Therefore, the addition of data

samples to the database is very necessary in further studies to build a highly universal machine

learning model to improve the applicability of the machine learning model in designing mix-

ture asphalt pavement including SMA using RAP.
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