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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged in

2019 and still requiring treatments with fast clinical translatability. Frequent occurrence of

mutations in spike glycoprotein of SARS-CoV-2 led the consideration of an alternative thera-

peutic target to combat the ongoing pandemic. The main protease (Mpro) is such an attrac-

tive drug target due to its importance in maturating several polyproteins during the

replication process. In the present study, we used a classification structure–activity relation-

ship (CSAR) model to find substructures that leads to to anti-Mpro activities among 758 non-

redundant compounds. A set of 12 fingerprints were used to describe Mpro inhibitors, and

the random forest approach was used to build prediction models from 100 distinct data

splits. The data set’s modelability (MODI index) was found to be robust, with a value of 0.79

above the 0.65 threshold. The accuracy (89%), sensitivity (89%), specificity (73%), and Mat-

thews correlation coefficient (79%) used to calculate the prediction performance, was also

found to be statistically robust. An extensive analysis of the top significant descriptors

unveiled the significance of methyl side chains, aromatic ring and halogen groups for Mpro

inhibition. Finally, the predictive model is made publicly accessible as a web-app named

Mpropred in order to allow users to predict the bioactivity of compounds against SARS-CoV-

2 Mpro. Later, CMNPD, a marine compound database was screened by our app to predict

bioactivity of all the compounds and results revealed significant correlation with their binding

affinity to Mpro. Molecular dynamics (MD) simulation and molecular mechanics/Poisson

Boltzmann surface area (MM/PBSA) analysis showed improved properties of the com-

plexes. Thus, the knowledge and web-app shown herein can be used to develop more effec-

tive and specific inhibitors against the SARS-CoV-2 Mpro. The web-app can be accessed

from https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py.
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Introduction

The COVID-19 pandemic, which was triggered by SARS-CoV-2, is still having a disastrous

impact on public health and the worldwide economy [1,2]. On earlier march of 2020, the out-

break was declared as a pandemic after initially discovering the virus in end of 2019 in Wuhan,

China [3,4]. SARS-CoV-2 is a single-stranded RNA virus with an increased mutation rate, a

short period of replication, and a high production of virion [5–8]. The virus acquires a signifi-

cant amount of genetic variation as it spreads, enabling it to adapt quickly to stresses brought

on by natural selection, particularly those imposed by the immune system of the host. Muta-

tions build up over time, resulting in alterations to the amino acids that make immune-tar-

geted proteins less antigenic. This process is known as “antigenic drift”, that is the gradual

alteration in viral protein antigenicity caused by selective immunological pressure [9]. Anti-

genic drift permits viruses to avoid host immunity continuously, allowing for recurring viral

outbreaks. In cases of acute infectious disease, antibody responses are mostly responsible,

resulting in the selection of escape mutants [9]. The spike protein contains several variations

in amino acids identified in SARS-CoV-2 variants, is the main target that antibodies neutralize

[10]. These antibodies are the sole immune system component capable of providing sterilizing

immunity, preventing infection of host cells by the virus. The SARS-CoV-2 spike protein has

evolved at a considerably faster rate than similar proteins in additional known viruses that

cause severe infectious diseases in humans [11]. In addition, SARS-CoV-2 proteins have accu-

mulated a substantial number of amino acid modifications that are not recognized antibody

targets. In acute viral infections, antibody responses are predominantly responsible for anti-

genic drift; therefore, these amino acid alterations may have given the virus a fitness benefit

independent to antibody immunity [12,13].

As a result, structural and functional research of SARS-CoV-2 infection processes have pri-

marily shifted to the main protease (Mpro), which cleaves native polypeptides and forms active

fragments that are crucial for viral replication, transcription, and translation process [14]. The

protease is consists of three domains [15]. A loop (residues 185–200) connects domain II with

domain III. The ligand binding site is found in the loop between the first two domains, where

the catalytic dyad consisting of Cys 145 and His 41 is crucial for ligand management [15].

SARS-CoV-2 replication is significantly facilitated by Mpro [15]. Moreover, it is not function-

ally associated with human homologue proteases, implying that Mpro is a promising target for

therapeutic development [15].

The functions of compounds both at structural and chemical level, are crucial in under-

standing the impact of physicochemical qualities on bioactivity. Computer-aided drug design

(CADD) portrays a set of computational techniques that has proven useful in chemical biology

and computational approaches to understanding the structure–activity relationship [16,17].

Computational tools are used to decipher bioactivity using ligands, which are known as chemi-

cal descriptors [18]. Molecular descriptors computation softwares can also be used to calculate

the physicochemical properties of different compounds. The QSAR (quantitative structure

activity relationship) is considered a widely used computational technique to construct predic-

tion models which can distinguish the impact of important molecular fingerprints regulating

their bioactivities and properties [19]. A variety of targets, including antioxidant [20], antibac-

terial [21,22], anticancer [23,24], and antiviral [25,26] activities, have been successfully mod-

eled using QSAR models.

In silico strategies such as QSAR, pharmacophore modeling, docking and molecular

dynamics (MD) simulation have extensively studied for identifying new inhibitors of Mpro.

Isabela et al. used an in-house designed machine learning technique, molecular docking,

MM-PBSA calculations, and meta dynamics to find FDA-approved compounds that could
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potentially suppress the enzyme activity of the Mpro [27]. Nedra et al. developed a machine

learning approach by employing the support vector machine (SVM) classification model to

categorize two hundred novel chemo-types as potentially active against the viral protease using

a dataset of two million commercially accessible drugs [28]. Mahesha et al. used an integrative

strategy to screen 1528 anti-HIV1 compounds, using a machine learning predictive model,

molecular docking, and a deep learning model that considered the IC50 values of known

inhibitors [29]. But the models developed in these works are not accessible as readily available

web-apps for the scientific community to further apply on different sets of compounds in

order to identify more potent anti-Mpro inhibitors.

In the present study, we collected a set of compounds (non-redundant) with known IC50

values against the SARS-CoV-2 Mpro. Several fingerprint descriptors were used to describe the

examined compounds binning the IC50 values to qualitative labels such as active and inactive.

Following that, the RF algorithm was used to build prediction models. The sensitivity, specific-

ity, accuracy and Matthews correlation coefficient of the built QSAR model were tested in clas-

sifying active or inactive compounds against SARS-CoV-2 Mpro. In addition, the underlying

key substructures that are critical for bioactivity were identified and defined. A web-app was

built based on the model and made publicly accessible. We also utilized our app to view into

the correlation of predicted bioactivity of compounds with their binding affinity to Mpro. As a

result, this knowledge can be exploited to develop more potent and specialized drugs against

SARS-CoV-2 Mpro.

Materials and methods

A step-wise protocol was followed to build a web-app in order to predict bioactivities of com-

pounds against the Mpro of SARS-CoV-2. The work flow is shown in Fig 1.

Dataset preparation and curation

A data set consisting of antagonists against SARS-CoV-2 main protease (Mpro) was compiled

from an extensive literature review that was initially comprised of 758 compounds [30]. The

mean value was calculated in the event that multiple IC50 values were found for the same com-

pound. As our study aims to developing a classification model of Mpro antagonists, we defined

the thresholds as<0.5 and>10 μM to distinguish active compounds from inactive ones,

respectively. Also, intermediate bioactivities with IC50 values that ranged between 1 and 10

were excluded from the study, consisting of 284 inhibitors. Finally, the curated set of com-

pounds consisting of 478 inhibitors was obtained and analyzed.

Calculation of molecular descriptors

The PaDEL-Descriptor software was utilized briefly to compute the fingerprints of the data set

[31]. Generally, molecular descriptors are very crucial for QSAR studies because they are used

to characterize the various properties of compounds and aid in the structural information

analyses. In the present study, 12 molecular fingerprints that belong to 9 classes were used to

describe the structures, and these consisted of 2D AtomPairs, CDK (including extended and

graph only version), E-state, PubChem, Klekota–Roth, Substructure and MACCS.

Data filtering and balancing

To choose the fingerprint descriptor sets, variables that were constant or nearly constant were

used with a view to removing the bias and complexity in building the model. Using 0.1 as the

SD cut-off value, all the constants of each fingerprint descriptor were calculated. For further
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investigation, fingerprints having SD values of>0.1 were chosen. The undersampling tech-

nique was employed by random selection of subset of the active compounds from the starting

set to avoid the propensity for overfitting of imbalanced data. Additionally, the data was

divided into two sets, with the internal set being 80% of the total data set and the external set

comprising the remaining 20% to avoid any possibility of getting a predicted model that is

biased.

Multivariate analysis of model

A CSAR model’s prediction performance is influenced by both the predictor and the com-

pound descriptors. Considering the success in various models and the interpretability in many

applications, we employed RF in this study.

Random forest is an ensemble classifier that uses a randomly selected subset of training

samples and variables to generate a number of decision trees. The classification of RF begins at

the root node, where the value of particular descriptors is used to divide the data set at every

node, with the descriptors of various activities being primarily transported to distinct branches

[32,33]. The classification is then obtained by averaging the outcomes of all trees using a

majority vote from each tree [34,35]. The randomForest package of the R language was used to

Fig 1. Schematic workflow of building a web-app to predict bioactivities of compounds against the Mpro of SARS-CoV-2. The upper side of the flowchart

depicts the methodology of building the web-app while the lower side shows the molecular modeling protocol that was used to view into the correlation of

predicted bioactivity of compounds with their corresponding binding affinity.

https://doi.org/10.1371/journal.pone.0287179.g001
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create the RF classifier. To effectively predict Mpro inhibitor activity, two RF model parameters

must be tuned: the number of trees used to form the RF classifier (ntree) and the number of

random candidate features (mtry). The parameter “mtry” was created using the randomForest
package’s tuneRF function, while the ntree parameter was tuned using a 10-fold CV technique

from the range of ntree € {100,200,. . .,1,000} [36]. The importance estimator, an efficient

built-in component of the RF model, was also utilized to find informative descriptors to better

explain the bioactivity of Mpro inhibitors.

Modelability of data set

The underlying relatedness of chemical structures and their bioactivities is required for modelabil-

ity. Activity cliffs, also known as two compounds with remarkably different bioactivities (i.e., one

pair of compounds has favorable biological activity while the other in the pair has low bioactivity),

are detrimental to machine learning algorithms that try to correlate structures with related biolog-

ical activity. Similar compounds having comparable bioactivities would, on the other hand, con-

tribute favorably to the data set’s modelability. Golbraikh et al. developed this modelability index

(MODI) [37]. The following formula can be used to calculate the statistical metric:

Step 1: The normalized Euclidean distance (Dnormalized) for each pair of the compounds,

Ci and Cj described by m-dimensional vector is calculated as follows:

dij ¼ jjCi � Cjjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
ðCik � CjkÞ

2

q

ð1Þ

�di ¼

Pn
j¼1

dij

n � 1
ð2Þ

�Dnormalized ¼
�D � minð�DÞ

maxð�DÞ � minð�DÞ
ð3Þ

where dij, �di shows distance scores between two compounds and the n represent mean Euclid-

ean distance.

Step 2: The MODI can be calculated for each compound in a data set by determining

whether its first nearest neighbor belongs to the same class as the compound or a different

class:

MODI ¼
1

Nc

XNc

I¼1

Nsame
i

Ntotal
i

ð4Þ

Where the NC denotes the number of classes, Ni
same denotes the number of total com-

pounds in the ith class having the same ith class as their first nearest neighbors, and Nitotal

denotes number of total compounds in the ith class. Any data set is deemed modelable pro-

vided that MODI index falls beyond the cutoff value of 0.65. Here, the MODI index was calcu-

lated using a R code that was used for assessing modelibility of the HCVpred [38] server.

Model validation (Statistical approach)

Several statistical measures, such as overall prediction sensitivity (Sn), specificity (Sp),

accuracy (Ac) and Matthew’s correlation coefficient (MCC), were used to evaluate the model’s

fitness.

Sn ¼
TP

ðTP þ FNÞ
� 100 ð5Þ
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Sp ¼
TN

ðTN þ FPÞ
� 100 ð6Þ

Ac ¼
TP þ TN

ðTP þ TN þ FPþ FNÞ
� 100 ð7Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð8Þ

where True positives, false positives, true negatives, and false negatives are denoted by the

abbreviations TP, FP, TN and FN, respectively.

Applicability domain analysis

The boundaries within which the model may produce precise predictions for compounds

based on similarity towards the compounds on which the model was built are established by

the applicability domain (AD). Only those compounds are found inside the AD that match the

model’s parameters. In this study, the AD of the compounds from both the training and testing

sets were analyzed using the PCA bounding box.

Deployment of model as web-app

Finally, we deployed the developed RF model as a web-app with a view to enabling easy access

for the research community. The web-app named “Mpropred” was built in the Streamlit python

package (https://www.streamlit.io/) and deployed on the “Streamlit Share” cloud application

platform while the source-code is maintained in a GitHub repository. The web-app can accept

SMILES IDs and compound names in the form of a text (.txt) file and return the predicted

pIC50 values of the compounds.

Correlation of predicted bioactivity with binding affinity (Molecular

modeling and simulation)

We further tested the correlation of predicted bioactivity of compounds with their correspond-

ing binding affinity to Mpro via an integrated molecular modeling and simulation approach

with the utilization of our developed web-app. A new comprehensive marine natural products

database named CMNPD was used for this purpose [39]. As no previous research was pub-

lished on testing the efficacy of the compounds from this database against Mpro, we down-

loaded all the available 31,492 compounds from the database, collected their SMILES IDs, and

submitted them to the Mpropred web-app for bioactivity (pIC50) prediction. Later, the 3D

structures of the top compounds with high pIC50 values were generated using Open Babel and

prepared for molecular docking upon energy minimization using the MMFF94 forcefield. The

3D-structure of SARS-CoV-2 Mpro in complexed with an inhibitor N3 (PDB ID: 6LU7) was

used as receptor. Molecular docking was run using Autodock Vina with the same grid

box parameters covering the ligand binding residues that were used in our previous work

[40,41]. The exhaustiveness value was set to 100. The aim of this approach was to assess

whether the compounds with predicted high pIC50 bind to the protease with high affinity.

The top 5 complexes with high binding interaction with Mpro were subjected to MD simula-

tion to view their conformational changes. The GROningen MAchine for Chemical Simula-

tions (GROMACS) version 5.1.2 was utilized to perform the MD simulations with the
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parameters that we previously used [42,43]. The topologies of proteins and the ligands were

generated using the ‘pdb2gmx’ script and the PRODRG server, respectively [44]. The GRO-

MOS96 54a7 force field was used to get the energy minimized conformations of complexes

and, further, they were solvated in a square box with 1.0 nm of padding using a single point

charge (SPC) water model [45]. The net charges in the systems were neutralized using the

‘gmx genion’ script of GROMACS. The steepest descent algorithm was employed to minimize

energy of the complexes with< 10.0 kJ/mol force and a maximum of 50,000 steps. Later, NVT

and NPT ensembles were performed to equilibrate the systems, both at 300 K temperature and

1 atm for 100 picoseconds (ps). In the simulation, the thermostat and barostat were chosen as

the V-rescale and Parrinello-Rahman, respectively. The final production run was performed

for 100 nanoseconds (ns) in the HPC cluster of National Institute of Biotechnology, Savar,

Bangladesh at 300 K with a 2-fs time step. The simulations were accelerated using a “NVIDIA

GTX 3070” graphics processing unit (GPU). The root mean square deviation (RMSD), root

mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area

(SASA) and number of hydrogen bonds were analyzed to evaluate the stability of the com-

plexes after completion of the simulation. The GRACE software was used to plot the graphs.

We also calculated the binding free energies (MM/PBSA) using the ‘g_mmpbsa’ package of

GROMACS followed after the final production run [46]. The following equation is used to cal-

culate the binding energies in this method:

DGbinding ¼ Gcomplex � ðGprotein þ GligandÞ ð9Þ

where ΔGbinding is the overall binding energy of the complex, Gprotein is the free protein bind-

ing energy, and Gligand is the unbounded ligand binding energy.

Results

Chemical space analysis

The dataset that we used in this study is contained in S1 File including the SMILES ID of the 758

compounds with references. Exploration of the typical distinctions between active and inactive

compounds is one of the major motives for undertaking chemical space analysis. We visualized

the actives and inactives distribution as the function of molecular weight (MW) vs. the Ghose–

Crippen–Viswanadhan octanol–water partition coefficient to investigate the general chemical

space (ALogP). Then, using Lipinski’s rule-of-five (Ro5), we compared the actives and inactives.

Fig 2(A) depicts the MW as the function of ALogP. As can be seen, the majority of the com-

pounds are located in the MW range of 250–600 Da and have an ALogP of 0–6. (Fig 2B–2E)

includes visualization of data and the statistical analysis of the Ro5. The majority of the com-

pounds meet the Ro5 criteria, having a MW of 500 Da, nHBDon and nHBAcc and ALogP values

of<10. Furthermore, the findings of statistical analysis show a noteworthy difference among the

active and inactive compounds from employment of the Mann–Whitney U test (Table 1). The

ALogP values of inactive compounds were found to be higher than the active ones. The nHBDon

values of both the active and inactive compounds were similar, however the nHBAcc values of the

active compounds were found to be lower than the values of inactive ones.

Furthermore, the AD of the built model was determined using the MACCS fingerprints as

the starting input for PCA analysis, as shown in Fig 2(F). After balancing, the data set of 478

compounds was randomly divided into internal and external (80% and 20% respectively) sub-

sets. It’s important to note that the internal set (80%) is used as the training set for building

predictive models to predict on the external set. The external set’s chemical space distribution

was revealed to be well inside the internal set’s boundaries. As a result, the AD for the CSAR

model described herein appears to be well defined.
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QSAR modeling

To develop an interpretable QSAR model, we used fingerprints computed through the

PaDEL-Descriptor software. S2–S13 Files contains the computed 12 molecular fingerprints of

our dataset. The data set’s modelability score or MODI index sorts active compounds from

inactive compounds to determine the likelihood of obtaining the CSAR model. It was found

that all the fingerprint descriptors have a MODI value greater than 0.65, proving that the data

set is reliable for developing a classification model. Table 2 lists all of these fingerprints, as well

as their descriptions and MODI indices.

To distinguish between active and inactive Mpro inhibitors, we created the CSAR model

using the RF algorithm in this work. Table 3 displays the results of 100 independent runs with

Fig 2. Chemical space analysis (A), box plot of Lipinski’s rule-of five descriptors (B-E) and applicability domain analysis (F) for analyzed Mpro inhibitors.

https://doi.org/10.1371/journal.pone.0287179.g002

Table 1. Mann–Whitney U test results of various properties of the compounds.

Properties Mann–Whitney U test result P value

Molecular weight (MW) Different distribution 0.016141739

Octanol–water partition coefficient (AlogP) Different distribution 4.12E-10

Number of Hydrogen bond donors (nHBDon) Different distribution 0.033026915

Number of Hydrogen bond acceptors (nHBAcc) Same distribution 0.095506873

https://doi.org/10.1371/journal.pone.0287179.t001
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all the distinct categories of fingerprints, including internal validation test, 10-fold CV, and

external validation test. Best averaged values for the MACCS fingerprints were Ac 84.69% and

MCC 0.691, as determined by a 10-fold CV analysis. The external validation for the MACCS,

Klekota–Roth, and 2D atom pairs fingerprint descriptors, as shown in Table 3, was also better

than the rest of the descriptors. Taking into account the results from 10-fold CV as well as the

external validation tests, it is found that the MACCS fingerprint descriptors outperform the

other fingerprint classes. Fig 3 contains the plot of experimental vs predicted pIC50 values for

model that was constructed with MACCS fingerprint descriptors.

Interpretation of feature importance

The top-ranked MACCS fingerprints as obtained from the RF model are mentioned in

Table 4, comprised of fingerprints pertaining to different classes such as aromatic compounds,

nitrogen-containing compounds, oxygen-containing compounds, halogens etc.

Table 2. List of molecular fingerprints employed in the current study for representing chemical structures of the Mpro inhibitor dataset along with their MODI

indices.

Fingerprint Number

of features

Description MODI Index References

CDK 1,024 Fingerprint having length of 1,024, with a search depth of 8 0.77 [47]

CDK extended 1,024 Extends the CDK fingerprint with additional bits that describes ring features 0.78 [47]

CDK graph only 1,024 A special CDK version considering only the connectivity, not bond order 0.77 [47]

E-state 79 Atom types of electrotopological state 0.73 [48]

MACCS 166 MACCS keys defined binary representation of chemical features 0.79 [49]

PubChem 881 PubChem defined binary representation of substructures 0.75 [50]

Substructure 307 Presence of the SMARTS patterns for various functional groups 0.76 [51]

Substructure count 307 Count of the SMARTS patterns for various functional groups 0.79 [51]

Klekota–Roth 4,860 Presence of various chemical substructures 0.79 [52]

Klekota–Roth count 4,860 Count of various chemical substructures 0.75 [52]

2D atom pairs 780 Presence of atom pairs at various topological distances 0.79 [53]

2D atom pairs count 780 Count of atom pairs at different topological distances 0.73 [53]

https://doi.org/10.1371/journal.pone.0287179.t002

Table 3. Performance summary of CSAR models for predicting Mpro inhibitors of SARS-CoV-2.

Descriptor class Training set 10-fold CV set External set

Ac

(%)

RMSE Sn Sc MCC Ac (%) Sn Sc MCC Ac (%) Sn Sc MCC

CDK 99.79 0.1045 0.998 0.99 0.996 83.43 0.834 0.864 0.670 76.84 0.768 0.744 0.537

CDK extended 99.58 0.107 0.996 1 0.991 81.55 0.816 0.834 0.630 83.15 0.832 0.826 0.663

CDK graph only 99.16 0.1124 0.992 0.99 0.983 84.06 0.841 0.884 0.686 84.21 0.842 0.840 0.684

E-state 96.43 0.1247 0.964 0.96 0.927 88.46 0.885 0.861 0.766 80.00 0.800 0.714 0.613

MACCS 99.37 0.1057 0.994 0.99 0.987 84.69 0.847 0.884 0.691 89.47 0.895 0.733 0.790

PubChem 99.79 0.1449 0.998 0.995 0.996 80.08 0.801 0.810 0.599 75.78 0.758 0.717 0.515

Substructure 97.68 0.1702 0.977 0.97 0.953 78.57 0.786 0.745 0.560 78.94 0.789 0.711 0.580

Substructure count 99.78 0.144 0.998 0.995 0.996 79.41 0.794 0.750 0.577 82.1 0.821 0.777 0.641

Klekota-Roth 99.58 0.1349 0.996 0.99 0.991 83.64 0.836 0.796 0.664 83.15 0.832 0.782 0.664

Klekota-Roth count 99.58 0.137 0.996 0.99 0.991 81.97 0.82 0.796 0.631 87.36 0.874 0.869 0.747

2D atom pairs 96.64 0.1955 0.966 0.965 0.931 85.74 0.860 0.854 0.713 84.21 0.842 0.822 0.683

2D atom pairs count 99.79 0.1471 0.998 1 0.996 80.29 0.803 0.791 0.602 81.05 0.811 0.804 0.621

https://doi.org/10.1371/journal.pone.0287179.t003
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Fig 3. Plot showing experimental versus predicted pIC50 values for model constructed with MACCS fingerprint

descriptors.

https://doi.org/10.1371/journal.pone.0287179.g003

Table 4. List of the top-ranking MACCS fingerprints and their corresponding description.

Fingerprint SMARTS pattern Substructure description

MACCSFP16 (’[!#6;!#1]1~*~*~1’,0) Heteroatom + any 2 heteroatoms + linkage to first atom

MACCSFP23 (’[#7]~[#6](~[#8])~[#8]’,0) NC(O)O

MACCSFP82 (’*~[CH2]~[!#6;!#1;!H0]’,0) Any heavy atom + CH2-heteroatom + H

MACCSFP87 (’[F,Cl,Br,I]!@*@*’,0) Halogen (part of chain) + any heteroatom connected to another heteroatom with an aromatic bond

MACCSFP89 (’[#8]~*~*~*~[#8]’,0) O + any 2 heteroatoms + O

MACCSFP103 (’Cl’,0) Cl

MACCSFP107 (’[F,Cl,Br,I]~*(~*)~*’,0) Halogen + heteroatom (heteroatom) heteroatom

MACCSFP115 (’[CH3]~*~[CH2]~*’,0) CH3 + any heteroatom + CH2 + any heteroatom

MACCSFP125 (’?’,0) Aromatic Ring > 1

MACCSFP134 (’[F,Cl,Br,I]’,0) Halogen

MACCSFP145 (’*1~*~*~*~*~*~1’,1) 6-member ring > 1

https://doi.org/10.1371/journal.pone.0287179.t004
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Model deployment as the Mpropred web-app and assessment

In order to allow biologists or chemists without a computer science background to apply the

prediction model in their research, we deployed it as a public web-app known as the Mpropred

and is available at https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py. Briefly, a

guide on using the Mpropred web-app (Fig 4) is given below:

Step 1. A text file (.txt) should be created containing the SMILES ID of the desired com-

pounds space separated by a given name/ID (Fig 4A). SMILES IDs for any desired small com-

pounds can be acquired from various databases e.g. Drugbank [54], PubChem [55] or

ChemSpider [56] whereas custom compounds can be drawn on JSME structure editor [57] or

ChemDraw [58] so as to create the SMILES notation of unknown compounds.

Step 2. The above-mentioned URL should be typed into any web browser to view home-

page of the web-app (Fig 4B).

Step 3. The created text file should be uploaded to the web-app by clicking on the “Browse

files” button (Fig 4C).

Step 4. The process of prediction can be started upon clicking on the “Predict!” button (Fig 4C).

Step 5. The results are showed in a box found below the “Prediction results” heading (Fig

4D). Typically, only a few seconds is required for the web-app to process the task. The users

can also download the predicted results in the form of a CSV file by clicking the “Download

Predictions” button.

Binding affinity of CMNPD compounds with Mpro

Out of the various possible binding positions of each compound predicted by Autodock Vina,

the best one was picked considering the lowest binding energy. The molecular docking score

of top 200 CMNPD compounds with Mpro ranged from -4.3 Kcal/mol to -10 Kcal/mol shown

in S14 File while the result of top 5 compounds is presented in Table 5. The amino acid

Fig 4.

https://doi.org/10.1371/journal.pone.0287179.g004
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interactions of Mpro with the top 5 compounds was also identified. The lowest binding energy

was found for the compound CMNPD285. The CMNPD16005 is stabilized by a highest num-

ber of seven hydrogen bonds and four hydrophobic bonds while binding with the Mpro. The

second highest number of hydrogen bonds (6) were formed in the CMNPD12721 complex

which was also stabilized by seven hydrophobic bonds. All the 5 compounds formed stable

interaction with the active site residues and the catalytic dyad comprised of His41 and Cys145

residues of Mpro. The detailed interaction profile of the top 5 compounds including the N3

ligand with Mpro is explored in Fig 5.

Molecular dynamics (MD) simulation results

The RMSD of backbone atoms of the protein-ligand complexes were analyzed to view their

stability. It can be observed from Fig 6(A) that CMNPD16005 complex shows the lowest

Table 5. Predicted pIC50 and binding affinity score of top 5 compounds from CMNPD database against Mpro.

Compound Predicted pIC50 Docking score (Kcal/mol)

CMNPD285 6.46 -10.1

CMNPD20581 7.00 -9.6

CMNPD12721 6.49 -9.4

CMNPD16005 6.37 -9.4

CMNPD6083 6.43 -9.4

https://doi.org/10.1371/journal.pone.0287179.t005

Fig 5. Two-dimensional (2D) representation of molecular docking analysis between the SARS-CoV-2 Mpro and (A) N3, (B) CMNPD285, (C)

CMNPD20581, (D) CMNPD12721, (E) CMNPD16005, (F) CMNPD6083.

https://doi.org/10.1371/journal.pone.0287179.g005
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RMSD than all other complexes. Surprisingly, the RMSD of the 6LU7-N3 complex is a bit

higher than the CMNPD16005, which denotes the significant stability of CMNPD6083. The

RMSD of CMNPD285 complex reaches to *0.4 nm from 60 to 85 ns, but the value increases

after 85 ns and reaches to 0.3 nm. While viewing into the RMSD of CMNPD12721 complex, a

steady increase of RMSD is observed after 60 ns. The value is decreased eventually indicating

that CMNPD12721 might change the conformation of protein. Unlike the control and

CMNPD16005 complex, RMSD of the CMNPD6083 complex is the mostly stable. Particularly,

the CMNPD20581 complex shows the highest RMSD and higher degree of fluctuations

throughout the period.

As RMSF aids in understanding the region of the receptor that is fluctuated throughout

simulation, the flexibility of every residue is determined to gain a better understanding of how

ligand binding impacts receptor flexibility. It is understood from Fig 6(B) that the binding of

CMNPD12721 makes the Mpro most flexible in almost all areas in comparison to all other

complexes. Overall, the residues such as Glu47, Met49, Leu50, Tyr154, Ala194, Thr196,

Arg222, Asn277 and Phe305 are found flexible in case of both control and the ligand-bonded

complexes.

The Rg represents the compactness of protein-ligand complexes. The lesser the fluctuation

across the simulation period, the more compact the system is. The Rg of the 6LU7-N3 and

CMNPD285 complexes were found to be nearly stable in case of fluctuation consistency

throughout the simulation (Fig 6C). Besides, the Rg of CMNPD20581 was increased from 40

to 100 ns. The higher change of Rg might be due to protein folding, or distinct structural

changes. The remaining complexes showed decreased Rg values indicating greater rigidness

throughout the simulation period.

A higher SASA value implies that the protein volume is expanding, and a lower degree of

fluctuation is mostly expected over time. SASA can be altered by the binding of any molecule,

and this can have a significant impact on the receptor structure. The SASA values of all the

complexes including the control were found lowest during the simulation period suggesting

that the presence of these molecules potentially could limit protein expansion (Fig 6D).

Since intermolecular hydrogen bonds are known to contribute to conformational stability,

the number of total hydrogen bonds in the protein-ligand complexes were determined. Most

Fig 6. The Root-mean-square deviation (A), Root-mean-square fluctuation (B), Radius of gyration (C), Solvent accessible surface area (D) and hydrogen bond

(E) analysis of protein-ligand complexes from the molecular simulation of 100 ns at 300 K.

https://doi.org/10.1371/journal.pone.0287179.g006
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hydrogen bonds is observed for 6LU7-N3 complex, while the lowest number is observed in

CMNPD20581 complex over the simulation period (Fig 6E). The remaining complexes pos-

sessed a significant number of hydrogen bonds (ranging from 3 to 8) compared to the

CMNPD20581 complex.

Post simulation binding free energy results

Using the MM/PBSA method, the binding free energies of the last 20 ns with a 100 ps interval

was estimated from MD trajectories. The overall binding energies of all the complexes were

negative, showing greater binding (Table 6). The CMNPD16005 complex showed the lowest

binding free energy (-296.193 +/- 25.797 KJ/mol), indicating the most stable conformation of

the compound. The other complexes similarly had a low binding energy, suggesting that they

could be utilized as potential compounds. A comparative analysis of the binding free energies

of the complexes were illustrated in Fig 7(A). The results for the amino acid residue contribu-

tion in the binding of the compounds are shown in Fig 7(B). The binding of the compounds to

Mpro involved the notable contribution of leu27, Met49, Cys145, Leu167, Pro168, and Thr190

amino acid residues.

Discussion

The COVID-19 pandemic has caused severe damage on the health and daily lives of billions of

people around the world over the last two years. We’ve seen a race against time to vaccinate as

many people as possible in recent months; however, discrepancies in vaccine distribution

between nations, as well as new developing variants, pose an additional public health risk,

making it difficult to achieve full immunization [59]. Several vaccine formulations are now

available, assisting in the development of immunity [60–63]. Nonetheless, there is an increas-

ing interest in developing new anti-covid medications. The Mpro, which is responsible for the

cleavage of polypeptides during viral genome transcription, is a fascinating drug target in this

scenario.

In the current study, we aimed to develop a classification model that is able to determine

active from inactive compounds, and build a web-app for differentiating compounds for Mpro

with selectivity. We followed the Organisation for Economic Co-operation and Development

(OECD) recommendations to develop robust QSAR models for this purpose [64]. These

guidelines comprise of the following major points: (i) the data set should have a defined end-

point, (ii) it should use an explicit learning algorithm, (iii) there should be a defined applicabil-

ity domain of the built model, (iv) appropriate measurement of robustness and predictivity

and (v) interpretation of the important features of the QSAR model. We initially extracted a

dataset of 758 compounds from literature review and thresholds of<0.5 and>10 μM for iden-

tifying active compounds from the inactives in order to build a classification model. Upon

Table 6. Binding free energy calculations (MM/PBSA) for six protein-ligand complexes.

Complex Van der Waal energy

(kJ mol-1)

Electrostatic energy

(kJ mol-1)

Polar solvation energy

(kJ mol-1)

SASA energy

(kJ mol-1)

Binding energy

(kJ mol-1)

6LU7-N3 -224.851 +/- 18.949 -162.972 +/- 20.477 319.391 +/- 26.396 -25.515 +/ 1.955 -93.947 +/- 17.448

CMNPD285 -213.039 +/- 18.202 -169.860 +/- 27.622 342.256 +/- 36.546 -22.822 +/- 1.572 -63.465 +/- 22.132

CMNPD20581 -230.604 +/- 15.446 -7.170 +/- 3.876 91.983 +/- 11.163 -19.485 +/- 1.290 -165.277 +/- 14.898

CMNPD12721 -165.312 +/- 30.586 -120.472 +/- 37.904 278.799 +/- 47.652 -16.485 +/- 2.606 -23.469 +/- 26.819

CMNPD16005 -174.597 +/- 15.161 -599.461 +/- 34.553 499.675 +/- 37.798 -21.811 +/- 1.399 -296.193 +/- 25.797

CMNPD6083 -90.357 +/- 44.064 -28.842 +/- 20.343 91.190 +/- 55.611 -9.675 +/- 4.522 -37.684 +/- 59.575

https://doi.org/10.1371/journal.pone.0287179.t006
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excluding the intermediate sets of compounds, we obtained a curated set of 478 compounds

for detailed analysis. It is feasible to determine if a compound will exhibit the biological or

pharmacological property needed for an orally active medicine in humans utilizing the Lipins-

ki’s rule-of-five (Ro5) approach. These characteristics are based on the fact that almost all

drugs are relatively large lipophilic compounds with MW, ALogP, the number of hydrogen

hydrogen bond donors, and the number of hydrogen bond acceptors. We found that most of

the compounds meet the Ro5 criteria (Fig 2B–2E) and the findings of statistical analysis from

Mann–Whitney U test showed a significant difference between the active and inactive com-

pounds (Table 1). Also, the chemical space distribution shows that the external set lies well

within the areas of the internal set indicating that the AD is well defined for the developed

CSAR model found through PCA analysis results (Fig 2F).

Fig 7. Graphical illustration of the binding free energy (A) and per residue contribution plot of protein-ligand

complexes (B).

https://doi.org/10.1371/journal.pone.0287179.g007

PLOS ONE A Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists

PLOS ONE | https://doi.org/10.1371/journal.pone.0287179 June 23, 2023 15 / 21

https://doi.org/10.1371/journal.pone.0287179.g007
https://doi.org/10.1371/journal.pone.0287179


Furthermore, we used interpretable molecular fingerprints to develop interpretable QSAR

models and evaluated the model performances for all the used 12 fingerprints, following the

aforementioned guidelines. Also, it is necessary to identify and address the activity cliffs in the

data set using the data set’s modelability score or MODI index before the predictive model can

be developed. The data set was found to have a MODI value more than 0.65 for all the 12 fin-

gerprint descriptors, indicating that it is reliable for developing a classification model

(Table 2). Then we developed a QSAR model utilizing the random forest (RF) algorithm in

order for differentiation of the active and inactive inhibitors for Mpro. The best averaged values

determined by a 10-fold CV analysis was found for the MACCS fingerprint descriptors (Ac of

89%, Sn of 89%, Sc of 73%, and MCC of 79%) (Table 3). Similarly, Klekota–Roth and 2D atom

pairs descriptors performed well, with the second and third highest best values for Ac and

MCC, respectively, with Klekota–Roth fingerprints providing Ac and MCC values of 83.64%

and 0.664, respectively, and 2D atom pairs fingerprints providing Ac and MCC values of

85.74% and 0.713, respectively (Table 3). We found that the MACCS fingerprints were the best

choice for model interpretation based on the Ac values, MCC values, overall external and CV.

Later, an investigation of the important features on selected descriptors was conducted to

obtain a better view of the mechanistic details driving Mpro. The top-ranked MACCS descrip-

tors include descriptors of various classes such as aromatic compounds, nitrogen-containing

compounds, oxygen-containing compounds and halogens as obtained from the RF model

(Table 4). Mpro has been shown to be inhibited by a range of N-substituted isatin derivatives,

with the highest activity being associated with derivatives having carboxamide groups at C-5

of the isatin core (IC50 = 0.045–17.8 μM) [65]. Several oxygen atoms containing small com-

pounds were also found to inhibit Mpro and blocks viral transcription [66,67]. Kowit et al.

identified halogenated baicalein as a potent inhibitor of the Mpro and they confirmed its inhibi-

tory activity in an in vitro assay [68]. It was also found that the addition of halogen groups

improves binding strength by an order of magnitude [69]. Hossum et al. generated a pharma-

cophore model and found three acceptor features and one aromatic ring feature as common in

all the active hits including the co-crystallized ligand [70]. Thus, the top-ranked MACCS

descriptors are in significant correlation with the properties of laboratory validated potent

Mpro inhibitors.

In a normal predictive model life cycle, after models are validated and outcomes are shown

in the publications, the model’s utility is essentially over. In this way, the model has accom-

plished its goal to make predictions and offer useful insights into the underlying key character-

istics. We believed that deployment of the predictive model as a public web-app that allows

scientists and researchers, particularly in the fields of computational chemistry and biology, to

use the predictive insights from the model would significantly improve its value, while also

benefiting scientific communities, would greatly extend the model’s life cycle. We made the

web-app available at “Streamlit share” platform (Fig 4). In order to test the web-app to deter-

mine the correlation between predicted pIC50 and the binding affinity, we applied an inte-

grated molecular modeling approach. All the available 31,492 compounds were submitted to

the web-app to predict their pIC50 and it was found that top five compounds with highest

binding affinity to Mpro had pIC50 values ranging from 6.37 to 7 (Table 5). They formed suffi-

cient hydrogen bond and hydrophobic interactions and all of them formed stable interactions

with the catalytic dyad consisting of His41 and Cys145 (Fig 5).

Also, MD simulation results re-confirmed the stability of these five compounds with Mpro.

The RMSD plot indicates that all the five compounds are stable, with no unexpected rises in

RMSD values across the simulated time (Fig 6A). The complexes had fewer fluctuations in the

allowed range, according to the RMSF study (Fig 6B). The radius of gyration (Rg) of the pro-

tein-ligand complexes tended to be similar, indicating that every complex had a similar
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compactness behavior (Fig 6C). The SASA values showed that the volume of the complexes

did not substantially increase (Fig 6D). Throughout the simulation, a significant number of

hydrogen bonds were observed in all of the complexes, further elucidating their conforma-

tional stability (Fig 6E). Furthermore, the binding free energies for all of the complexes were

estimated using the MM/PBSA method, and the results suggest that the complexes have a

favorable binding energy with Mpro (Table 6 and Fig 7A). It can be determined from the per-

residue interaction energy profile that the leu27, Met49, Cys145, Leu167, Pro168, and Thr190

residues of Mpro played an important role in protein-ligand stability and contributed signifi-

cantly to the binding of the compounds (Fig 7B). As a result, these compounds may have the

potential to interfere with and block the activity of SARS-CoV-2 Mpro.

Thus, the web-app presented in the current study can be utilized for further research on

various compounds to get a view into their anti-Mpro activity. Also, upon evaluating the toxic-

ity of the five marine derived compounds by various toxicity assays, their inhibition efficacy

can be tested through in vitro laboratory validations.
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32. Wójcikowski M, Siedlecki P, Ballester PJ. Building Machine-Learning Scoring Functions for Structure-

Based Prediction of Intermolecular Binding Affinity. Methods Mol Biol. 2019; 2053: 1–12. https://doi.org/

10.1007/978-1-4939-9752-7_1 PMID: 31452095

33. Ballester PJ. Machine Learning for Molecular Modelling in Drug Design. Biomol 2019, Vol 9, Page 216.

2019; 9: 216. https://doi.org/10.3390/biom9060216 PMID: 31167503

34. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Classif Regres

Trees. 2017; 1–358. https://doi.org/10.1201/9781315139470/CLASSIFICATION-REGRESSION-

TREES-LEO-BREIMAN-JEROME-FRIEDMAN-RICHARD-OLSHEN-CHARLES-STONE

35. Breiman L. Random Forests. Mach Learn 2001 451. 2001; 45: 5–32. https://doi.org/10.1023/

A:1010933404324.

36. Liaw A, Wiener M. Classification and Regression by randomForest. 2002; 2. Available: http://www.stat.

berkeley.edu/.

37. Golbraikh A, Muratov E, Fourches D, Tropsha A. Data set modelability by QSAR. J Chem Inf Model.

2014; 54: 1–4. https://doi.org/10.1021/ci400572x PMID: 24251851

38. Malik AA, Phanus-umporn C, Schaduangrat N, Shoombuatong W, Isarankura-Na-Ayudhya C, Nanta-

senamat C. HCVpred: A web server for predicting the bioactivity of hepatitis C virus NS5B inhibitors. J

Comput Chem. 2020; 41: 1820–1834. https://doi.org/10.1002/jcc.26223 PMID: 32449536

39. Lyu C, Chen T, Qiang B, Liu N, Wang H, Zhang L, et al. CMNPD: a comprehensive marine natural prod-

ucts database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021; 49: D509–

D515. https://doi.org/10.1093/nar/gkaa763 PMID: 32986829

40. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring

function, efficient optimization and multithreading. J Comput Chem. 2010; 31: 455. https://doi.org/10.

1002/jcc.21334 PMID: 19499576

41. Ferdous N, Reza MN, Islam MS, Hossain Emon MT, Mohiuddin AKM, Hossain MU. Newly designed

analogues from SARS-CoV inhibitors mimicking the druggable properties against SARS-CoV-2 and its

novel variants. RSC Adv. 2021; 11: 31460–31476. https://doi.org/10.1039/d1ra04107j PMID: 35496863
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