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Abstract

Lifestyle interventions have been shown to prevent or delay the onset of diabetes; however,

inter-individual variability in responses to such interventions makes lifestyle recommenda-

tions challenging. We analyzed the Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1)

study data using a previously published mechanistic simulation model of type 2 diabetes

onset and progression to understand the causes of inter-individual variability and to optimize

dietary intervention strategies at an individual level. J-DOIT1, a large-scale lifestyle interven-

tion study, involved 2607 subjects with a 4.2-year median follow-up period. We selected 112

individuals from the J-DOIT1 study and calibrated the mechanistic model to each partici-

pant’s body weight and HbA1c time courses. We evaluated the relationship of physiological

(e.g., insulin sensitivity) and lifestyle (e.g., dietary intake) parameters with variability in out-

come. Finally, we used simulation analyses to predict individually optimized diets for weight

reduction. The model predicted individual body weight and HbA1c time courses with a mean

(±SD) prediction error of 1.0 kg (±1.2) and 0.14% (±0.18), respectively. Individuals with the

most and least improved biomarkers showed no significant differences in model-estimated

energy balance. A wide range of weight changes was observed for similar model-estimated

caloric changes, indicating that caloric balance alone may not be a good predictor of body

weight. The model suggests that a set of optimal diets exists to achieve a defined weight

reduction, and this set of diets is unique to each individual. Our diabetes model can simulate

changes in body weight and glycemic control as a result of lifestyle interventions. Moreover,

this model could help dieticians and physicians to optimize personalized nutritional strate-

gies according to their patients’ goals.
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Introduction

In the National Diabetes Statistics Report 2020 [1] from the Centers for Disease Control and

Prevention (CDC), it was estimated that about 34.2 million people (~10.5% of the US popula-

tion) are diabetic, accounting for $237 billion in direct medical expenses and $90 billion in

indirect medical costs. Globally, diabetes is now considered an epidemic, affecting more than

420 million individuals (~6% of the world’s population) [2] and can lead to various complica-

tions [3]. Although lifestyle factors, such as diet composition, exercise, and sleep play an

important role in type 2 diabetes (T2D) development [4–6], the response to similar lifestyle

changes varies dramatically among individuals [7]. This inter-individual variability could be

due to pathophysiological differences among individuals [8], differences in the physiological

response to dietary or exercise intervention [9], and other factors [7]. Therefore, it is desirable

to develop a framework for designing individualized strategies to achieve defined health goals

targeted toward preventing or delaying the onset of diabetes. However, a limited understand-

ing of the causes of inter-individual variability makes it challenging to design individualized

interventions, e.g., diet plans, for diabetes prevention.

Precision nutrition aims to prevent and manage chronic diseases by tailoring dietary inter-

ventions or recommendations considering the individual’s genetic background, metabolic

profile, gut microbiome, and environmental exposure. Currently, the field of precision nutri-

tion is faced with challenges such as the high cost of genomics and metabolomics technologies

and lacks robust and reproducible results in studies on precision nutrition [10, 11]. In contrast

to precision nutrition, there are general strategies that do not attempt to individualize dietary

recommendations, such as low-carbohydrate or low-fat diets. Several studies have shown the

effectiveness of both low-fat and low-carbohydrate diets for weight control and reduction of

cardiovascular risk [12–16]. The US Diabetes Prevention Program (DPP) [4] and Finnish Dia-

betes Prevention Study (DPS) [5] on lifestyle modifications (low-fat diets, lifestyle changes tar-

geting 5–7% weight loss, and exercise habits) have demonstrated a reduction in the burden of

T2D by up to 58% [4]. A meta-analysis [17] of data from 11 randomized controlled studies

(1369 participants) revealed that a low-carbohydrate diet can aid in weight reduction [18].

Moreover, a low-carbohydrate diet was also found to be more effective in glycemic control

compared to a low-fat diet in patients with T2D [19].

While generalized dietary strategies such as low-fat and low-carbohydrate diets have been

successful to varying degrees in various contexts, it is unclear whether and which approach

may be successful for a specific individual. Advances in precision nutrition are promising but

still under development and may not be cost-effective [10]. To address the need for individual-

ized dietary recommendations, we explore the use of a computational simulation modeling

tool in this work.

We previously developed a computational simulation model [20] of macronutrient metabo-

lism and T2D onset and progression and tested it using data from DPP. The impact of lifestyle

changes on endpoints including body weight and HbA1c were predicted at the individual level

over a period of 3 years for 315 subjects from the DPP study. The mean prediction error for

individual-level body weight and HbA1c changes over the three-year period was approxi-

mately 5% each. This suggests that the model can be used to predict and optimize individual-

level responses to lifestyle changes. To our knowledge, currently there are no studies on the

optimization of dietary strategies for preventing T2D using simulation modeling based on

physiological principles.

The Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1), a nationwide pragmatic clus-

ter-randomized controlled trial, showed that participants who received telephone calls more

frequently had a significantly reduced risk (41%) of T2D development [21, 22]. Herein, using
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the simulation model, we simulated and analyzed data from J-DOIT1 [22] to evaluate factors

affecting inter-individual variability in response to diet change, including endogenous (physio-

logical characteristics) and exogenous (e.g., macronutrient intake) factors. The model ade-

quately described individual-level body weight and HbA1c dynamics over time as observed in

J-DOIT1. We also demonstrate how the simulation approach may be used to optimize diet

therapy for individuals to achieve specific health goals.

Materials and methods

Simulation model

A previously developed computational simulation model of T2D was used [20]. This computa-

tional simulation model of T2D, referred to as the “model” henceforth, is based on the physio-

logical mechanisms underlying the onset and progression of T2D. Important physiological

(endogenous) and lifestyle (exogenous) factors involved in T2D are represented in the model.

Exogenous factors influencing T2D are represented through dietary intake of macronutrients,

i.e., carbohydrates, fats, and proteins, as well as energy expenditure through physical activity.

Endogenous or physiological drivers of T2D are represented mechanistically in the model

through physiological processes occurring at the cellular, tissue, and whole-body levels.

At a high level, the model mathematically represents the dynamics of dietary intake of car-

bohydrates, fats, and proteins, their breakdown and transportation into major tissue compart-

ments through the bloodstream, and the interconversion of metabolic species into stored and

active forms (Fig 1). A module representing the pancreas regulates insulin secretion into the

bloodstream. Cellular processes modulating the activation of insulin receptors by insulin drive

the development of insulin resistance, which in turn controls several processes, including glu-

cose uptake by tissues. Oxidation of macronutrients generates ATP, which provides energy for

basal metabolism and physical activity. Changes in caloric intake, macronutrient composition,

and/or physical activity levels have a cascading impact on all components of the model, leading

to changes in key outputs, such as body weight, plasma glucose, and HbA1c.

Details regarding the development and validation of the model have been described previously

[20]. For the analysis presented here, the model described in the original publication was used.

Digital twins

The computational simulation model comprises several numerical parameters that can be

adjusted to fit model outputs, such as body weight and HbA1c trends over time, to the

observed data of a specific individual. A model that has been calibrated to represent the histori-

cal data of a specific individual can be considered a “digital twin” of the individual. The digital

twin can be used to simulate experiments with various lifestyle modifications quickly and

safely in a virtual in silico environment. The model’s ability to use digital twins to predict body

weight and HbA1c was previously tested using individual-level data from DPP [4, 20]. The

concept of digital twins was applied in the work presented here. Digital twins were created for

individuals selected from the J-DOIT1 study by calibrating instances of the model using a pre-

viously described method [20]. The digital twins were then used to simulate various scenarios,

e.g., effect of variation in fat and carbohydrate composition of diet, to understand and analyze

the variability in individual responses to interventions.

J-DOIT1 study

The Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1) is a pragmatic, cluster-random-

ized, controlled trial conducted in Japan. The trial investigated the impact of lifestyle coaching
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delivered through telephone calls on T2D development in high-risk individuals in a primary

healthcare setting [21]. A total of 2607 individuals (1240 in the intervention arm and 1367 in

the control (placebo) arm) completed the study with a median follow-up period of 4.2 years

[22]. Participants in the intervention arm received lifestyle support telephone calls from

healthcare providers over a 1-year period. The intervention arm was further divided into three

lifestyle support centers designated as centers A, B, and C. During the 1-year period for which

telephone-delivered lifestyle support was provided, participants in centers A, B, and C received

3, 6, and 10 support calls, respectively. Thus, centers A, B, and C can be considered as low-,

medium-, and high-support call frequency groups, respectively. The control arm did not

receive any support through telephone but received periodic newsletters on diabetes and dia-

betes prevention. The participants were followed-up annually. The onset of T2D status was

assessed as the primary outcome, and the other outcomes included body weight and HbA1c.

The detailed study design, including patient recruitment, inclusion/exclusion criteria, partici-

pants’ consent and ethics committee approval of J-DOIT1 study can be found in the original

study article [21].

Fig 1. Simulation model. Schematic representing a previously developed and validated mechanistic model of diabetes

onset and progression. (Adapted from [20]).

https://doi.org/10.1371/journal.pone.0287069.g001
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Selection of the analysis dataset

A total of 112 unique J-DOIT study participants were selected for the individual-level analysis

using the following algorithm (Fig 2). For each subject in the J-DOIT1 dataset, the percentage

change in the body weight and HbA1c level from baseline to the end of the intervention was

calculated. The degree of response for each subject was defined as the sum of the percentage

decrease in the body weight and HbA1c. Individuals with the largest collective decrease in

body weight and HbA1c were considered as the “best responders” while those with the least

decrease or greatest increase were considered as the “worst responders.” Using this definition,

29 best responders were selected from the intervention arm, with 10 each drawn from the low-

and high-support call frequency groups, and 9 from the medium-support call frequency group

(corresponding to centers A, C, and B, respectively, as described above). Similarly, 30 worst

responders were selected from the intervention arm, with 10 each from the low-, medium-,

and high-support call frequency groups. Thus, 59 subjects were selected from the intervention

arm with nearly equal representation of the best and worst responders from all three call fre-

quency groups.

Subsequently, a baseline-matched subject from the control arm was identified for each of

the 59 subjects selected from the intervention arm. The method used to identify baseline-

matched subjects is described next. Sex, height, baseline age, baseline body weight, and base-

line HbA1c levels of each subject from the intervention arm were selected as the reference val-

ues. Matched subjects in the control arm with the same sex, height within ±3 cm, baseline age

within ±2 years, baseline body weight within ±4 kg, and baseline HbA1c within ±0.3% of the

reference value were selected. Of the subjects from the control arm that matched these criteria,

the subject with the smallest difference in body weight and HbA1c level was selected as the

baseline-matched pair of the intervention subject. If a matched subject from the control arm

could not be found for a subject from the intervention arm, the intervention arm subject was

dropped and another intervention subject was selected.

Fig 2. Subject selection and study design. 112 unique subjects were selected for individual-level analysis. 59 subjects

were selected from the intervention arm of J-DOIT1 with a nearly equal distribution over three call frequency groups

and two response categories within each call frequency group. 53 subjects from the control arm were found to be the

best baseline-matched pairs of the 59 subjects from the intervention arm.

https://doi.org/10.1371/journal.pone.0287069.g002
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Using these criteria, 53 unique subjects were selected from the control arm. The number of

unique subjects selected from the control arm was less than 59 because 6 control subjects were

baseline-matched to 2 intervention subjects each. The 53 matched subjects from the control

arm were used as the training dataset, and the other 59 from the intervention arm were used to

test the model predictions. Further details of the training and test processes are described

below.

Model calibration and testing

The model consists of two types of parameters: 1) physiological parameters or parameters rep-

resenting endogenous processes that are inherent to the individual and do not change over the

course of the simulation; and 2) lifestyle parameters, which can change dynamically over time

because of interventions.

Calibration of the training dataset. For the training dataset, a subset of physiological

parameters was calibrated in addition to lifestyle parameters (Table 1) to fit the model’s pre-

dicted body weight and HbA1c levels to each subject’s measured body weight and HbA1c time

course over the duration of the J-DOIT1 study. While the physiological parameters were con-

stant for an individual by design, step changes in lifestyle were allowed at discrete time points

over the duration of the simulation. The simulation was stopped at discrete time points, life-

style parameters were changed, and the simulation continued using the final state of the last

segment as the initial state of the new segment. The discrete time points when the simulation

start-stop occurs were determined empirically by manually observing the trends in body

weight and HbA1c. Whenever a previously decreasing trend in either body weight or HbA1c

was followed by an increasing trend or vice-versa, a lifestyle change was introduced, assuming

that such changes in body weight or HbA1c could only be driven by lifestyle factors. An effort

was made to explain the entire trajectory of body weight and HbA1c with the minimum num-

ber of discrete lifestyle changes. A maximum of 4 such step changes to lifestyle were permitted

over the entire follow-up period of approximately 4 years. The set of physiological and lifestyle

parameters that resulted in the best achievable fit to the measured body weight and HbA1c

Table 1. Model parameters calibrated to fit individual subject time-course data.

Category Parameter fit to individual subject Parameter symbol3

Physiology parameters1 Basal carbohydrate intake requirement to maintain steady state body weight CI0
Basal fat intake requirement to maintain steady state body weight FI0
Maximal HbA1c concentration CmaxBLDhba1c

Initial HbA1c concentration CBLDhba1cðt ¼ 0Þ

Maximal inhibitory effect of free fatty acids (FFA) on insulin signaling αdep_ffa
FFA concentration for half maximal inhibition of insulin signaling kdep_ffa
Extent of pancreatic beta cell damage due to glucotoxicity, lipotoxicity, and inflammation αbc,s_ros

Historical lifestyle parameters1 Carbohydrate intake prior to study start CI
Fat intake prior to study start FI

Lifestyle parameters during the study2 Carbohydrate intake at various time points during the study CI1,CI2,. . .,CI4
Fat intake at various time points during the study FI1,FI2,. . .,FI4
Change in physical activity at various time points during the study ΔPA1,. . .,ΔPA4

Time points at which carbohydrate intake, fat intake, and physical activity change during the study T1,T2,. . .,T4

1Calibrated only for baseline-matched subjects from the control group, i.e., training dataset.
2Calibrated for all subjects.
3Symbols as used in the original model [20].

https://doi.org/10.1371/journal.pone.0287069.t001

PLOS ONE Optimizing prediabetes nutrition with mechanistic computational modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0287069 November 30, 2023 6 / 21

https://doi.org/10.1371/journal.pone.0287069.t001
https://doi.org/10.1371/journal.pone.0287069


time course of an individual was accepted as the parameter set for that individual. As a result

of this process, each subject from the training set had a unique combination of physiological

and lifestyle parameters that defined the digital twin of that subject.

Calibration of the test dataset. As described above, the training dataset was obtained by

baseline-matching the test data. The baseline-matched pairs comprising one subject each from

the training and test datasets were of the same age and sex and had similar body weight, height,

body mass index, and HbA1c at baseline. Because of this similarity in their baseline attributes,

we assumed that the physiological parameters, as well as carbohydrate and fat intake prior to

the start of the study were identical for both subjects in a baseline-matched pair. The implica-

tion of this assumption is that the physiological parameters of each test subject are predeter-

mined by their corresponding match from the training dataset; any differences in the observed

body weight and HbA1c time courses of the pair during the J-DOIT1 study could be explained

only by differences in their lifestyles, such as carbohydrate and fat intake and exercise changes

during the study. This limits the range of responses that can be achieved for individuals in the

test dataset because lifestyle is the only variable input to the model and serves as a mechanism

to test the model’s ability to forecast individual responses. For the test dataset, only step

changes in the category “Lifestyle parameters during the study” (Table 1) were allowed. The

time points at which these step changes in lifestyle were introduced in the simulation were

determined, as explained above in “Calibration of the training dataset” section, empirically

based on trends in body weight and HbA1c. Changes in lifestyle parameters were calibrated

for each test subject to determine the best fit to individual time courses of body weight and

duration over the duration of the J-DOIT1 study. Across all training and test subjects, the

median (range) of the number of discrete lifestyle changes required to fit the body weight and

HbA1c time courses for each subject was 2.5 (1–4). 10 subjects required only 1 lifestyle change,

46 required 2, 49 required 3, and 7 subjects had 4 lifestyle changes. A median (range) of 6 (4–

6) body weight measurements and 6 (3–6) HbA1c measurements were available for each sub-

ject to calibrate the lifestyle change parameters. More than 75% of all subjects in the training

and test datasets had 6 measurements each for body weight and HbA1c.

Parameter calibrations were performed using the differential evolution algorithm [23] and

the objective function to be minimized was the sum of the squared errors over all time points

for body weight and HbA1c. As described in the “Calibration of the training dataset” section,

up to 4 lifestyle changes were applied to each subject in discrete segment over the entire fol-

low-up period. During the fitting process, all lifestyle changes for a particular subject were

allowed to change simultaneously rather than fitting each segment separately.

For calibration, each data point was assumed to have an inherent measurement error, and

the objective function was designed to consider this error. Body weight was assumed to carry a

measurement error of ±1 kg based on previous studies on imprecision in the measurement of

body weight using weighing scales [24, 25]. HbA1c was assumed to have a measurement error

of ±0.15 percentage points, which is approximately 3% of the median HbA1c value of 5.5%

across all data points in this analysis. A 3% error is well within the ±5% measurement error

considered acceptable by the National Glycohemoglobin Standardization Program (NGSP)

[26]. Based on a study of Japanese individuals, the measurement error for HbA1c was esti-

mated to be 0.17 percentage points [27].

The following objective function was used for parameter estimation for each subject:

F yð Þ ¼
X

i

X

j

ðyijðyÞ � xijÞ
2

e2
i

where θ represents the model parameter vector, i is either body weight or HbA1c and j
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represents all the time points at which biomarker i is measured for the subject. yij is the model

simulation output of biomarker i at time j whereas xij is the observed value. ei is the measure-

ment error associated with biomarker i, such that ebody weight = 1 kg and eHbA1c = 0.15%.

Simulations

To test the effects of dietary changes and determine the optimal diet, simulations were per-

formed using the calibrated digital twins of the study subjects. Starting from the baseline age

(age at the start of J-DOIT1) of a digital twin, a random step change in carbohydrate and fat

intake was introduced. Keeping all other parameters constant, the body weight and HbA1c

time-courses were simulated with diet change. This process was repeated 2000 times for each

digital twin using a Monte Carlo approach with macronutrient changes sampled from a uni-

form random distribution in the range baseline value– 25% to baseline value + 25%. The 2000

simulations and parameter samples were independent of each other. As only 3 parameters

were sampled (change in carbohydrate, fat, and protein intake), a sample size of 2000 was con-

sidered appropriate to reasonably cover the parameter space along all three dimensions within

the ±25% cube. Simulation outputs were recorded and analyzed.

Results

The model successfully captures individual-level dynamics of body weight

and HbA1c

The model was fit to individual time-courses of body weight and HbA1c by calibrating both

physiological and lifestyle parameters (Table 1) for the training dataset and only lifestyle

parameters for the test dataset, as described in the Materials and methods section. Results

showed that individual-level changes in the body weight and HbA1c over time were captured

well by the model for both the training and test datasets (Fig 3, S1–S6 Figs). Fig 3 is a selected

example of model training and test results. Prediction accuracy varies by subject and time

point, and in some cases, it is larger than that represented in Fig 3. In one extreme example,

the body weight of subject Test-005 was overpredicted by nearly 10 kg at the last time point

occurring nearly 5 years from baseline (S1 Fig). In another instance, serum HbA1c was under-

predicted by nearly 0.5 percentage points for subject Test-029 at the last measurement (S2

Fig). For a comprehensive visual comparison of the predicted values with the measured values

across all time points, refer to S1-S7 Figs. Despite these extreme examples, overall the model

performs well at predicting the measured values. The prediction error (mean [±SD]) across all

data points in the training dataset for body weight was 0.7 kg (±0.8) and for HbA1c it was

0.08% (±0.08). In terms of percentage error (mean [±SD]), body weight of subjects in the test

dataset was predicted with an error of 1.1% (±1.0) and HbA1c with an error of 1.4% (±1.4) rel-

ative to the actual measurement (Table 2).

Changes in caloric balance alone do not fully explain the variability in

individual response

After calibration and testing against individual time-course data, the model was used to esti-

mate the likely caloric change per individual that led to the observed change in body weight.

Calibrated digital twins were used to estimate the caloric change for each individual due to

modifications in diet and exercise during the period between baseline and first follow-up in

the intervention period of the J-DOIT1 study (median duration 1 year). The total caloric

change (decrease or increase) was defined as the sum of changes in caloric intake due to diet

change and caloric expenditure due to exercise. Changes in daily calories from baseline to the
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first post-baseline follow-up were estimated for each individual using the calibrated model

parameters. The measured change in body weight during the same interval (baseline to the

first follow-up) was also calculated. The model-estimated caloric change versus the observed

weight change from baseline to the first follow-up is shown in Fig 4. The measured change in

body weight generally increased with the model-predicted increase in caloric intake, with a

Pearson correlation coefficient of 0.82 (Fig 4). The model predicted that similar caloric

changes could lead to a wide range of responses in terms of body weight changes across indi-

viduals, as indicated by the spread of the points along the y-axis in Fig 4. When a linear regres-

sion model was fitted to the data (solid gray line in Fig 4), the residual error ranged from -4.6

kg to +7.0 kg with a residual standard error of 2.5 kg, indicating a relatively wide spread of

body weights around the line of best fit. Similar trends were observed for HbA1c levels

(S8 Fig).

We also explored the question of whether the degree of response (change in body weight

and HbA1c) could be related to endogenous characteristics (physiology parameters defined in

Table 1) of subjects. Our hypothesis was that certain ranges or values or combinations of the

physiological model parameters (model parameters other than lifestyle factors) could make

weight loss easier, and that such trends would be observable through correlation of certain

parameters with the response. None of the calibrated physiology parameters, either alone or in

Fig 3. An example of model prediction for a pair of baseline-matched training and test subjects. Panels on the left-

hand side represent a subject from the training data set. Panels on the right-hand side show the baseline-matched

subject from the test data set. The test subject is from the high call frequency group and was classified in the best

responder category. The error bars around the measured values are assumed measurement errors, ±1 kg for body

weight and ±0.15 points for HbA1c, as described under model calibration in the Materials and methods section.

https://doi.org/10.1371/journal.pone.0287069.g003
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linear combinations, were found to be correlated with changes in body weight or HbA1c. Simi-

lar hypotheses have been tested in clinical studies [28] and corroborate our modeling analysis.

Diet therapy is predicted to have maximal effectiveness when optimized

individually

Simulations were performed to determine the “optimal” diet for achieving a 5–7% reduction

in body weight over a period corresponding to the duration between baseline and 1-year post-

intervention. Digital twins of the J-DOIT1 study subjects from the test dataset (N = 59) were

simulated with various random modifications to their carbohydrate, fat, and protein intake.

Each macronutrient was sampled from a uniform distribution within ±25% of its baseline

value for the digital twin, which resulted in a total caloric change distribution spanning the

range ±25% (S9 Fig). Further details of the method are provided under the sub-heading Simu-

lations of the Materials and methods section. Diets that led to a 5–7% reduction in body weight

were selected as optimal diets. Using this approach, optimal diets could be identified for 48 of

the 59 subjects; the remaining 11 subjects probably needed diet changes beyond the ±25%

range simulated. Of the 48 subjects for whom optimal diets could be identified, one subject

had only a single diet change within the sampled range of ±25% (24% reduction in carbohy-

drate and 25% reduction in fat intake) that led to a 5–7% reduction in body weight. For all

other subjects (N = 47), sets of various diet compositions, as opposed to a single optimal diet,

led to the target weight reduction of 5–7% (a range of 3 to 668 diet compositions for each sub-

ject with a median of 186 diet compositions). Furthermore, this set of diets was unique to each

participant. A comparison of the carbohydrate and fat distributions of the optimal diets for

two subjects is shown as an example in Fig 5. Changes in protein intake were not correlated

with weight changes (S10 Fig). This is consistent with previous studies on the effects of changes

in protein intake [29], which suggest that altering protein intake by itself does not significantly

affect body weight. Given the limited impact of protein change, further analysis was limited to

carbohydrates and fats.

Table 2. Model prediction errors. Prediction errors are shown after grouping subjects using various criteria.

Group Number of unique

subjects

Biomarker Absolute prediction error Mean

(±SD)

Percentage prediction error Mean (±SD) [% of

measured]

All subjects 112 Body

weight

1.0 kg (±1.2) 1.5 (±1.6)

HbA1c 0.14% (±0.18) 2.5 (±3.4)

Control (Training

data)

53 Body

weight

0.7 kg (±0.8) 1.1 (±1.0)

HbA1c 0.08% (±0.08) 1.4 (±1.4)

Intervention

(Training data)

59 Body

weight

1.3 kg (±1.4) 1.8 (±1.9)

HbA1c 0.18% (±0.23) 3.4 (±4.2)

Best responders 29 Body

weight

1.6 kg (±1.8) 2.4 (±2.3)

HbA1c 0.20% (±0.26) 3.6 (±4.9)

Worst responders 30 Body

weight

1.0 kg (±0.9) 1.4 (±1.2)

HbA1c 0.17% (±0.19) 3.1 (±3.4)

The prediction error (mean [±SD]) across all data points in the test dataset for body weight was 1.3 kg (±1.4), and for HbA1c it was 0.18% (±0.23). In terms of

percentage error, body weight was predicted for the test dataset with an error of 1.8% (±1.9) and HbA1c with an error of 3.4% (±4.2) relative to the measured value

(Table 2).

https://doi.org/10.1371/journal.pone.0287069.t002
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The two subjects presented in Fig 5 show qualitatively different distributions of optimal

diet changes. For subject ID Test-041, carbohydrate intake could change over a wide range of

approximately -25% to +25% but fat change needed to be more narrowly restricted between

approximately -25% to -10%. Contrary to this, for subject ID Test-044, fat change could range

between -25% to +25% but carbohydrate change had to be restricted to a narrower range

(-25% to -5%). In an alternative interpretation, subject ID Test-041 is predicted to be more

sensitive to fat change than to carbohydrate change and should more precisely control fat

intake to achieve the targeted weight loss. Subject ID Test-044, on the other hand, is predicted

to be more sensitive to carbohydrate change; this subject should pay more attention to regulat-

ing carbohydrate intake but can be less particular about controlling fat intake.

In addition to the 5–7% body weight reduction for subject Test-041 (Fig 5), an additional

target of 0.1–0.2 point reduction in HbA1c was added. Applying this additional target led to

further refinement of the optimal diets and a subset of the original optimal diets was predicted

to simultaneously achieve both targets (Fig 6).

Fig 4. Model-predicted caloric change versus weight change for subjects in the intervention arm. The measured

change in body weight from baseline to the first follow-up during the J-DOIT1 intervention (median duration 1 year)

is plotted on the y-axis for subjects in the intervention arm. The x-axis shows model-estimated change in calories per

day due to both diet and exercise changes averaged over the same period. The gray number in each quadrant is the

fraction of data points in that quadrant. The data points fit a linear regression model (solid gray line) with r2 = 0.67 and

a residual standard error of 2.5 kg, indicating a relatively wide spread around the line of best fit. Best and worst

responders were defined based on the total percent change in body weight and HbA1c one year after the end of the

J-DOIT1 intervention.

https://doi.org/10.1371/journal.pone.0287069.g004
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Individuals show differential sensitivity to carbohydrate and fat changes

The simulation-based diet optimization results were used to explore whether all subjects could

be classified into carbohydrate or fat sensitive categories. After finding the set of optimal diets

for each subject using simulations as described above, lines of best fit were obtained for each

subject’s (N = 47 subjects with>1 optimal diets) predicted set of optimal diet changes (Fig 7).

These lines approximate the predicted optimal diet change patterns for each subject and are a

reasonable simplification for easy visualization and analysis of the diet patterns. All lines had

negative slopes implying that if a subject were to shift to a smaller reduction in carbohydrate

intake, it could be compensated by a larger reduction in fat intake, and vice versa. Additionally,

the shifts would have to move along the line, so the magnitude of compensation required was

different for each subject as determined by the slope of the line.

For a hypothetical subject whose line of best fit has slope of -1 (angle of -45˚ with the x-

axis), a downward (upward) shift of X% in carbohydrate change could be compensated by a

corresponding upward (downward) shift of exactly X% in fat change. Therefore, a subject with

a slope of exactly -1 can be considered to be equally sensitive to changes in carbohydrate and

fat intake. As the line becomes increasingly horizontal (angle with the x-axis between -45˚ and

0˚, slope between -1 and 0), the sensitivity regime shifts towards greater sensitivity to fat

Fig 5. Optimal changes in carbohydrate and fat intake for targeted weight reduction. Monte Carlo simulations

identified a unique set of “optimal” carbohydrate and fat changes required for each subject that were predicted to lead

to a targeted 5–7% reduction in body weight.

https://doi.org/10.1371/journal.pone.0287069.g005
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change because for a nearly horizontal line, fat change must be tightly controlled while carbo-

hydrate change can vary widely. Conversely, as the line becomes more vertical (angle with the

x-axis between -90˚ and -45˚, slope < -1), it indicates a greater sensitivity to carbohydrate

change. Based on these concepts, individuals were classified as carbohydrate sensitive (slope <

-1) or fat sensitive based on the slopes of their lines (slope > -1) (Fig 7). A total of 29 (62%)

subjects were identified as has having a greater sensitivity to fat change and 18 (38%) as being

more sensitive to carbohydrate changes based on the sensitivity criteria defined above.

Discussion

Diet therapy can be an effective non-pharmacological method to delay or prevent the onset of

T2D; however, diet therapy has not been shown to be consistently effective [4–6, 22]. The lack

of effectiveness of diet therapy could be due to personalized dietary requirements [7–9]. Previ-

ous studies showed that individuals receiving an identical standardized low-energy diet show

variability in their weight trajectories [30]. Metabolic heterogeneity among individuals could

be due to genetic and epigenetic factors, microbiome, lifestyle, and environmental exposure

[31]. Personalized nutrition is a growing area of focus for both patients and experts.

Fig 6. Including additional biomarker targets further narrows the predicted optimal diets. The subset (pink

circles) of optimal diets identified for subject Test-041 (Fig 5) to achieve a 5–7% reduction in body weight (gray and

pink circles) was predicted to additionally reduce HbA1c by 0.1–0.2%.

https://doi.org/10.1371/journal.pone.0287069.g006
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Optimizing diet change to individual physiological responses could maximize the impact of

lifestyle intervention; however, model-based tools that can automate customization of inter-

ventions at the individual level, particularly with a view to achieving long-term health goals,

are lacking. We demonstrate, for the first time to our knowledge, the application of a computa-

tional simulation model based on physiological mechanisms as a tool to optimize diets for pre-

diabetic individuals with long-term health goals in mind. There are other examples that are

less mechanistic and more data-driven, e.g., methods based on machine learning approaches,

or those that address shorter-term changes in biomarkers [32–34]. The approach presented in

this paper distinguishes itself by using an explainable, mechanistic model and focusing on opti-

mizing diet for long-term goals over multiple months to years.

The emergence of digital twins and digital representation of objects or individuals provides

a new opportunity to tailor individualized interventions [35]. We used a previously developed

and tested mechanistic simulation model of human physiological processes involved in the

onset and progression of diabetes to create digital twins of a subset of pre-diabetic subjects

from the J-DOIT1 study. In the default setting, the parameters of the model are calibrated to

Fig 7. Optimal diet trajectories and relative sensitivity to macronutrients. A line was fit to the set of optimal diets

predicted for each subject. The slopes of the lines were used to classify subjects into carbohydrate or fat sensitive

categories. Lines that tend to be more horizontal (green lines; slope> -1) indicate individuals with greater sensitivity to

fat change. Lines that tend to be more vertical (pink lines; slope< -1) indicate individuals with greater sensitivity to

carbohydrate change.

https://doi.org/10.1371/journal.pone.0287069.g007

PLOS ONE Optimizing prediabetes nutrition with mechanistic computational modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0287069 November 30, 2023 14 / 21

https://doi.org/10.1371/journal.pone.0287069.g007
https://doi.org/10.1371/journal.pone.0287069


represent a “typical” individual. When individual-level time-course data, such as body weight

and HbA1c level over time are available, selected parameters of the model can be calibrated to

fit the model to an individual subject’s data, which leads to a model customized to the subject,

i.e., a digital twin of the individual. The digital twin provides a platform to conduct computa-

tional experiments quickly and safely in an in silico environment [36]. Digital twins were uti-

lized in this study to explore and optimize lifestyle recommendations through simulation.

We leveraged the simulation model to understand the inter-individual variability in

responses to lifestyle interventions in the J-DOIT1 study. The selected individuals from the

intervention arm were baseline matched with the participants from the control arm of the

study. The baseline-matched individuals from the control arm formed the training set

(n = 53), and individuals selected from the intervention arm comprised the test dataset

(n = 59). Each subject from the training set was calibrated using the simulation model to gen-

erate a unique combination of physiological and lifestyle parameters that defined the digital

twin of that subject. A key assumption in our approach was that individuals with similar base-

line characteristics (age, sex, height, weight, and HbA1c) have similar physiological parameters

and historical lifestyle. Therefore, physiological, and historical lifestyle parameters were repli-

cated for the test subjects within each baseline-matched train-test pair. The implication of this

assumption is that two individuals who are sufficiently similar at a given point in time are

taken to have reached that state through a similar trajectory. Moreover, their future responses

to similar lifestyle changes are also implicitly assumed to be similar. In reality, it is possible

that two individuals with similar baseline characteristics achieve that state through very dis-

similar paths and respond differently to similar interventions. However, this approach is not

fundamentally dissimilar from clinical studies that use baseline-matched study arms to com-

pare treatment effects. In the absence of rich historical data about the study subjects, this is a

reasonable simplifying assumption to make. From the modeling perspective, this assumption

reduced the number of parameters that needed to be estimated for the test subjects and made

parameter estimation more tractable. The digital twins generated under this assumption, cap-

tured the individual-level dynamics of the body weight with an error of 1.1% (±1.0) and

HbA1c levels with an error of 1.4% (±1.4) relative to the actual measurements over a follow-up

period of approximately 4 years.

The goodness of fit metrics presented above were calculated across best and worst respond-

ers. In the interval between study baseline and first follow-up, which corresponds with the

duration of active intervention in the J-DOIT1 study, a wide range of weight dynamics was

observed. Some individuals lost nearly 10 kg of body weight while some others gained upward

of 5 kg (Fig 4). Other individuals were distributed fairly regularly between these extremes. The

goodness of fit metrics indicate that the model captured not only the extreme ends of the

response, but also the degrees of response in between. The model captured the dynamics of the

period up to the first follow-up, which was generally the period with the largest magnitude of

change in body weight and HbA1c for most individuals. Furthermore, the long-term follow-

up period of an additional 3 years (approximately) after the first intervention, where the

changes were often gradual and less pronounced, were also captured well by the model. Collec-

tively, these observations illustrate that the model performed well at predicting large and small

body weight and HbA1c changes over durations of 4 years or more.

The digital twins enabled the exploration of inter-individual variability in response to diet

intervention. The digital twins created using the model were used to estimate the actual life-

style change in terms of total caloric intake for all individuals in the training and testing data-

sets. We observed that the measured change in body weight generally increased with the

model-predicted increase in daily caloric intake; however, similar changes in daily calories

were predicted to result in a relatively wide band of weight change (approximately ±2.5 kg
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around the line of best fit, or a range of 5 kg) (Fig 4). Considering that the model predicts body

weight within a ±1.0 kg range, ±2.5 kg is a relatively wide band of weight change suggesting

that changes in calories alone may not be sufficient to precisely predict individual-level

changes in body weight. This inter-individual variability in response despite very similar calo-

ric change is reflective of the differences in the underlying physiological parameters of the

model for different individuals. As described in greater detail in [20], non-linear interactions

between individual physiological parameters result in complex behaviors and lead to variabil-

ity in response to similar perturbations. This further elucidates the significance of physiology,

among other factors, in determining an individual’s response to diet.

Just as exogenous lifestyle factors were not fully predictive of the outcome, endogenous

physiological parameters were also not found to be correlated with the outcome. This suggests

that the outcome of a lifestyle change is an emergent property of complex interactions between

underlying physiological processes and exogenous changes. Predicting such a response, there-

fore, requires an understanding of the complex interactions driving the response. Our physiol-

ogy-based, quantitative framework, which captures such interactions by design, is well-suited

for this purpose.

Having tested the model’s ability to satisfactorily describe individual-level dynamics of

body weight and HbA1c, we applied the model to generate optimal diet recommendations for

individuals in the training and testing datasets. Monte Carlo simulations were performed for

individuals using their digital twin, and a unique set of "optimal" carbohydrate and fat changes

required for a targeted 5–7% reduction in body weight was determined. The model predicted

that a range of diets unique to each individual could help achieve this goal, and there is no sin-

gle ideal diet to achieve the target body weight. Analysis of optimal diet trajectories at the sub-

ject levels suggested that while some patients required tight control over fat intake (individuals

sensitive to fat change), others required a greater focus on managing carbohydrate intake

(individuals more sensitive to carbohydrate change). A few individuals in Fig 7, those that are

in the bottom left corner, appear to have a narrow range of optimal diets. However, that is an

artifact of the sampling space (-25% to 25% of baseline value) available for carbohydrate and

fat intake. The lines are cutoff at these boundaries because greater changes were not explored

along either axis. Individuals in the bottom left corner appear to require rather large reduc-

tions in both carbohydrates and fats to achieve the target weight loss, and only a small number

of diets in the sampled space fit that description. The set of optimal diets found to meet the

weight reduction goal could be further refined by including additional goals, e.g., a targeted

reduction of 0.1–0.2% points in HbA1c. Even though the range chosen for targeted reduction

in HbA1c is close to the expected measurement error for HbA1c, any threshold could have

been chosen for this computational experiment without qualitatively altering the conclusion.

These results support the role of personalized nutrition and dietary recommendations in

improving health outcomes and demonstrate the potential utility of our approach in identify-

ing such personalized recommendations based on historical subject data.

The modeling and analyses presented in this work are affected by a few limitations of data

and methodology that should be acknowledged. The target population of our analysis only

included Japanese individuals with prediabetes, thus limiting the generalizability of the predic-

tions. The matching algorithm used to create pairs of train-test subjects allowed a small degree

of mismatch so that matched pairs could be practically found. The assumption of physiological

identity between the matched pairs has, therefore, some inaccuracy inherent to it and could

impact the estimation of parameters as well as model predictions. Furthermore, all lifestyle

changes were simulated as step functions, as this was mathematically the simplest form in the

absence of additional information on individual lifestyle habits. In real life, lifestyle factors

may be much more variable and may follow trends very different from a step function. This
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assumption is likely to impact the timing and rate of change of model-predicted variables like

body weight. Another concern with mechanistic models is that of parameter identifiability

[37]. With our piecewise calibration approach, there can be up to 4 lifestyle changes through-

out the observation period. This leads to a total of up to 12 parameters (4 changes x 3 parame-

ters/change) that can be adjusted in the worst-case scenario. On the flip side, there are up to 12

observations per subject (6 each for body weight and HbA1c) for more than 75% of subjects.

This provides some assurance that, typically, the number of estimated parameters and the

number of data points are relatively balanced. However, this does not completely defend

against practical identifiability issues as highlighted by Raue et al. Finally, the mechanistic

mathematical model used in this study makes several assumptions about the physiological pro-

cesses underlying diabetes onset and progression, which may not always reflect the underlying

biology and physiology accurately. Nevertheless, even with these limitations, the model pre-

dicted the body weight and HbA1c time courses of the training as well as test groups with high

accuracy, which lends credence to the model and supports its use for predictive analysis.

An advantage of the model-based framework developed in this study over approaches like

precision nutrition is that it can provide optimal dietary recommendations without requiring

specific genetic and microbiome data, making it a quicker, lower-cost alternative. Prior valida-

tion of the simulation model using long-term data [20] and additional validation in this work

using a subset of participants from the J-DOIT1 study showed that the model predicts weight

changes and glycemic control in individuals with high accuracy. This provides assurance that

the framework can be used to predict optimal dietary recommendations for prediabetic indi-

viduals. Further validation through additional retrospective analyses and prospective studies

in human subjects is required to increase confidence in this simulation modeling framework

and confirm its utility in clinical practice.

Validation could be carried out in a few different ways, e.g., by testing metabolic fluxes in

the model or by testing predictions of clinical endpoints such as body weight. Testing fluxes is

extremely challenging because thorough measurement of fluxes through the major molecular

species included in the model in patients is not trivial. A more realistic and practical approach

is to test model predictions of clinically relevant outcomes (e.g., body weight, HbA1c, glucose,

etc.) for different subject cohorts (e.g., variability in race/ethnicity, sex, age, metabolic health,

etc.). This would allow easier testing of conveniently measurable outcomes that are clinically

relevant and familiar for both clinical practitioners and their patients alike.

In the process of training and testing models such as the one presented here, historical

patient data (e.g., results of regular physical examination), real-world information about life-

style factors (e.g., physical activity recorded through digital wearable devices), and self-

reported information (e.g., digital records of dietary habits in a phone application) could be

very valuable in further constraining the model fits and improving long-term predictions.

Obtaining, harmonizing, and cleaning this kind of data, however, is a non-trivial problem.

Furthermore, the reliability of self-reported data has been challenged and could end up com-

plicating the analysis instead of helping it [38]. Objective clinical measurements, such as blood

biomarkers and body weight, do not suffer from these limitations. Rich information about

such objective measurements could significantly improve the predictive ability of the model.

The latest Dietary Guidelines for Americans (DGA) focus on limiting fat, especially satu-

rated fat, and allowing higher carbohydrate intake. Volek et al. have argued that the DGA rec-

ommendations of a low-fat high-carbohydrate diet for the past several years have coincided

with rapidly escalating epidemics of obesity and T2D that contribute to the progression of car-

diovascular diseases [39]. This guideline lacks flexibility and does not appreciate the heteroge-

neity in individuals’ responses to dietary interventions. The findings of the J-DOIT1 study,

coupled with the model-based framework for diet optimization presented in this study, offer
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additional evidence to convince experts and policymakers of the need for individually opti-

mized diet interventions because of inter-individual variability in responses to identical diets.

Our modeling framework can simulate changes in body weight and glycemic control as a

result of lifestyle interventions at an individual level. The ability to optimize nutritional strate-

gies using this model could help dieticians and physicians personalize diet recommendations

to their patients’ goals.
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S1 Fig. Calibrated pairs for best responders, low call frequency group.

(TIF)

S2 Fig. Calibrated pairs for best responders, medium call frequency group.

(TIF)

S3 Fig. Calibrated pairs for best responders, high call frequency group.

(TIF)

S4 Fig. Calibrated pairs for worst responders, low call frequency group.

(TIF)

S5 Fig. Calibrated pairs for worst responders, medium call frequency group.

(TIF)

S6 Fig. Calibrated pairs for worst responders, high call frequency group.

(TIF)

S7 Fig. Goodness of fit assessment. Model-predicted body weight and HbA1c values for all

subjects across time points show reasonable concordance with corresponding measured values

with most values lying on or close to the line of identity.

(TIF)

S8 Fig. Model-estimated change in calories vs. measured change in HbA1c from baseline.

The measured change in HbA1c from baseline to the first follow-up during the J-DOIT1 inter-

vention plotted against model-estimated change in calories per day due to both diet and exer-

cise changes averaged over the same period for subjects in the intervention arm. The gray

number in each quadrant is the fraction of data points in that quadrant. The data points fit a

linear regression model (solid gray line) with r2 = 0.20 and a residual standard error of 0.28

points.

(TIF)

S9 Fig. Distribution of randomly sampled total calorie change. Total caloric changes sam-

pled to find optimal diets are shown for three randomly selected subjects (Test-020, Test-022,

and Test 026). Total caloric change is approximately normally distributed with mean 0 and

covers the ±25% range.

(TIF)

S10 Fig. Relationship between macronutrient change and weight change. All sampled mac-

ronutrient changes (N = 2000 per subject) were plotted against the model predicted weight

change for three randomly selected subjects (same subjects as in S9 Fig). Carbohydrate and fat

changes are, on average, monotonically related with weight change; however, protein changes

are not correlated with weight change.

(TIF)
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9. Böhm A, Weigert C, Staiger H, Häring H-U. Exercise and diabetes: relevance and causes for response

variability. Endocrine. 2016; 51: 390–401. https://doi.org/10.1007/s12020-015-0792-6 PMID: 26643313

10. Wang DD, Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabe-

tes Endocrinol. 2018; 6: 416–426. https://doi.org/10.1016/S2213-8587(18)30037-8 PMID: 29433995

PLOS ONE Optimizing prediabetes nutrition with mechanistic computational modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0287069 November 30, 2023 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0287069.s011
https://doi.org/10.1016/S2213-8587%2821%2900111-X
http://www.ncbi.nlm.nih.gov/pubmed/33862005
https://doi.org/10.1056/NEJMoa012512
http://www.ncbi.nlm.nih.gov/pubmed/11832527
https://doi.org/10.1056/NEJM200105033441801
http://www.ncbi.nlm.nih.gov/pubmed/11333990
https://doi.org/10.1007/s00125-005-0097-z
https://doi.org/10.1007/s00125-005-0097-z
http://www.ncbi.nlm.nih.gov/pubmed/16391903
https://doi.org/10.3389/fphys.2018.00896
http://www.ncbi.nlm.nih.gov/pubmed/30061841
https://doi.org/10.2174/1573399811666150416122903
http://www.ncbi.nlm.nih.gov/pubmed/25877695
https://doi.org/10.1007/s12020-015-0792-6
http://www.ncbi.nlm.nih.gov/pubmed/26643313
https://doi.org/10.1016/S2213-8587%2818%2930037-8
http://www.ncbi.nlm.nih.gov/pubmed/29433995
https://doi.org/10.1371/journal.pone.0287069


11. Heianza Y, Qi L. Gene-Diet Interaction and Precision Nutrition in Obesity. Int J Mol Sci. 2017;18. https://

doi.org/10.3390/ijms18040787 PMID: 28387720

12. Wyness L. Understanding the role of diet in type 2 diabetes prevention. Br J Community Nurs. 2009; 14:

374–379. https://doi.org/10.12968/bjcn.2009.14.9.43803 PMID: 19749655

13. Brouns F. Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable?

Eur J Nutr. 2018; 57: 1301–1312. https://doi.org/10.1007/s00394-018-1636-y PMID: 29541907

14. Yang Q, Lang X, Li W, Liang Y. The effects of low-fat, high-carbohydrate diets vs. low-carbohydrate,

high-fat diets on weight, blood pressure, serum liquids and blood glucose: a systematic review and

meta-analysis. Eur J Clin Nutr. 2021. https://doi.org/10.1038/s41430-021-00927-0 PMID: 34168293

15. Turton J, Brinkworth GD, Field R, Parker H, Rooney K. An evidence-based approach to developing low-

carbohydrate diets for type 2 diabetes management: A systematic review of interventions and methods.

Diabetes Obes Metab. 2019; 21: 2513–2525. https://doi.org/10.1111/dom.13837 PMID: 31347236

16. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, et al. Comparison of

low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr.

2015; 102: 780–790. https://doi.org/10.3945/ajcn.115.112581 PMID: 26224300

17. Mansoor N, Vinknes KJ, Veierød MB, Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on

body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr.

2016; 115: 466–479. https://doi.org/10.1017/S0007114515004699 PMID: 26768850

18. Wang L-L, Wang Q, Hong Y, Ojo O, Jiang Q, Hou Y-Y, et al. The Effect of Low-Carbohydrate Diet on

Glycemic Control in Patients with Type 2 Diabetes Mellitus. Nutrients. 2018;10. https://doi.org/10.3390/

nu10060661 PMID: 29882884

19. Guldbrand H, Dizdar B, Bunjaku B, Lindström T, Bachrach-Lindström M, Fredrikson M, et al. In type 2

diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic con-

trol compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia. 2012; 55:

2118–2127. https://doi.org/10.1007/s00125-012-2567-4 PMID: 22562179

20. Sarkar J, Dwivedi G, Chen Q, Sheu IE, Paich M, Chelini CM, et al. A long-term mechanistic computa-

tional model of physiological factors driving the onset of type 2 diabetes in an individual. PLOS ONE.

2018; 13: 1–37. https://doi.org/10.1371/journal.pone.0192472 PMID: 29444133

21. Sakane N, Kotani K, Takahashi K, Sano Y, Tsuzaki K, Okazaki K, et al. Japan Diabetes Outcome Inter-

vention Trial-1 (J-DOIT1), a nationwide cluster randomized trial of type 2 diabetes prevention by tele-

phone-delivered lifestyle support for high-risk subjects detected at health checkups: rationale, design,

and recruitment. BMC Public Health. 2013; 13: 81. https://doi.org/10.1186/1471-2458-13-81 PMID:

23356246

22. Sakane N, Kotani K, Takahashi K, Sano Y, Tsuzaki K, Okazaki K, et al. Effects of telephone-delivered

lifestyle support on the development of diabetes in participants at high risk of type 2 diabetes: J-DOIT1,

a pragmatic cluster randomised trial. BMJ Open. 2015; 5: e007316. https://doi.org/10.1136/bmjopen-

2014-007316 PMID: 26289448

23. Storn R, Price K. Differential Evolution–A Simple and Efficient Heuristic for global Optimization over

Continuous Spaces. J Glob Optim. 1997; 11: 341–359. https://doi.org/10.1023/A:1008202821328

24. Yorkin M, Spaccarotella K, Martin-Biggers J, Quick V, Byrd-Bredbenner C. Accuracy and consistency

of weights provided by home bathroom scales. BMC Public Health. 2013; 13: 1194. https://doi.org/10.

1186/1471-2458-13-1194 PMID: 24341761

25. Stein RJ, Haddock CK, Poston WSC, Catanese D, Spertus JA. Precision in weighing: a comparison of

scales found in physician offices, fitness centers, and weight loss centers. Public Health Rep Wash DC

1974. 2005; 120: 266–270. https://doi.org/10.1177/003335490512000308 PMID: 16134566

26. Klonoff DC, Aron D, Cohen RM, Home P, John WG, Little RR, et al. The Need for Accuracy in Hemoglo-

bin A1c Proficiency Testing: Why the Proposed CLIA Rule of 2019 Is a Step Backward. J Diabetes Sci

Technol. 2019/03/22 ed. 2019; 13: 424–427. https://doi.org/10.1177/1932296819841699 PMID:

30897963

27. Kuniyoshi H, Ohde S, Deshpande G, Takahashi O. Measurement error of HbA1c for screening diabetes

among healthy Japanese adults. Preventing Overdiagnosis. Barcelona; 2016. Available: https://www.

preventingoverdiagnosis.net/2016Presentations/KuniyoshiHayashi.pdf

28. Gardner CD, Offringa LC, Hartle JC, Kapphahn K, Cherin R. Weight loss on low-fat vs. low-carbohy-

drate diets by insulin resistance status among overweight adults and adults with obesity: A randomized

pilot trial. Obes Silver Spring Md. 2016; 24: 79–86. https://doi.org/10.1002/oby.21331 PMID: 26638192

29. Westerterp-Plantenga MS, Lejeune MPGM Protein intake and body-weight regulation. Appetite. 2005;

45: 187–190. https://doi.org/10.1016/j.appet.2005.02.005 PMID: 15950318

30. Holzapfel C, Dawczynski C, Henze A, Simon M-C. Personalized dietary recommendations for weight

loss. A scientific perspective from various angles. Ernahrungs Umsch. 2021; 68: 26–35.

PLOS ONE Optimizing prediabetes nutrition with mechanistic computational modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0287069 November 30, 2023 20 / 21

https://doi.org/10.3390/ijms18040787
https://doi.org/10.3390/ijms18040787
http://www.ncbi.nlm.nih.gov/pubmed/28387720
https://doi.org/10.12968/bjcn.2009.14.9.43803
http://www.ncbi.nlm.nih.gov/pubmed/19749655
https://doi.org/10.1007/s00394-018-1636-y
http://www.ncbi.nlm.nih.gov/pubmed/29541907
https://doi.org/10.1038/s41430-021-00927-0
http://www.ncbi.nlm.nih.gov/pubmed/34168293
https://doi.org/10.1111/dom.13837
http://www.ncbi.nlm.nih.gov/pubmed/31347236
https://doi.org/10.3945/ajcn.115.112581
http://www.ncbi.nlm.nih.gov/pubmed/26224300
https://doi.org/10.1017/S0007114515004699
http://www.ncbi.nlm.nih.gov/pubmed/26768850
https://doi.org/10.3390/nu10060661
https://doi.org/10.3390/nu10060661
http://www.ncbi.nlm.nih.gov/pubmed/29882884
https://doi.org/10.1007/s00125-012-2567-4
http://www.ncbi.nlm.nih.gov/pubmed/22562179
https://doi.org/10.1371/journal.pone.0192472
http://www.ncbi.nlm.nih.gov/pubmed/29444133
https://doi.org/10.1186/1471-2458-13-81
http://www.ncbi.nlm.nih.gov/pubmed/23356246
https://doi.org/10.1136/bmjopen-2014-007316
https://doi.org/10.1136/bmjopen-2014-007316
http://www.ncbi.nlm.nih.gov/pubmed/26289448
https://doi.org/10.1023/A%3A1008202821328
https://doi.org/10.1186/1471-2458-13-1194
https://doi.org/10.1186/1471-2458-13-1194
http://www.ncbi.nlm.nih.gov/pubmed/24341761
https://doi.org/10.1177/003335490512000308
http://www.ncbi.nlm.nih.gov/pubmed/16134566
https://doi.org/10.1177/1932296819841699
http://www.ncbi.nlm.nih.gov/pubmed/30897963
https://www.preventingoverdiagnosis.net/2016Presentations/KuniyoshiHayashi.pdf
https://www.preventingoverdiagnosis.net/2016Presentations/KuniyoshiHayashi.pdf
https://doi.org/10.1002/oby.21331
http://www.ncbi.nlm.nih.gov/pubmed/26638192
https://doi.org/10.1016/j.appet.2005.02.005
http://www.ncbi.nlm.nih.gov/pubmed/15950318
https://doi.org/10.1371/journal.pone.0287069


31. Zeisel SH. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu Rev Food

Sci Technol. 2020; 11: 71–92. https://doi.org/10.1146/annurev-food-032519-051736 PMID: 31928426

32. Berry S, Drew D, Linenberg I, Wolf J, Hadjigeorgiou G, Davies R, et al. Personalised REsponses to DIe-

tary Composition Trial (PREDICT): an intervention study to determine inter-individual differences in

postprandial response to foods. Research Square; 2020. https://doi.org/10.21203/rs.2.20798/v1

33. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Pre-

diction of Glycemic Responses. Cell. 2015; 163: 1079–1094. https://doi.org/10.1016/j.cell.2015.11.001

PMID: 26590418

34. Mazidi M, Valdes AM, Ordovas JM, Hall WL, Pujol JC, Wolf J, et al. Meal-induced inflammation: post-

prandial insights from the Personalised REsponses to DIetary Composition Trial (PREDICT) study in

1000 participants. Am J Clin Nutr. 2021; 114: 1028–1038. https://doi.org/10.1093/ajcn/nqab132 PMID:

34100082

35. Kamel Boulos MN, Zhang P. Digital Twins: From Personalised Medicine to Precision Public Health. J

Pers Med. 2021;11. https://doi.org/10.3390/jpm11080745 PMID: 34442389

36. Venkatapurapu SP, Iwakiri R, Udagawa E, Patidar N, Qi Z, Takayama R, et al. A Computational Plat-

form Integrating a Mechanistic Model of Crohn’s Disease for Predicting Temporal Progression of Muco-

sal Damage and Healing. Adv Ther. 2022; 39: 3225–3247. https://doi.org/10.1007/s12325-022-02144-y

PMID: 35581423

37. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al. Structural and practical

identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioin-

formatics. 2009; 25: 1923–1929. https://doi.org/10.1093/bioinformatics/btp358 PMID: 19505944

38. Ravelli MN, Schoeller DA. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and

New Approaches Are Needed. Front Nutr. 2020;7. https://doi.org/10.3389/fnut.2020.00090 PMID:

32719809

39. Volek JS, Phinney SD, Krauss RM, Johnson RJ, Saslow LR, Gower B, et al. Alternative Dietary Pat-

terns for Americans: Low-Carbohydrate Diets. Nutrients. 2021;13. https://doi.org/10.3390/nu13103299

PMID: 34684300

PLOS ONE Optimizing prediabetes nutrition with mechanistic computational modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0287069 November 30, 2023 21 / 21

https://doi.org/10.1146/annurev-food-032519-051736
http://www.ncbi.nlm.nih.gov/pubmed/31928426
https://doi.org/10.21203/rs.2.20798/v1
https://doi.org/10.1016/j.cell.2015.11.001
http://www.ncbi.nlm.nih.gov/pubmed/26590418
https://doi.org/10.1093/ajcn/nqab132
http://www.ncbi.nlm.nih.gov/pubmed/34100082
https://doi.org/10.3390/jpm11080745
http://www.ncbi.nlm.nih.gov/pubmed/34442389
https://doi.org/10.1007/s12325-022-02144-y
http://www.ncbi.nlm.nih.gov/pubmed/35581423
https://doi.org/10.1093/bioinformatics/btp358
http://www.ncbi.nlm.nih.gov/pubmed/19505944
https://doi.org/10.3389/fnut.2020.00090
http://www.ncbi.nlm.nih.gov/pubmed/32719809
https://doi.org/10.3390/nu13103299
http://www.ncbi.nlm.nih.gov/pubmed/34684300
https://doi.org/10.1371/journal.pone.0287069

