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Abstract

We propose a multivariate Grey-Markov model to quantify traffic accident risk from different

causality factors in roundabouts that is uniquely suited for the scarce and stochastic traffic

crash data from roundabouts. A data sample of traffic crashes occurring in roundabouts in

the U.S. State of Michigan from 2016 to 2021 was collected to investigate the capabilities of

this modeling methodology. The multivariate grey model (MGM(1,4)) was constructed using

grey relational analysis to determine the best dimensions for model optimization. Then, the

Markov chain is introduced to address the unfitness of stochastic, fluctuating data in the

MGM(1,4) model. Finally, our proposed hybrid MGM(1,4)-Markov model is compared with

other models and validated. This study highlights the superior predictive performance of our

MGM(1,4)-Markov model in fore-casting roundabout traffic accidents under data-limited

conditions, achieving a 3.02% accuracy rate, in contrast to the traditional GM(1,1) model at

8.30% and the MGM(1,4) model at 4.47%. Moreover, incorporating human, vehicle, and

environmental risk factors into a multivariate crash system yields more accurate predictions

than merely aggregating crash counts.

Introduction

Modern roundabouts require traffic from all sides to yield circulating traffic, with sufficient

horizontal curvature to slow entry and circulation speeds, and they are widely touted as an

effective safety intervention to replace traditional intersections to lower accident rates and

severities. This is in part due to their reduction in the number and types of conflicts between

vehicles and/or pedestrians moving in different directions through the intersection [1, 2]. In

the meantime, forecasting roundabout traffic accidents and identifying factors determining

the severity of injuries to road users is an essential component of accident prevention deci-

sion-making and avoiding casualties or damage. However, the safety performance at round-

abouts is affected by many uncertainty factors, such as the interaction of collision factors—

humans, vehicles, and road environment- which negatively exhibits uncertain variability and

ultimately complicates the performance prediction of roundabout traffic [3, 4]. Hence efficient

methods are needed to capture this uncertainty, predict roundabout traffic crashes accurately
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beyond empirical observations, and analyze their causality quantitatively, ideally with the help

of emerging data collection and processing techniques, to inform future transportation policy

and planning.

The most significant issue with modeling and predicting traffic crashes in roundabouts is

the scarcity and stochasticity in the data for historical roundabout traffic accidents. This char-

acteristic in such datasets, combined with the aforementioned fact that a variety of human,

vehicle, and environmental factors all affect the safety performance of roundabouts [5, 6],

matches the features of the grey prediction model well, which does not require much informa-

tion and has simple calculations and high precision [7, 8]. Developed by Deng in 1982 [9], the

grey theory deals with limited sample sizes (typically four or more samples) and poor informa-

tion problems by employing ordinary differential equations to characterize the factors that

may affect forecast accuracy. Since it provides a way to describe unknown systems under lim-

ited data conditions, it is widely used in engineering, economics, and science [10, 11]. None-

theless, the grey model may yield less desirable performance when dealing with highly

fluctuating data sequences during long-term prediction [12, 13].

In order to deal with datasets with more fluctuation like that of traffic crashes in round-

abouts, we propose the integration of grey model techniques with Markov chains. Such a tech-

nique has already been proven to perform well with sparse and stochastic datasets with regards

to determining causality and predicting future values. For example, Jin et al. [14] and Zou

et al. [15] developed a one-factor Grey-Markov model to estimate the number of fatalities and

economic losses associated with traffic accidents. These models, however, are all first-order

grey models that takes into account only one independent variable. To date, few studies have

given methods to determine the optimal dimension variables in multivariate Grey-Markov

model prediction with limited data.

Driven by this question, this paper aimed to demonstrate the effectiveness of an optimized

multivariable Grey-Markov model (MGM(1,n)-Markov) in fitting and predicting a stochastic

and sparse roundabout crash dataset by comparing it with the classical GM(1,1) (grey model

with one independent variable and one dependent variable) and optimized MGM(1,n) (grey

model with multiple independent variable) models previously published in the literature [16].

The hybrid model consists of four steps. The first step involves performing a grey relational

analysis using a dataset of traffic crashes at roundabouts from the Michigan Traffic Crash

Facts dataset to measure the correlation between variables and the occurrence of traffic-related

injuries. The next step is constructing a multivariate grey model for predictive theory by iden-

tifying the main elements or causal features describing collapse using grey relation analysis. As

a third step, the residual error of the grey model prediction is modified using Markov theory,

and as a final step, future trends are predicted.

The novelty aspects of this paper are summarized as follows:

1. Few studies have previously been published on the quantitative analysis of causality factors

in roundabout traffic crashes.

2. We apply grey relational analysis to identify the weights and co-linearity between factors

associated with accident occurrence in roundabouts, and combined with the Markov opti-

mization model corrects the non-stationary data sequences.

3. A multivariable Grey-Markov model with sparse and stochastic data samples is proposed,

which has not been applied to the prediction of roundabout traffic accidents.

To the best of our knowledge, there are only a few attempts to predict traffic accidents

using multidimensional time series of influential factors. Most previous studies, particularly

those focusing on roundabout traffic accidents, only examined a single variable, the number of
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accidents, and did not consider the traffic system’s multi-factor effects. Therefore, we aim to

propose a multi-scale time-series roundabout crash prediction model that incorporates several

human, vehicle, and road risk factors instead of relying solely on crash totals.

The remaining sections of the paper are organized as follows. We provide an overview of

the state of the art of research in roundabout safety in the “Related works” section. The “Mate-

rials and methods” section presents the details of our methodology, which incorporates an

optimized, multivariable MGM(1,n) model and Markov chains to update and optimize the

grey model’s predictive results. The “Results” section presents the results of utilizing this meth-

odology to model roundabout traffic crashes in Michigan. Consequently, these results, meth-

odological considerations, mechanisms, practical application recommendations, and

limitations are discussed in the “Discussion” section. Finally, the “Conclusions and perspec-

tives” section provides a conclusion to this paper.

Related works

In this section, we provide an extensive synthesis of the existing literature on the prevailing

trends in roundabout development, emphasizing the application of predictive models for traf-

fic crash forecasting.

Modern roundabouts, originating in the United Kingdom, have been designed to enhance

traffic safety and flow [17]. While early designs presented constraints, introducing innovative

traffic rules has improved capacity and safety. Research findings highlight the significant

advantages of roundabouts for intermediate traffic demands, while signalized intersections

exhibit superior performance in high-traffic scenarios [17, 18]. Roundabouts encourage low

speeds, promoting safety, but possess unique crash profiles. Their implementation in the

United States has led to decreased injury collisions and improved efficiency. However, the

direct applicability of international research findings to the US context may be constrained

due to various factors [18].

Current studies on traffic crash prediction focus on highways [6, 19–22], signalized inter-

sections [23–25], and other roads [26, 27], whereas there has been little research on round-

abouts in recent decades. Many approaches have been developed to solve traffic accident

prediction problems, roughly categorized into three types: parametric models [28, 29] (e.g.,

ARIMA, grey prediction, spectral analysis), non-parametric models [6, 20, 21, 30–34] (e.g.,

non-parametric regression model, SVR, VAR, KNN, deep learning, parallel fp-growth mining,

and types of neural network), and hybrid models [16, 22, 35] (e.g., Bayesian-neural network,

fuzzy rule-based method, grey-ARIMA, and chaos-wavelet analysis-SVM). It is necessary to

note that the methods above for predicting traffic collisions have higher requirements on the

data sample size for training and verification and cannot capture data samples with consider-

able randomness [12]. However, the fact that roundabouts are an emerging mode of transpor-

tation in the United States and are not as widely deployed as in certain other countries

determines that any available police-reported crash data would be highly sparse and stochastic.

There is a gap in the current literature on a specific methodology to draw meaningful conclu-

sions from such data samples.

Despite some progress in the above prediction models, certain research gaps in the existing

literature still need to be explored in further detail. First, previous studies have overwhelmingly

focused on conventional intersections, and relatively few studies have examined new round-

abouts that may relieve traffic congestion to a great extent. Second, traditional prediction mod-

els commonly require normal data distribution and restrictions on sample size [8, 10]. In

practice, roundabout traffic accidents consist of time series data that are highly nonlinear and

scattered, making it difficult for historical data to be modeled and limiting prediction accuracy.
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Therefore, the key to accurate forecasting is choosing an appropriate method, especially in

cases of incomplete data. Finally, relatively few studies on roundabout crashes have considered

aggregated, empirical crash counts without adequately addressing the contributing explana-

tory variables [14, 36]. Numerous factors affect or explain such collisions, including driver

behavior, weather conditions, traffic flow, and road structure [37–39]. Inevitably, most of

these data-driven approaches are summary-statistics-based joint analyses, which are generally

challenging to specify the insights of the prediction results. Such a literature gap calls for fur-

ther research incorporating driver, vehicle, and environmental factors to analyze and predict

roundabout traffic collisions with limited data.

Materials and methods

Data source

We used the data source of MTCF (Michigan Traffic Crash Facts) [40] yearly incidence data

for roundabout traffic crashes from 2016 to 2021 to compile the roundabout traffic crash data

in this paper. Note that this third-party data source is compiled by the Michigan State Police

Office of Highway Safety Planning (OHSP) and the University of Michigan Transportation

Research Institute (UMTRI) from all police reports of traffic crashes in the state of Michigan;

and the authors of this article do not have and cannot provide direct access to the raw dataset.

However, the dataset, as well as detailed breakdowns of crash figures by year and other explan-

atory variables, are available through MTCF’s public query tool at https://www.

michigantrafficcrashfacts.org/querytool. Time frame-wise, we focus on traffic crashes from

2016 to 2021 since earlier records did not identify whether a collision occurred within a round-

about. Individual data items within this dataset were digitized from police reports of accidents.

According to Liu et al. [41], index screening should follow three principles, namely measur-

ability, representativeness, and comparability. In accordance with this principle, we then

selected eight explanatory variables (i.e., snow-covered, head-on crash on left turn, sideswipe,

distraction, injury, median, buses/trucks, and rainy) to reflect the severity and probability of

traffic accident risk (see Table 1). These eight variables are the only ones that provide continu-

ous samples of non-trivial and non-zero data over the time period, given the sparsity and sto-

chasticity of the data sample to begin with. Using this data set, we investigate the impact of

each contributing element on the annual number of crashes at roundabouts compared to tra-

ditional intersections.

Note that in the Table 1 above, X1 refers to crashes occurring on snow-covered roads, X2

refers to head-on crashes against another vehicle performing a left turn, X3 refers to a side-

swipe crash, X4 refers to crashes with distracted drivers, X5 refers to crashes resulting in inju-

ries, X6 refers to crashes in the median of roads, X7 refers to crashes involving buses and/or

trucks, and X8 refers to crashes in rainy weather.

Table 1. Explanatory variables of traffic crash data in Michigan roundabouts.

Year Total crashes X1 X2 X3 X4 X5 X6 X7 X8

2016 489 20 1 146 23 48 5 25 52

2017 1510 73 3 535 48 125 19 97 154

2018 1501 78 3 523 41 116 16 86 112

2019 1864 85 5 642 57 146 19 162 176

2020 1300 61 2 416 49 103 19 96 77

2021 1730 79 1 618 56 132 23 131 116

https://doi.org/10.1371/journal.pone.0287045.t001
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Methodology overview

The purpose of this section is to propose an optimized multivariate Grey-Markov model for

predicting short-term roundabout traffic crashes. Specifically, it combines grey relational anal-

ysis, the Multivariate Grey-Markov model, and the model evaluation framework for our pre-

dictor of traffic accidents (see Fig 1).

Grey relational analysis

The basic idea of grey relational analysis is to judge the closeness of the relationship based on

the similarity of the geometric shapes of the sequence curves. The higher the similarity, the

greater the correlation. Traditional statistical methods have many drawbacks, such as requiring

large amounts of data, typical sample distributions, and difficulty meeting practical needs.

Grey relational analysis overcomes these shortcomings and only requires four data points

without the need to meet typical distribution rules.

In many instances, roundabout accidents are caused by multiple potentially inter-con-

nected factors. At the same time, numerous variables affect the occurrence and characteristics

of accidents. We are interested in determining how each factor variable affects the accident

variable to develop a reliable model for accident prediction. Typically, an impact factor for a

potential accident is defined as a temporally ordered sequence of variables that characterize

trends of the respective factor.

A variable sequence represents a time series of multiple variables that must be simulated

and predicted to predict traffic accidents. We use grey relational analysis [42] to determine

whether there is a compact connection between sequence curves based on their geometric sim-

ilarity. Roundabout accident variables and their impact factors are com-pared to determine

the coefficients.

Following grey relational analysis theory, let us suppose that a roundabout traffic system

contains m time-series variables. The first of these variables describe the number of crashes,

and the rest describe the various causality characteristics. Furthermore, a total of n measure-

ments of those variables are taken at different discrete points in time. These time series can be

represented as follows, where i refers to a certain time-series variable and k refers to one of the

Fig 1. Flow chart of the optimized multivariate Grey-Markov model.

https://doi.org/10.1371/journal.pone.0287045.g001

PLOS ONE Grey-Markov models and accidents in roundabouts

PLOS ONE | https://doi.org/10.1371/journal.pone.0287045 September 28, 2023 5 / 21

https://doi.org/10.1371/journal.pone.0287045.g001
https://doi.org/10.1371/journal.pone.0287045


measurements of the variable over time.

xi ¼ fxiðkÞjk ¼ 1; 2; . . . ; ng ¼ fxið1Þ; xið2Þ; . . . ; xiðnÞg; i ¼ 1; 2; . . . ;m ð1Þ

We can further define that x1 refers to the dependent time-series variable of traffic crash num-

bers, and that xj, j = 2, 3, . . ., m refers to the various independent causality characteristics that

may be correlated to the outcome of traffic crash statistics [43]. Then the grey correlation

between the number of crashes observed (x1) and an independent variable (xi) can be

expressed as ri in the following expression.

ri ¼
1

n

Xn

k¼1

ziðkÞ; where ziðkÞ ¼
mins mintjx1ðtÞ � xsðtÞj þ rmaxs maxtjx1ðtÞ � xsðtÞj

x1ðkÞ � xiðkÞ þ rmaxs maxtjx1ðtÞ � xsðtÞj
ð2Þ

Note that ρ 2 [0, 1] refers to a “grey correlation coefficient,” zi(k) provides the grey correlation

coefficient at time point k between x0 and xi, mins mint|x1(t) − xs(t)| and maxs maxt|x1(t) −
xs(t)| denotes the two-level minimum and maximum discrepancy, between x1(t) and any of

x2(t), . . ., xm(t), respectively. We can then define ri to be the grey correlation degree coefficient.

The higher the value of ri, the stronger the correlation is between x1 and xi.

Multi-variable Grey modeling

Variable and sequence definition. Let us denote the dependent variable sequence from

the previous section as xð0Þ1 and the independent variable sequences from the previous section

as xð0Þj with j = 2, 3, . . ., m. Then given i = 1, 2, . . ., m, we can apply the first-order accumulated

generation operation (1-AGO) to xð0Þi ¼ fx
ð0Þ

i ð1Þ; x
ð0Þ

i ð2Þ; . . . xðnÞi g to obtain an “accumulated”

times series xð1Þi as follows.

xð1Þi ðkÞ ¼
Xk

p¼1

xð0Þi ðpÞ; k ¼ 1; 2; . . . ; n ð3Þ

Meanwhile, we can then define the adjoining main generated sequence of xð1Þi as xð2Þi [44].

xð2Þi ðkÞ ¼
1

2
xð1Þi ðkÞ þ xð1Þi ðk � 1Þ
� �

; k ¼ 2; 3; . . . ; n ð4Þ

We can then define the vector of all time-series variables, their 1-AGO forms, and their adjoin-

ing main sequences at the discrete time point k 2 [1, n] as follows.

Xð0ÞðkÞ≔
h
xð0Þ1 ðkÞ; x

ð0Þ

2 ðkÞ; . . . ; xð0Þm ðkÞ
iT

ð5Þ

Xð1ÞðkÞ≔
h
xð1Þ1 ðkÞ; x

ð1Þ

2 ðkÞ; . . . ; xð1Þm ðkÞ
iT

ð6Þ

Xð2ÞðkÞ≔
h
xð2Þ1 ðkÞ; x

ð2Þ

2 ðkÞ; . . . ; xð2Þm ðkÞ
iT

ð7Þ

In order to fit a Multivariable Grey Model to, and to predict the value of the time series vari-

ables of X(0) and X(1), we can also introduce the following two vectors of continuous time
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functions that correspond to the model fitted values with regards to X(0) and X(1), respectively.

~X ð0ÞðtÞ≔
h
~xð0Þ1 ðtÞ; ~x

ð0Þ

2 ðtÞ; . . . ; ~xð0Þm ðtÞ
iT

ð8Þ

~X ð1ÞðtÞ≔
h
~xð1Þ1 ðkÞ; ~x

ð1Þ

2 ðtÞ; . . . ; ~xð1Þm ðtÞ
iT

ð9Þ

Grey model equation system definition. The Multivariable Grey model can be defined

by the following system of first-order differential equations.

d~X ð1Þ

dt
¼ A~X ð1Þ þ B ð10Þ

where

A ¼

a11 a12 � � � a1m

a21 a22 � � � a2m

..

. ..
. . .

. ..
.

am1 am2 � � � amm

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;B ¼

b1

b2

..

.

bm

2

6
6
6
6
6
4

3

7
7
7
7
7
5

Note that the initial condition is defined as ~X ð1Þð1Þ≔ Xð1Þð1Þ.
We can acquire the values of A and B as follows. Let us first define αi as the i-th row vector

from the matrix [A|B], or

ai ¼ ½ai1; ai2; . . . ; aim; bi�
T
; i ¼ 1; 2; . . . ;m ð11Þ

We can then compute the values for each αi through the following expression.

ai ¼ ðPTPÞ� 1PTQi ð12Þ

where

P ¼

xð2Þ1 ð2Þ xð2Þ2 ð2Þ . . . xð2Þm ð2Þ

xð2Þ1 ð3Þ xð2Þ2 ð3Þ . . . xð2Þm ð3Þ

..

. ..
. . .

. ..
.

xð2Þ1 ðnÞ xð2Þ2 ðnÞ . . . xð2Þm ðnÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;Qi ¼

xð0Þi ð2Þ

xð0Þi ð3Þ

..

.

xð0Þi ðnÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

Grey model solution. The explicit, analytical solution to Eq 10 can thus be expressed as

follows.

~X ð1ÞðtÞ ¼ eAtXð1Þð1Þ þ A� 1ðeAt � IÞB ð13Þ

where I is the m ×m identity matrix, and the matrix exponential eAt can be computed using

Taylor series decomposition as follows.

eAt ¼ I þ
X1

j¼1

Ajtj

k!
ð14Þ

Finally we can recover the prediction values for the time series variables using their predicted
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1-AGO forms. For instance, the following expression can be used if one wishes to predict the

value of ~xð0Þðmþ 1Þ given the predicted time series data for the first m time points.

~X ð1Þðmþ 1Þ ¼ eAðmþ1ÞXð1Þð1Þ þ A� 1ðeAðmþ1Þ � IÞB ð15Þ

~xð0Þðmþ 1Þ ¼ ~xð1Þðmþ 1Þ � ~xð1ÞðmÞ ð16Þ

Markov chain modeling

In this section only, let x and ~x denote the raw and predicted sequences of n variables obtained

from the aforementioned Multivariable Grey Models, respectively.

State determination. We can first compute the following residual sequences between the

raw and predicted data values.

d ¼ fdðkÞjk ¼ 2; 3; . . . ; ng; where dðkÞ ¼
xðkÞ � ~xðkÞ

~xðkÞ
ð17Þ

Then we can define the following Markov state transitions based on the above residual val-

ues. Note that each state Sj has a lower bound residual value of Lj and upper bound of Uj,

defined as follows.

Lj ¼ min½dðiÞ� þ
j � 1

n
ðmax½dðiÞ� � min½dðiÞ�Þ ð18Þ

Uj ¼ min½dðiÞ� þ
j
n
ðmax½dðiÞ� � min½dðiÞ�Þ ð19Þ

State transition matrix. In order to correct for the inaccuracies of the output values ~x of

the Multivariable Grey Model, we would apply a linear transformation to each element of ~x
depending on which Markov state its residual value falls under. We can then define a n×n
Markov transition probability matrix that defines such linear transformations.

PðkÞ ¼

P11ðkÞ P12ðkÞ . . . P1nðkÞ

P21ðkÞ P22ðkÞ . . . P2nðkÞ

..

. ..
. . .

. ..
.

Pn1ðkÞ Pn2ðkÞ . . . PnnðkÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; where PijðkÞ ¼
QijðkÞ
QiðkÞ

ð20Þ

Pij(k) in the above matrix, named the “k-step transition matrix,” represents the probability for

the residual of the predicted time series variable at time m + k to transition to Sj from the Si
state attained at time m. Qij(k) represents the number of state transitions from Si to Sj already

observed from time m to m + k for any m. Qi(k) represents the number of observations where

the residual falls within state Si.
It is also worthwhile noting that each of the row vectors of P(k) produces a sum up to 1, or

that ∑j Pij(k) = 1.

Correction of predicted value. Finally, for the Multivariable Grey Model output ~xðkÞ
whose residual is determined to be at state Sj = [Lj, Uj], we can produce an updated prediction
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value of ~yðkÞ as follows [45].

~yðkÞ ¼ ~xðkÞ 1þ
Lj þ Uj

2

� �

ð21Þ

Model evaluation

The proposed method is evaluated on a prediction task to compare the proposed modeling

method with other alternative methods to compare its performance. In this process, we use dif-

ferent numeric metrics to measure the model fit and prediction accuracy, including mean

absolute percentage error (MAPE), mean absolute error (MAE), and root mean square error

(RMSE) [46].

The following are the formulae used to evaluate those specific metrics.

MAPEiðkÞ ¼
1

n

Xn

k¼1

�
�
�
�
�

xiðkÞ � ~xiðkÞ
xiðkÞ

�
�
�
�
�
� 100% ð22Þ

MAEiðkÞ ¼
1

n

Xn

k¼1

jxiðkÞ � ~xikj � 100% ð23Þ

RMSEiðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

ðxiðkÞ � ~xikÞ
2

s

� 100% ð24Þ

Where xi(k) and ~xiðkÞ represented the actual and predicted time series variable values at time

k, respectively.

Results

This section presents the results of analyzing the Michigan Traffic Crash Facts dataset with the

Grey-Markov modeling method as described in the previous section. The model fitness and its

prediction performance are also to be compared against alternative models presented in the

literature.

Grey relational analysis

Before choosing appropriate forecast factors, we shall first calculate the grey incidence

degree. The factors with distinct lower grey relational degrees will be omitted, reducing cal-

culation and complexity to minimize the errors. According to Eq 2, and given synthetic coef-

ficient ρ = 0.5 [42], the degrees of influence of each factor impacting the causality of crashes

are shown as specified in the following Fig 2.

Similarly to Table 1, X1 refers to crashes occurring on snow-covered roads, X2 refers to

head-on crashes against another vehicle performing a left turn, X3 refers to a sideswipe crash,

X4 refers to crashes with distracted drivers, X5 refers to crashes resulting in injuries, X6 refers

to crashes in the median of roads, X7 refers to crashes involving buses and/or trucks, and X8

refers to crashes in rainy weather.

The figure above shows us that the grey relation scores for roundabout accidents, driver dis-

traction, and crashes involving buses/trucks are not high enough. In other words, factors with

grey incidence values smaller than a set threshold of 0.7 can be omitted [42].
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Results of model selection

The potential numbers of causality factors to traffic crashes in roundabouts are admittedly

numerous, and it would be unrealistic and inefficient to consider every possible factor in a sin-

gle model. Therefore, we decide that only a certain number of factors that are enough corre-

lated with the occurrence of traffic crashes in roundabouts are to be considered. Our metric

for this degree of correlation is “grey correlation factor.” We also determined that only those

causality factors with grey correlation factors over a threshold of 0.7 would be considered as

the “main factors.”

Fig 2. Grey relational grades of each independent variable associated with traffic crashes in roundabouts.

https://doi.org/10.1371/journal.pone.0287045.g002

Fig 3. Fitted accuracies of different Multivariable Grey (MGM(1,n)) models.

https://doi.org/10.1371/journal.pone.0287045.g003
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Different Multivariable Grey (MGM(1, n)) models can be constructed with any number (n)

of independent variables that have the highest ranking in their correlation grades, as provided

in the previous section. In order to obtain the ideal number of independent variables for fitting

our dataset, we can construct multiple Multivariable Grey models using a range of indepen-

dent variables from 2 to 6. The MAPE percentage errors are computed for each model for each

of the fitted values that it outputs as shown in Eq 22. The results of this evaluation process is

shown below in Fig 3.

Similarly to Table 1, X1 refers to crashes occurring on snow-covered roads, X2 refers to

head-on crashes against another vehicle performing a left turn, X3 refers to a sideswipe crash,

X4 refers to crashes with distracted drivers, X5 refers to crashes resulting in injuries, X6 refers

to crashes in the median of roads, X7 refers to crashes involving buses and/or trucks, and X8

refers to crashes in rainy weather.

Also note the following:

1. The input parameters for the MGM(1,2) model include X3, X6.

2. The input parameters for the MGM(1,3) model include X1, X3, X6.

3. The input parameters for the MGM(1,4) model include X1, X2, X3, X6.

4. The input parameters for the MGM(1,5) model include X1, X2, X3, X5, X6.

5. The input parameters for the MGM(1,6) model include X1, X2, X3, X5, X6, X8.

Due to the collinearity between different variables and the redundancy among variables,

the MGM(1,n) model will have difficulty making accurate predictions due to confounding var-

iables exerting other effects depending on the interference. Similarly, the most influential fac-

tors largely reflect the roundabout traffic collapse system changes. Referring to Fig 3, we then

calculated the MAPE for MGM(1,2), MGM(1,3), MGM(1,4), MGM(1,5), and MGM(1,6)

model as 6.39%, 5.50%, 4.47%, 26.43%, and 52.56%, respectively. Thus, the MGM(1,4) model

with the highest prediction accuracy was selected as the best representation of the influential

variables based on a comparison of prediction accuracy across models.

Hybrid, optimized MGM(1,4)-Markov model

A hybrid model was further developed based on the MGM (1,4) model. According to the rela-

tive error (RE) between the actual value and the fitted value, we divided the relative error into

three state intervals:

The state S1 signifies underestimation of the fitted value, with the relative error satisfying

the following condition.

minðREÞ � RE � minðREÞ þ
jminðREÞj þ jmaxðREÞj

3
ð25Þ

The state S2 is the normal state of the fitted value, with the relative error satisfying the fol-

lowing condition.

minðREÞ þ
jminðREÞj þ jmaxðREÞj

3
� RE � max RE �

jminðREÞj þ jmaxðREÞj

3
ð26Þ
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The state S3 signifies overestimation of the fitted value, with the relative error satisfying the

following condition.

max RE �
jminðREÞj þ jmaxðREÞj

3
� RE � max RE ð27Þ

According to the relative error of the actual value to the fitted value, three statuses were

identified: S1 ≔ [−0.1013, −0.0229), S2 ≔ [−0.0229, 0.0554), and S3 ≔ [0.0554, 0.1338]. The

status divisions from the 2016 to 2021 series are shown in Table 2.

Based on the above state distributions, we can compute the following 1-, 2-, and 3-step

probability matrices of Markov state transitions, as specified in Eq 22.

Pð1Þ ¼

1

2

1

2
0

0
1

2

1

2

1 0 0

2

6
6
6
6
4

3

7
7
7
7
5
; Pð2Þ ¼

1

4

1

2

1

4

1

2

1

4

1

4

1

2

1

2
0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; Pð3Þ ¼

3

8

3

8

1

4

1

2

3

8

1

4

1

4

1

2

1

4

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð28Þ

Based the a 3-step transition probability matrices from Eq 28, we can compute the fol-

owing predicted state transitions of the yearly roundabout crash numbers as in Table 3. Our

calculations are based on the three most recent values and use different transfer steps to calcu-

late the predicted values.

According to Table 3, the traffic crashes at Michigan roundabouts in 2022 were most likely

in S2. Accordingly, the predicted revised GM(1,1)–Markov chain value in 2022 based on the

above prediction steps can be obtained as follows.

~y ¼ ð1þ 0:5� ð� 0:029þ 0:0554ÞÞ � 1730 � 1758 ð29Þ

Our study suggests that the number will likely increase slightly next year, implying that taking

steps to minimize the likelihood is important.

Table 2. Markov states of MGM(1,4) output values.

Year Actual value MGM(1,4) Relative error State

2016 489 489 0.0000 S2

2017 1510 1308 0.1338 S3

2018 1501 1653 -0.1013 S1

2019 1864 1910 -0.0247 S1

2020 1300 1308 -0.0062 S2

2021 1730 1734 -0.0023 S2

https://doi.org/10.1371/journal.pone.0287045.t002

Table 3. Predicted Markov state transitions of yearly traffic crash figures.

Year Initial state Transfer step S1 S2 S3

2021 S2 1 0 1/2 1/2

2020 S2 2 1/2 1/4 1/4

2019 S1 3 3/8 3/8 1/4

Total 7/8 9/8 1

https://doi.org/10.1371/journal.pone.0287045.t003
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Model comparison

A hybrid approach combining the theory of grey systems and Markov chains has been used to

predict roundabout accidents. Time series data from 2016 to 2021 were fitted using the GM

(1,1) model [47], MGM(1,4) model [48], and hybrid MGM(1,4)-Markov model, as shown in

Fig 4.

According to the results, the average MAPE values of GM(1,1) models, MGM(1,4) models,

and Grey-Markov models were 8.30%, 4.47%, and 2.81%, respectively. The MAE values of the

GM(1,1), MGM(1,4), and Grey-Markov models were 128.17%, 68.67%, and 43.38%, respec-

tively. The RMSE values of the GM(1,1), MGM(1,4), and Grey-Markov models were 176.55%,

104.96%, and 51.13%, respectively. The fitting results indicate that the grey Markov model out-

performs the single grey prediction in accuracy. When applying the grey model to compare

actual incident data with the predicted values, we find that the relative errors are high and

incongruous. However, after correcting the predictions of the grey model using a Markov

chain process, we can enhance the prediction accuracy by combining multiple prediction

models. Thus, the hybrid Grey-Markov model is more suitable for predicting the number of

incidents from 2016 to 2021.

Discussion

To our knowledge, this is one of the first attempts to predict roundabout traffic crashes via an

optimized multivariate Grey-Markov model. Our proposed MGM(1,n)-Markov model repre-

sents a valid and efficient method for predicting round-about traffic crashes in Michigan

under insufficient data, temporal fluctuations, and trend changes. In summary, the findings of

this study may assist policymakers in formulating policies to improve roundabout traffic safety

and potentially reduce crashes. Given the results of this study, the remainder of this section

elaborates on gaps in the existing literature and priority areas that should be addressed in

future studies of traffic crashes at roundabouts.

Summary of evidence

First, we identify eight roundabout traffic crash impact factors and then apply the grey rela-

tional algorithm to prioritize these impact factors. Roundabout traffic accident risk can be

assessed from various perspectives using these indicators, which have proven effective. Round-

about traffic crashes are influenced by multiple sources of information, including humans,

vehicles, and surrounding elements, each of which interacts with the others and influences the

Fig 4. Comparison between existing GM [47] and MGMs [48] in literature and the MGM-Markov model. (a)

Model-fitted total roundabout crashes; (b) Relative error values.

https://doi.org/10.1371/journal.pone.0287045.g004
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outcome [3, 4, 22, 39]. Meanwhile, annual traffic crash prediction can be viewed as a problem

associated with the grey system because several factors (i.e., humans, vehicles, and surround-

ings) influence roundabout traffic crashes, but the precise relationships between these factors

are, at least within the scope of this study, unclear. Among the factors influencing roundabout

traffic accidents in Michigan, crashes on the median strip (grey correlation 0.8186) have the

greatest impact. The constructed model can predict these factors with high accuracy. The traf-

fic administration can use the results of this study to control the impact factors and reduce the

likelihood of traffic accidents at roundabouts.

Second, we found that multivariate optimization (MGM(1,n)) outperforms uni-variate opti-

mization (GM(1,1)) because multiple variables are simultaneously considered. Our analysis indi-

cates that the one-dimensional GM(1,1) model performed well with a good prediction, while the

optimized four-dimensional MGM(1,4) model performed much better with a lower average rela-

tive error. Hybrid MGM(1,4)-Markov models can better fit the nonlinear functions of raw time

sequences than single grey models and MGM(1,4) models, making them effective tools for pre-

venting traffic accidents at roundabouts. There is evidence that the hybrid MGM (1,4)-Markov

model produced more accurate predictions and that the forecasted results may prove useful in

assisting management in dealing with traffic issues. A Markov chain is well-suited to deal with

intra-sequence fluctuations since the grey model is well-suited to exponential sequences. The

results of this study indicate that the hybrid model is more accurate in terms of fitting data than

the basic GM(1,1) model. Despite the reduction in accuracy, the Markov model provides inter-

val-based predictions and improves prediction accuracy. In general, four-dimensional MGM(1,

n) is a more accurate prediction model based on relevant variables’ influence than other models.

Finally, Markov chains have been proven to be a valid methodological approach to enhance

the fitting accuracy of the MGM(1,n) model through modification of the prediction results. A

Markov chain process is characterized by the fact that it does not require a large amount of

data; Only a limited amount of information is needed to make a prediction [49]. This may be

because a Markov probability matrix can be used to determine the transfer rules of states,

while the MGM(1,n) model can reveal the predicted data’s development trend. With the com-

bination of the two models, the resulting information from the raw data can be adequately

evaluated, resulting in high prediction accuracy and stochastic volatility. Prior studies [43, 50]

has focused primarily on optimizing background values; however, residual modification mod-

els are rarely applied to the MGM(1,n) model. The prediction accuracy of traditional residual

modification models has been improved by developing modified residual modification models

such as the Grey model, Markov chains, Fourier series, genetic programming, and neural net-

works. Based on comparisons of the results of the MGM(1,n)-Markov model, the GM (1,1)

model, and the optimized MGM(1,n) model, the first model is more accurate, with a predic-

tion error of 3.02%, a much smaller error than the alternative models of 8.30% and 4.47%,

which provides evidence that the method is feasible. To date, only a few existing studies, such

as Zouhair et al. [51] and Govindan et al. [52], the Grey-Markov predictive models, have been

used to predict maritime incidents and traffic volumes.

Interpretation of results

Predicting roundabout accidents based on limited data is essential in traffic management and

decision-making when prioritizing road safety projects. There have been some qualitative or

quantitative studies of the factors contributing to these accidents in the past, but a clear and

complete picture is difficult to obtain due to incomplete information and additional factors

that interact [53]. The following reasons may explain these findings.
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The first interpretation concerns exploratory studies with limited sample sizes. This is

mainly due to the dynamic and time-varying nature of roundabout traffic systems and finite

volume data, indicating a non-stationary stochastic process with definite trends. Typically,

previous models require a certain amount of historical data to make predictions, which are not

guaranteed to be accurate with limited data [54]. Therefore, it is not possible to use these mod-

els to predict road accidents, as they are not suitable for that purpose. Moreover, models based

on older data are less accurate and add uncertainty than models based on more recent data,

resulting in reduced estimation accuracy [55]. In future studies, it would be beneficial to con-

sider ideal data collection times for the grey model.

The second explanation involves factors that affect predictive accuracy, which was complex

before. A grey relational analysis of traffic crashes shows that the importance of the grey rela-

tional rank differs between reference and comparison series. This suggests that additional

influences influence roundabout traffic crashes, and each influence plays a distinct role in

influencing these crashes. Interactions between humans, vehicles, and surroundings also lead

to more uncertainty in the prediction results and large data fluctuations. On the other hand,

we found that a single grey model (i.e., GM(1,1) and MGM(1,n)) is not optimal in terms of

prediction accuracy. In this case, this can be explained by the model requiring exponential reg-

ularity for the data sequence, and a relatively high degree of stochastic fluctuations is not

acceptable [12, 13].

The third interpretation involves a difference in methodology considerations. It is possible

to characterize roundabout traffic accidents as time series data affected by human interaction,

vehicles, and surrounding factors. Choosing a suitable forecasting algorithm is vital to traffic

accident forecasting. The traditional forecasting methods (e.g., parametric models [28, 29] and

non-parametric models [20, 30–33, 56]) play an essential role in actual work; however, there

are limitations due to the distribution and size of the sample. While grey prediction can over-

come insufficient data-driven shortcomings of traditional estimation models, it is relatively

poor at predicting roundabout traffic crashes, which are largely fluctuating data series influ-

enced by humans, vehicles, and surroundings. It has been demonstrated that Markov chains

apply to large fluctuations in data series; thus, by combining them with the grey prediction

model, limitations due to a lack of data and changes in the raw data sequence can be overcome.

The usage of its forecast for roundabout traffic crashes can deal with data sequences that fluc-

tuate highly, as well as takes into account the interaction factors (e.g., humans, vehicles, sur-

roundings) with a great scientific and practical method. Accordingly, the hybrid MGM(1,n)-

Markov model has a high level of accuracy in its prediction for roundabout traffic crashes

from 2016 to 2021 (Fig 3).

Our finding was that the single GM(1,1) or MGM(1,n) models were found to have a large

relative error of prediction in some years, reflecting the fluctuation of roundabout traffic

crashes. However, after error testing, the model’s accuracy was qualified, indicating that it is

suitable for predicting roundabout traffic accidents. The error in the prediction value needs to

be corrected. A hybrid Grey-Markov chain model is constructed, and the Markov chain

method is used to modify the predictions after making them. As a result of reducing prediction

error and performing an accuracy test, we found that the Grey-Markov chain model can make

more accurate predictions. Our results suggest that the Grey-Markov chain model performs

significantly better than the single GM(1,1) model, as shown in Fig 3. Studies have shown that

the Markov chain achieves high accuracy by correcting predictions’ fitted curves to match the

fluctuations of the actual values.

Nevertheless, a note should be made regarding the number of state partitions included in

the Grey-Markov model. State divisions determine the accuracy of their predictions, which are

not standardized but depend on the amount of historical data. More states should be split if
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there is a large amount of historical data, resulting in greater prediction accuracy. Large state

divisions have enhanced prediction accuracy, yet, too many states also lead to small samples

per state and low transition probabilities. Therefore, a reasonable division of states number is

recommended to improve prediction accuracy.

Conclusions and perspectives

This paper constructed a hybrid-optimized Grey-Markov model and compared it with two

additional existing models to predict roundabout traffic crashes in Michigan from 2016 to

2021. The optimized multivariate Grey-Markov model outperforms other grey models for pre-

dicting roundabout traffic accidents, achieving higher prediction accuracy. We can also con-

clude that similar approaches to that undertaken in this study can become suitable for solving

problems related to long-term prognosis and fluctuations in data, as demonstrated in the

experiments.

A summary of the key findings of this study are listed as follows.

1. Roundabout traffic accidents can be caused by various factors, including humans, vehi-cles,

and the surrounding environment. Our findings demonstrate that the leading major causes

of accidents in Michigan roundabouts are ranked as follows: crash on median (0.7750),

sideswipe (0.7747), snow-covered road (0.7683), head-on crash on left turn (0.7386), crash

with injury (0.7317), crash in rainy weather (0.7167), distraction driver (0.6407), and buses/

trucks crash (0.6189) through grey relational analysis.

2. In the context of roundabout traffic accidents, the proposed hybrid Grey-Markov model is

suitable for short-term predictions with limited sample data. Grey system theory can handle

uncertainty in the data, and Markov chain processes enhance its overall accuracy by cor-

recting its predictions. For a limited sample of cases, the hybrid multivariate Grey-Markov

model performs exceptionally well, demonstrating a close match between predicted and

actual values. Thus, roundabout accident prediction with limited data is effectively applied

with a mean relative error of 3.02%.

3. Several countermeasures have been developed in response to these risk factors affecting

roundabout crashes, urging the government, society, and drivers to work together. Further

studies in the vehicle region may benefit from examining more detailed incident data to

identify causal relationships between roundabout collisions.

The proposed prediction method makes several practical contributions to roundabout traf-

fic. First, we offered a hybrid roundabout traffic crash prediction model that combines grey

systems theory and Markov chains, which has significant engineering applications to assist

policymakers in predicting roundabout traffic accidents with limited data. To our knowledge,

there have been no extensive studies of such combined prediction methods; Second, our pro-

posed approach provides a detailed analysis of how impact factors relate to roundabout traffic

crashes. The grey relational analysis shows that the top three causes of roundabout accidents in

Michigan over the past six years were crashes in the median, head-on collisions in left turns,

and sideswipes from the same direction. Therefore, authorities should consider the findings of

this study when planning future traffic enforcement priorities for roundabouts, considering

the limited number of enforcement officers available. Finally, the results provide a basis for

preventing roundabout traffic crashes in the future and similar methodological applications

(e.g., maritime, mining, and civil aviation accidents). In other words, this approach simulta-

neously examines human, vehicle, and surrounding factors and provides insights into funda-

mental issues regarding future roundabout traffic and practical countermeasures.
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We propose the following countermeasures based on the characteristics and predictions of

traffic collisions at roundabouts:

1. Governments should establish appropriate mechanisms to formulate specific policies

regarding roundabout traffic safety based on the attributes of roundabouts and analyze the

available data to extract valuable information.

2. Law enforcement should intensify their efforts at intersections by enforcing strict sanctions

against violators to control the reckless behavior of drivers. Decision makers may benefit

from the results of this study in dealing with roundabouts and other traffic control tools.

This study should, however, be extended to further locations in Michigan with different

characteristics.

3. Vehicle drivers should pay adequate attention to traffic safety. We found that driver inat-

tention or distraction is one of the leading causes of roundabout accidents. Therefore, regu-

lar publicity must inform drivers about unsafe practices that can lead to roundabout

accidents and serious consequences. Traffic safety must be taken very seriously, and all reg-

ulations must be strictly followed.

There are a few limitations that must be considered in this study. First, the roundabout

crash data collected for this study were derived from official reports with limited observations,

which could be biased, and the data should be interpreted cautiously. Due to the limited sam-

ple size, we may only be able to provide preliminary results since the information gathered

may not be sufficient and a larger database on roundabouts is necessary. Second, roundabout

traffic crashes are influenced by multiple factors, yet we only consider eight key variables. Fur-

ther research will be conducted to incorporate additional roundabout traffic crash factors into

the model and to improve the predictive model from the point of view of the mechanisms

involved. Third, the hybrid Grey-Markov model is a predictive approach with limited data

conditions, and further sensitivity analysis is necessary to determine the optimal data sample

size and state partition to improve the prediction accuracy. Finally, the data are from Michigan

and may not apply directly to settings in other states of the U.S. or other countries. Addition-

ally, this improved model may be extended to alternative fields (e.g., maritime, mining, and

civil aviation accidents); however, additional theoretical and applied studies are needed.

Despite the hybrid MGM(1,4)-Markov model performing well in predicting round-about

traffic accidents, further expansion and verification of the grey forecasting model is expected

in future studies. Further research is needed to combine other artificial intelligence approaches

to solve uncertain system modeling for long-term forecasting effects. By expanding model con-

struction and relaxing parameter setting and model construction restrictions, artificial intelli-

gence can be used to compensate for the traditional grey model’s obvious linear feature, thus

compensating for its shortcomings.
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