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Abstract

Objectives

Two-dimensional speckle tracking echocardiography has been considered an angle-inde-

pendent modality. However, current literature is limited and inconclusive on the actual

impact of angle of insonation on strain values. Therefore, the primary objective of this study

was to assess the impact of angles of insonation on the estimation of fetal left ventricular

and right ventricular global longitudinal strain. Secondarily, the impact of different definitions

for angles of insonation was investigated in a sensitivity analysis.

Methods

This is a retrospective analysis of a prospective longitudinal cohort study with 124 healthy

subjects. The analyses were based on the four-chamber view ultrasound clips taken

between 18+0 and 21+6 weeks of gestation. Angles of insonation were categorized into

three groups: up/down, oblique and perpendicular. The mean fetal left and right ventricular

and global longitudinal strain values corresponding to these three groups were compared by

an ANOVA test corrected for heteroscedasticity.

Results

Fetal left and right ventricular global longitudinal strain values were not statistically different

between the three angles of insonation (p-value >0.062 and >0.149, respectively). When

applying another definition for angles of insonation in the sensitivity analysis, the mean left
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ventricular global longitudinal strain value was significantly decreased for the oblique com-

pared to the up/down angle of insonation (p-value 0.041).

Conclusions

There is no evidence of a difference in fetal left and right ventricular global longitudinal strain

between the different angles of insonation in fetal two-dimensional speckle tracking

echocardiography.

Introduction

Functional assessment of the fetal heart is proven to be helpful in the detection of common

pregnancy complications such as fetal growth restriction and pregnancy diabetes [1–3]. Car-

diac function can be assessed by two-dimensional echocardiography techniques [4]. However,

as inherent to the use of Doppler velocity measurements, these techniques depend on the

angle of insonation (AoI) [5]. Doppler-based measurements are difficult to obtain if the fetus

is in an unfavorable position. Two-dimensional speckle tracking echocardiography (2D-STE)

assesses cardiac function using myocardial deformation imaging (strain imaging) and has

been considered angle-independent [6–9].

In 2D-STE displacement of speckles, scatters of the ultrasound beam by the tissue, are

being tracked. These speckles yield a local acoustic fingerprint that can be tracked frame to

frame during a cardiac cycle [10]. The speckles’ position change compared to its original end-

diastolic position in the myocardium, not in relation to the ultrasound beam [11,12]. There-

fore, 2D-STE is considered to be angle-independent.

A recent study questioned the angle-independency of 2D-STE and demonstrated a signifi-

cant difference between AoI of the fetal left ventricular (LV) global longitudinal strain (GLS)

[13]. However, gestational age (GA) and the quality of the fetal four-chamber heart clip are

known factors affecting GLS measurements, which could have influenced the study results

[14–16]. Fetuses with various GA were included. Moreover, adequate quality four-chamber

view ultrasound clips (fetal heart clip) were achieved in only 62% of cases for all AoI [13,14].

Assessment of the impact of AoI on GLS measurements is essential for reliable future

research on this topic. To assess whether 2D-STE is angle-independent, adequate quality fetal

heart clips, high FR and correction for GA is needed [8]. Therefore, the current study aimed to

study the impact of AoI on fetal LV-GLS and right ventricular (RV) GLS values considering all

these influencing factors.

Material and methods

Population

This is a retrospective analysis of a prospective longitudinal cohort study (NL64999.015.18).

This study was performed in a tertiary care teaching hospital in the Netherlands from May

2018 until April 2019 [17].

The Board of the Medical Ethics Committee of Máxima MC, Veldhoven, The Netherlands,

confirmed that the Medical Research Involving Human Subjects Act does not apply to the cur-

rent retrospective study and granted a waiver for ethical approval (N21.054).

Healthy women from 18 years onwards with an uncomplicated singleton pregnancy

between 18+0 and 21+6 GA and a normal second-trimester anomaly scan were included in
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the prospective longitudinal cohort study. Exclusion criteria were women suffering from a sys-

temic disease, including pre-existent diabetes mellitus, hypertensive disorders and an esti-

mated fetal weight below the 10th percentile corrected for GA. GA was based on first-trimester

crown-rump length measurement. Women who developed gestational diabetes or hyperten-

sive pregnancy disorders, and those who gave birth to a neonate with a birth weight below the

10th percentile or with congenital or genetic abnormalities were excluded from the analysis as

these factors may influence myocardial deformation values [2,3,10,18–21]. Confirmation of

the exclusion criteria was completed 10 weeks after childbirth. Subjects not meeting the in-

and exclusion criteria were removed from the cohort.

Data acquisition and 2D-STE analysis

At least three fetal heart clips per fetus with a duration of three seconds have been recorded by

an experienced obstetric sonographer (NvO, CdV) following a strict protocol [17]. A Philips

Epiq W7 ultrasound system (Royal Philips N.V., Amsterdam, The Netherlands) with a 9-MHz

linear transducer was used. 2D-STE analysis was performed offline on the raw uncompressed

data of the fetal heart clips with TomTec Cardiac Performance 1.2 software (TomTec Imaging

Systems, Munich, Germany) by a gynaecologist (NvO) with extensive experience in the assess-

ment and performance of fetal heart ultrasounds and 2D-STE analysis. The experienced

gynaecologist (NvO) selected the best one out of the three available fetal heart clips per fetus,

based on fetal heart clip quality and FR, explained in detail below. 2D-STE analysis was per-

formed on this fetal heart clip.

Fetal heart clips were considered adequate for 2D-STE when they consisted of a complete

four-chamber view with sharp boundaries between the endocardium, lumen and the AV-

valves, without the outflow tracts being visible or the presence of acoustic shadows or fetal

movements. To ensure the attainment of adequate quality fetal heart clips, it is important to

appropriately set the region of interest (ROI) and to use [8] optimal settings for image depth,

width, and zoom box contributing to achieve maximum frame rates (FR) while minimizing

potential speckle anisotropy impact on fetal 2D-STE [14]. Fetal heart clips with a FR lower

than 80 Hz were not considered feasible and were excluded from the analysis [8]. The ROI also

indicates the specific cardiac layer used for offline delineation. Within a 2D-STE analysis, tran-

sitioning the delineation from the endocardial to the epicardial border significantly affects

global longitudinal strain (GLS) values [22]. Prior to offline delineation, the ROI was set, with

preference given to the narrowest endocardial border as the default option [22].

Angles of insonation

The AoI was defined as an end-systolic angle between the middle of the intraventricular septum

and the ultrasound beam. Prospectively the AoI were divided into three categories: up/down, per-

pendicular and oblique. The up/down AoI was defined as an angle between 0 ± 22˚ or 180 ± 22˚,

the perpendicular AoI was defined as an angle between 90 ± 22˚ or 270 ± 22˚, and the oblique

AoI was defined as an angle between 45 ± 22˚, 135 ± 22˚, 225 ± 22˚ or 315 ± 22˚. Each position of

the fetal intraventricular septum could be categorized in one of these three AoI.

A sensitivity analysis was conducted to investigate the impact of the AoI definition. In this

analysis, we employed the definition proposed by Semmler et al. [13]. For the sensitivity analysis,

we categorized the up/down AoI as an angle between 0 ± 15˚ or 180 ± 15˚, the perpendicular AoI

as an angle between 90 ± 15˚ or 270 ± 15˚, and the oblique AoI as an angle between 45 ± 15˚,

135 ± 15˚, 225 ± 15˚, or 315 ± 15˚. Fetal intraventricular septum positions falling outside these

angles were considered part of the transition zones and were excluded from the 2D-STE analysis.

Fig 1 illustrates the different AoI categories when utilizing the various definitions.
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The outer circle shows the definition for the different angles of insonation used for this

study. The inner circle visualizes the definition for angles of insonation as used by Semmler

et al. [13]. The red areas show the transition zones associated with both definitions.

Statistical analysis

The normality of the data was assessed statistically per category using the Shapiro-Wilk test and

qualitatively by inspecting histograms and normality plots. Descriptive statistics for continuous

variables are presented as means and standard deviations (±SD) or medians and interquartile

ranges (IQR) depending on the normality of the distribution. Categorical variables are presented

as absolute numbers and percentages. To compare GLS values measured along the three different

AoI, we fitted a one-way heteroskedastic ANOVA model [23]. This allowed us to account for dif-

ferences in variability between the three AoI categories. The estimated marginal mean differences

were also derived for each pairwise comparison. To explore the impact of the Aol definition, we

performed a sensitivity analysis repeating the same analyses when the AoI were defined accord-

ingly to previously published literature, including a transition zone between the AoI [13]. P-values

below 0.05 were considered statistically significant. Statistical analyses were conducted with a stat-

istician (MR) using SAS software, Version 9.4 of the SAS System for Windows.

Fig 1. Definitions for angles of insonation.

https://doi.org/10.1371/journal.pone.0287003.g001
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Results

Fig 2 illustrates the flowchart depicting the selection and categorization process for the included

fetal heart clips. Out of the initially available 372 fetal heart clips (three per fetus), 124 clips (33.3%)

were selected. Following a quality assessment, 8 clips (7%) were excluded due to low quality, result-

ing in 116 clips (93%) with adequate quality. The median gestational age of the 116 fetuses included

in the analysis was 19+2 weeks (range: 18+0–21+6 weeks). Among these clips, 69 (59.5%) had an

oblique AoI, 21 (18.1%) had a perpendicular AoI, and 26 (22.4%) had an up/down AoI. Table 1

presents the FR and GLS values for each AoI category. Statistical analysis revealed significant differ-

ences in FR between the different AoI categories (p = 0.004 and p = 0.029, respectively).

Mean GLS values and the influence of AoI

Table 2 presents the descriptive statistics of GLS for the three AoI categories. There was no sta-

tistically significant difference between AoI for the mean LV-GLS and RV-GLS values.

Sensitivity analysis

Tables 3 and S1 present the comparison of GLS measurements obtained from different AoI

categories using Semmler’s definition for AoI (Fig 1)13. The analysis revealed a statistically

Fig 2. Flowchart of the fetal heart clips.

https://doi.org/10.1371/journal.pone.0287003.g002
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significant decrease in LV-GLS values for the oblique AoI compared to the up/down AoI

(p = 0.041).

Discussion

In this study, we assessed the differences in fetal LV-GLS and RV-GLS between AoI. No signif-

icant differences in GLS were shown between the different AoI. When comparing AoI as

defined in literature by Semmler et all, the LV-GLS value of the oblique AoI was significantly

decreased (i.e. more negative) compared to the up/down AoI. There was no significant differ-

ence in RV-GLS for all analyses.

The assumption that 2D-STE would be angle independent was based on in vitro studies

[6,7]. However, in a population of infants between 6 and 18 years old, a difference in GLS val-

ues was found between AoI [24]. Only one study by Semmler et all investigated the impact of

AoI on GLS in fetuses. This study demonstrated a significantly increased (i.e. less negative)

Table 2. Mean difference of GLS between different angles of insonation.

Reference Angle of Insonation Comparison Angle of Insonation Mean difference (95% CI) P-value*
Left ventricle Oblique Perpendicular 1.92 (-2.92 – 6.76) 0.425

Oblique Up/down -2.75 (-5.87 – 0.36) 0.082

Perpendicular Up/down -4.67 (-9.58 – 0.24) 0.062

Right ventricle Oblique Perpendicular 1.30 (-2.05 – 4.65) 0.435

Oblique Up/down -1.28 (-3.97 – 1.41) 0.345

Perpendicular Up/down -2.58 (-6.12 – 0.97) 0.149

95%CI = 95% confidence interval. * P-values <0.05 are considered statistically significant.

https://doi.org/10.1371/journal.pone.0287003.t002

Table 3. Mean difference of GLS between the angles of insonation as categorized by Semmler et al. [13].

Reference Angle of Insonation Comparison Angle of Insonation Mean difference (95% CI) P-value*
Left ventricle Oblique Perpendicular 0.96 (-6.16 – 8.09) 0.777

Oblique Up/down -3.83 (-7.49 – -0.17) 0.041*
Perpendicular Up/down -4.79 (-11.82 – 2.23) 0.165

Right ventricle Oblique Perpendicular 0.64 (-4.88 – 6.16) 0.084

Oblique Up/down -2.56 (-5.76 – 0.65) 0.115

Perpendicular Up/down -3.20 (-8.84 – 2.45) 0.243

95%CI = 95% confidence interval. * P-values <0.05 are considered statistically significant.

https://doi.org/10.1371/journal.pone.0287003.t003

Table 1. Median frame rates and mean global longitudinal strain per angle of insonation.

Angle of Insonation
Oblique Perpendicular Up/down

Median # frames / second (IQR)
Median # frames / cardiac cycle (IQR)

n = 69 n = 21 n = 26
119 (109–138) 115 (90–125) 97 (89–128)

50 (43–55) 49 (36–52) 40 (36–52)

Mean GLS left ventricle (95%CI)
Mean GLS right ventricle (95%CI)

-22.23 (-24.35 – -20.10) -24.15 (-28.57 – -19.72) -19.47 (-21.83 – -17.12)

-20.57 (-22.28 – -18.87) -21.87 (-24.83 – -18.91) -19.30 (-21.44 – -17.16)

IQR = interquartile ranges, 95%CI = 95% confidence interval.

https://doi.org/10.1371/journal.pone.0287003.t001
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LV-GLS value in the up/down AoI compared to the oblique and perpendicular AoI [13]. Our

study could only confirm these findings within the sensitivity analysis, showing a significant

difference for LV-GLS between the up/down AoI compared to the oblique AoI. However, in

our primary analysis, including all angles between the intraventricular septum and the ultra-

sound beam, no significant difference in GLS between the different AoI was found.

Fig 3. (A) Within the up/down angle of insonation, the myocardium is thinly depicted, and the kernels are all in the

same axial alignment compared to the ultrasound beams. (B/C) The thickness of the myocardium is fully displayed in

the perpendicular and oblique angles of insonation.

https://doi.org/10.1371/journal.pone.0287003.g003
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The anisotropic nature of B-mode ultrasound imaging may explain the differences in GLS

values between AoI, as found in the literature and our sensitivity analysis. The ability of an

ultrasound system to adequately distinguish between two speckles at a given tissue depth may

be hampered by low axial and lateral resolution [25]. However, axial and lateral resolution are

dictated by the transmit frequency of the transducer, bandwidth and geometry of the ultra-

sound array. Depending on these features, the center frequency of the probe should be

adjusted to optimize resolution and minimize the impact of AoI on strain measurements [14].

However, even with the most optimal settings, a difference between AoI remains due to differ-

ences in visualization of the myocardium. Consequently, in the up/down AoI, speckles lie

mainly in the same axial alignment as the ultrasound beams, complicating adequate tracing of

the speckles even with good resolution (Fig 3) [14]. This may potentially clarify differences in

GLS values between AoI.

On the other hand, the transition zones may explain why we did not find a significant dif-

ference in GLS between AoI. The transition zones between the intraventricular septum and

the ultrasound beam increase differences between AoI and therefore facilitate the detection of

differences between AoI [13]. However, in a highly motile fetus, achieving adequate fetal heart

clips can already be challenging and time consuming, and excluding certain AoI may lead to a

drop in clinical applicability. We suggest using all end-systolic angles between the intraventric-

ular septum and the ultrasound beam for future studies to increase clinical applicability.

Further, higher frame rates are known to result in increased GLS (i.e. more negative GLS

values), while low frame rates may cause an underestimation of the impact of AoI on GLS

[26,27]. Although fetal heart clips with FR <80 frames per second were excluded in this study,

a significantly lower mean FR was found for the up/down AoI compared to the oblique and

perpendicular AoI. This might have resulted in an underestimation of GLS in the up/down

AoI [27–34]. However, this does not affect the conclusion of this study since the GLS value

would decrease (i.e. become more negative) at a higher FR and thus, the difference between

AoI would then only decrease.

Results of our study show that differences between AoI can only be observed when the angle

between the intraventricular septum and the ultrasound beam are far enough apart. In addition,

it remains rather uncertain if differences between AoI have any impact on clinical outcomes.

Unfortunately, this study was unable to investigate clinical relevance since the normal values for

TomTec software are based on the same ultrasound clips used for the current study [15]. How-

ever, the absolute mean GLS values are within a relatively small range, while normal values for

the different vendors of ultrasound machines and 2D-STE software have a wider distribution,

suggesting that all GLS values are within a normal range irrespective of the AoI [15,16].

Finally, there were no significant differences between AoI in the right ventricle. This might

be explained by the anatomical architecture of the right ventricle, including the moderator

band and increased trabeculations, that might impede accurate delineation [4]. However, con-

clusive evidence is lacking, but it was out of scope for this study.

Strengths and limitations

This was the first study to investigate the impact of AoI in the right ventricle. Furthermore, we

only used frame rates�80Hz to correct for the high fetal heart rate [8]. We also limited the

influence of cardiac maturation by using a narrow GA window [15]. We clearly defined the

endocardial border as default ROI [22], we assessed fetal heart clip quality [14] and investi-

gated different definitions for AoI [13].

A limitation is that we have not studied every AoI within a single fetus. Now, differences

between AoI may have been masked by inter-fetal differences. Also, fetal GLS values depend
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on the used ultrasound machine and 2D-STE software [35,36]. Therefore, the results of this

study only apply to TomTec Cardiac Performance 1.2 software and the Philips EPIQ ultra-

sound system. However, literature also demonstrated an impact of AoI on GLS values using

Vitrea Software and the Canon Aplio i800 or Aplio i900 ultrasound machine [13].

Conclusion

No significant difference in fetal LV- and RV-GLS between the different AoI in fetal 2D-STE

was found in this study. However, with other definitions for AoI, a significant difference in

LV-GLS was found between de oblique AoI compared to the up/down AoI.

Future research should validate the actual impact of AoI on fetal GLS by generating refer-

ence values for all three AoI measured within the same fetus.

Supporting information

S1 Table. Median frame rates and mean global longitudinal strain for the sensitivity analy-

sis.
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