
RESEARCH ARTICLE

Development and validation of a prediction

tool to support engagement in HIV care

among young people ages 10–24 years in

Kenya

Kate WilsonID
1*, Kawango Agot2, Jessica Dyer1, Jacinta Badia2, James Kibugi2,

Risper Bosire2, Jillian NearyID
3, Irene Inwani4, Kristin Beima-Sofie1, Seema Shah5,

Nahida Chakhtoura6, Grace John-Stewart1,3,7,8, Pamela Kohler1,9

1 Department of Global Health, University of Washington, Seattle, WA, United States of America, 2 Impact

Research and Development Organization, Kisumu, Kenya, 3 Department of Epidemiology, University of

Washington, Seattle, WA, United States of America, 4 University of Nairobi/Kenyatta National Hospital,

Nairobi, Kenya, 5 Northwestern University Medical School/Bioethics Program at Lurie Children’s Hospital,

Chicago, IL, United States of America, 6 Eunice Kennedy Shriver National Institute of Child Health and

Human Development, National Institutes of Health, Washington, DC, United States of America, 7 Department

of Medicine, University of Washington, Seattle, WA, United States of America, 8 Department of Pediatrics,

University of Washington, Seattle, WA, United States of America, 9 Department of Child, Family, Population

Health Nursing, University of Washington, Seattle, WA, United States of America

* ksw@uw.edu

Abstract

Introduction

Loss to follow-up (LTFU) among adolescents and young adults living with HIV (AYALWH) is

a barrier to optimal health and HIV services. We developed and validated a clinical predic-

tion tool to identify AYALWH at risk of LTFU.

Methods

We used electronic medical records (EMR) of AYALWH ages 10 to 24 in HIV care at 6 facilities

in Kenya and surveys from a subset of participants. Early LTFU was defined as >30 days late

for a scheduled visit in the last 6 months, which accounts for clients with multi-month refills. We

developed a tool combining surveys with EMR (‘survey-plus-EMR tool’), and an ‘EMR-alone’

tool to predict high, medium, and low risk of LTFU. The survey-plus-EMR tool included candi-

date sociodemographics, partnership status, mental health, peer support, any unmet clinic

needs, WHO stage, and time in care variables for tool development, while the EMR-alone

included clinical and time in care variables only. Tools were developed in a 50% random sam-

ple of the data and internally validated using 10-fold cross-validation of the full sample. Tool

performance was evaluated using Hazard Ratios (HR), 95% Confidence Intervals (CI), and

area under the curve (AUC)� 0.7 for good performance and�0.60 for modest performance.

Results

Data from 865 AYALWH were included in the survey-plus-EMR tool and early LTFU was

(19.2%, 166/865). The survey-plus-EMR tool ranged from 0 to 4, including PHQ-9�5, lack
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of peer support group attendance, and any unmet clinical need. High (3 or 4) and medium

(2) prediction scores were associated with greater risk of LTFU (high, 29.0%, HR 2.16, 95%

CI: 1.25–3.73; medium, 21.4%, HR 1.52, 95%CI: 0.93–2.49, global p-value = 0.02) in the

validation dataset. The 10-fold cross validation AUC was 0.66 (95%CI: 0.63–0.72). Data

from 2,696 AYALWH were included in the EMR-alone tool and early LTFU was 28.6% (770/

2,696). In the validation dataset, high (score = 2, LTFU = 38.5%, HR 2.40, 95%CI: 1.17–

4.96) and medium scores (1, 29.6%, HR 1.65, 95%CI: 1.00–2.72) predicted significantly

higher LTFU than low-risk scores (0, 22.0%, global p-value = 0.03). Ten-fold cross-valida-

tion AUC was 0.61 (95%CI: 0.59–0.64).

Conclusions

Clinical prediction of LTFU was modest using the surveys-plus-EMR tool and the EMR-

alone tool, suggesting limited use in routine care. However, findings may inform future pre-

diction tools and intervention targets to reduce LTFU among AYALWH.

Introduction

Adolescents and young adults living with HIV (AYALWH) in sub-Saharan Africa continue to

experience lower retention in care and poorer outcomes than adults, despite the availability of

antiretroviral therapy (ART) to improve individual health and reduce transmission risk [1].

Once treatment has been initiated, loss-to-follow-up (LTFU) among AYALWH ages 10 to 24

ranges from 20–30% depending on the population and outcome definition [2–4]. In Kenya, a

country with a high burden of HIV, adolescents and young adults comprise nearly 50% of new

HIV infections [5] and LTFU has been reported between 15–50% [6, 7]. LTFU can increase

the risk of viral non-suppression through interruption of ART [8, 9]. An analysis of the popu-

lation-based Kenya AIDS Indicator Survey data (2012) of factors associated with community

viral load prevalence in Kenya found that younger age (15–29 years versus 30–64) and being

out of HIV care (LTFU or never enrolled) were associated with detectable viral load (�500

copies/ml) [10]. Recently, UNAIDS announced a renewed commitment to improve retention

in care among AYALWH as a key strategy to end AIDS by 2030 [11].

Several factors can increase risk of LTFU from care among AYALWH [12]. These include

HIV-related stigma [13], lack of ‘youth friendly’ providers or spaces [14, 15], lack of support

transitioning to adult care [15], and depression [16]. Potential interventions to reduce risk of

LTFU among AYALWH [17, 18] include family-based economic support [19–21], ‘youth-

friendly’ services [14] and peer-support groups [22]. However, these interventions require sig-

nificant resource investments for already strained health systems, and there is a need to

develop approaches to prioritize which interventions to provide AYALWH when resources

are scarce [23].

Many countries in sub-Saharan Africa have adopted differentiated service delivery models,

a form of client-centered care intended to improve system efficiencies, quality, and outcomes

[23]. Clients identified as clinically stable can shift to less frequent visits and multi-month ART

refills, while unstable clients continue with standard care. In Kenya, AYALWH ages 20 and

older are eligible for differentiated care, including multi-month ART refills and longer time

between visits [24]. The emphasis on differentiated care prioritizes individuals doing well in

care, however, there remains a need for guidelines to systematically improve care for those

who are at risk for LTFU or who are unstable in care.
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Clinical prediction tools are an effective, data-driven strategy to improve care and treat-

ment decisions for a range of health conditions [25–31] including HIV [28, 31–33]. They are

developed using data from similar client populations and adapted to work in a routine care set-

ting [29, 34]. With expanded use of digital systems, there are new opportunities to use predic-

tion tools to support HIV services using data from electronic health records systems [35, 36].

Clinical prediction tools have been developed to identify women who may be eligible for Pre-

Exposure Prophylaxis (PrEP) services [27, 37, 38], adults in need of HIV testing [33], and

adults at risk of viral failure who would benefit from adherence support [31, 39]. To date, there

are no prediction tools designed to identify AYALWH at risk of LTFU.

A clinical prediction tool to identify AYALWH at risk of LTFU could support clinicians to

better allocate intensified care to at-risk AYALWH before they are lost and to identify stable

AYALWH for differentiated services. To address this gap, we developed and validated a clini-

cal prediction tool to identify AYALWH at risk of LTFU using surveys and routine data.

Materials and methods

Setting and population

We conducted a prospective cohort study among AYALWH enrolled in care at six facilities in

Kisumu and Homa Bay counties in Kenya. Selection criteria for the facilities were having an

active electronic medical records (EMR) system, at least 100 AYALWH enrolled in care, and

permission from facility managers. Data sources for this clinical prediction tool included

AYALWH EMR and surveys. EMR data included all AYALWH ages 10 to 24 years enrolled in

HIV care from October 1, 2018, until administrative censoring on February 29, 2020, due to

COVID-19. Starting in April 2019, all eligible AYALWH ages 10 to 24 enrolled in care at the

time were invited to participate in a cohort study that included behavioral surveys at enroll-

ment and every 6 months. Study staff obtained written informed consent from AYALWH ages

18 to 24 or caregiver consent and adolescent assent for adolescents ages 10 to 17 years. Study

staff administered face-to-face surveys during routine clinic visits in the participants’ preferred

language (Kiswahili, Dholuo, or English).

Outcomes and predictors

The primary outcome of the prediction tool was loss to follow-up, defined as>30 days late for

a scheduled visit in the EMR during a 6-month period. We chose this definition to measure

early risk of LTFU among AYALWH when interventions to support clinic attendance may be

most effective [39]. Counting from last scheduled visit rather than last actual visit accounted

for AYALWH who were on multi-month dispensing (MMD) schedules. For example, a client

on a 3-month refill regimen would be LTFU if they were more than 30 days late a quarterly

visit (4 months out of care). AYALWH were excluded if their first visit in the EMR occurred

within 30 days of February 29, 2020, or if they had an enrollment survey that could not be

linked to their EMR.

Candidate predictors of LTFU were selected from AYALWH surveys and EMR data based

on plausibly and prior studies among AYALWH [6, 13, 14]. We used an adapted ecological

framework [40] to guide our thinking, and present example predictors in Fig 1.

Variables from surveys included social (pays own expenses), service (any caregiver accom-

paniment, any unmet clinical needs, peer support group attendance, use of any differentiated

ART refill models, seen at youth-friendly vs. adult clinic), interpersonal (exposure to any phys-

ical, sexual, or emotional violence), and individual characteristics not captured in EMR (e.g.

alcohol use, other drug use, did not complete secondary school). The variable unmet clinical
needs was computed as indicating at least one need was not met after reading aloud a list of
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standard services that should be offered at the clinic visit, including contraception and preg-

nancy information, screening for STIs, depression, gender-based violence (GBV), and sub-

stance use, nutrition assessment, and referral to peer support groups. Asking clients whether

their clinical needs were met at the visit is often used to evaluate quality of care [41]. Resilience

was defined using a 2-item Connor-Davidson Resilience Scale [42]. Depressive symptoms

were measured using Patient Health Questionnaire-9 (PHQ-9), social support by the Multidi-

mensional Scale of Perceived Social Support (MSPSS) [43], alcohol use by the Alcohol Use Dis-

orders Identification Test-Consumption (AUDIT-C) [44], and exposure to any physical,

sexual, or emotional violence in the last six months using an adapted version of the World

Health Organization (WHO) Violence Against Women survey [45]. Assessment of depressive

symptoms using PHQ-9 score, substance use, exposure to recent violence, and participation in

peer support group attendance are recommended for AYALWH in Kenya, although these data

are not yet routinely incorporated in EMR systems [33, 36]. Candidate predictors available in

EMR were age at first visit since October 1, 2018, marital status (single, married, divorced/wid-

owed), WHO stage (recoded as a binary variable: 3 or 4, ‘advanced disease’ versus 1 or 2,

‘asymptomatic/early stage infection’) [46], transfer status (transferred in vs. never transferred),

and time on ART. We created variables for newly enrolled in care (less than 6 months versus 6

Fig 1. Adapted socio-ecological framework of potential domains and example predictors of loss to follow-up

among adolescents and young adults with HIV.

https://doi.org/10.1371/journal.pone.0286240.g001
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months or more) and time on ART (less than 3 years versus 3 or more) from existing data. We

used enrollment values of all predictors except for time on ART and WHO status, which were

time-varying in the EMR. We computed time on ART as the total days between date of ART

initiation until the outcome occurred or administrative censoring on February 29, 2020, con-

verted to years. We used the first non-missing value for WHO stage after entry into the analy-

sis cohort from each client record.

We developed two versions of the tool to predict high, medium, and low risk of LTFU. The

‘survey-plus-EMR’ tool included data among the subset of AYALWH who were enrolled in

the cohort study and had surveys linked to EMR data (April 2019 to February 2020). We also

developed an EMR-alone tool that included a larger sample of AYALWH in care (October

2018 to February 2020), some of whom were not enrolled in the cohort study therefore lacked

survey data. We used methods for prediction rules [27, 28] and from risk scores used to predict

HIV infection among women in Kenya [28] and South Africa [37] and virologic failure among

adults living with HIV in Haiti [31]. Continuous variables and categorical variables with three

or more levels were transformed into binary values. These included age group (adolescents as

10–19 and young adults as 20–24 years), marital status (single vs. ever married), PHQ-9 (0–4

vs 5 or higher), and AUDIT-C (0–3 vs 4 or higher).

Univariable Cox regression models were developed to estimate hazard ratios (HR) and 95%

Confidence Intervals (95% CI) and two-sided α = 0.05. All regression models accounted for

variability between facilities (e.g. size, volume, location) by clustering on facility. To evaluate

potential effect modification by age group, all models were re-run with an interaction term

between the predictor and binary age. We proposed developing age-group stratified prediction

tools if the p-values of most interaction terms were <0.1. Since this was not the case, age group

was included as a pre-specified predictor in the model. All predictors with significance level of

0.1 or less were included in multivariable regression models. We did not adjust for multiple

comparisons to minimize loss of power. In this complete-case analysis, only AYALWH with

non-missing data for all predictors were included. Overall, 70 individuals were dropped from

the multivariable analyses for the survey-plus-EMR tool due to missing one or more responses,

41 from the training dataset and 29 from the validation dataset. We used Akaike Information

Criteria (AIC) backwards elimination to determine the most predictive variables to include in

the final model. If key variables were necessary to make the predictive model robust, these

were retained in the model. Because WHO stage had>10% missing data, that variable was

excluded from multivariable analysis, and all cases with missing WHO would have been

dropped. We decided not to perform multiple imputation for variables with missing data to

preserve the dataset as it would be used in routine care, where imputation is not conducted.

Age at ART initiation was excluded due to collinearity with age group. A score was assigned to

each predictor from the final stepwise regression model by dividing the coefficient for each

predictor by the smallest coefficient among all predictors in the model and rounding to the

nearest integer [46].

Tool performance was assessed through model testing according to standard steps for pre-

diction tool development [46, 47]. Specifically, we calculated area under the receiver operating

curve (AUC, and range 0–1.0) which is identical to the c-statistic for continuous outcomes

[29] using optimal cut points of a binary version of the score to assess ability to differentiate

between individuals at high and low risk of LTFU. We used the standard cut off AUC�0.7 for

‘good’ performance, and AUC of 0.60–0.69 for modest performance [29, 48]. We used a Brier

score (range 0–1.0) to estimate the accuracy to predict LTFU. We then created a three-level

score and assigned numeric values to the low, medium, and high-risk categories based on the

score distribution in tertials. Each tool was developed in a random sample of 50% of the data

(‘training dataset’) and externally validated in the remaining 50% of the data (‘validation
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dataset’) that was not used to generate the initial score. We validated the score using unad-

justed Cox regression models in the validation cohort, accounting for clustering by facility. We

used unadjusted analyses to develop a tool that providers could understand and explain to cli-

ents. We used the Global Wald test of significance for the risk score, against the null hypothesis

that none of the risk levels in the score were different than zero. We also conducted 10-fold

cross-validation procedures in the full dataset to evaluate the generalizability of each tool, esti-

mated by AUC. We compared the ‘survey-plus-EMR’ tool with the EMR-alone tool descrip-

tively to determine whether the EMR tool was able to provide comparable clinical prediction.

All analyses were conducted in Stata 16.0 (College Station, Texas).

Sample size and power

We estimated the minimal detectable hazard ratios of LTFU assuming sample size of 1,350

AYALWH enrolled on the cohort with EMR data and a LTFU proportion of 25% for an effec-

tive analytic sample of ~1,000. We estimated the minimum detectable difference in LTFU pro-

portion at 80% power for a range of predictor levels (10%-50%), at α = 0.05, for the training

and validation cohorts (n = 500 each). Under these assumptions, we estimated 80% power to

detect RR�1.66 for common exposures and�2.12 for rare exposures in the training or valida-

tion samples, respectively.

This study was approved by the University of Washington Institutional Review Board and

Maseno University Ethics Review Committee. We received permissions from County and

health facility leadership prior to accessing EMR and viral load data.

Results

Survey-plus-EMR prediction tool

In the six facilities, 973 AYALWH had enrolled in the cohort study at the time of the analysis,

and 108 did not have a linked EMR, resulting in 865/973 (88.9%) eligible individuals. Overall,

6-month LTFU was 19.2% and similar between the training and validation cohorts (88/433,

20.3% vs. 78/432, 18.1%, p = 0.40) (Table 1).

In the training dataset of 432 AYALWH, we evaluated social, service, interpersonal (partner

violence), psychosocial, and individual-level variables from surveys as candidate predictors of

LTFU in univariable analysis (Table 2). Variables from EMR were age group, sex, marital sta-

tus, newly enrolled, transfer status, time on ART, and WHO stage. Of the variables tested,

PHQ-9 score, any unmet service need, no participation in a peer support group, enrollment in

adult care, and newly enrolled were independently significantly associated with LTFU and

evaluated in multivariable analyses (N = 795).

Variables most predictive of LTFU in the final model using AIC selection were PHQ-9

score, no participation in a peer support group, and at least one unmet service need (lowest

AIC = 837.29, partial log likelihood = —415.61, k = 3 parameters) (Table 3). Including age

group in the model did not improve model performance. Total prediction scores ranged from

0 to 4. Using a 0.5 cut point for the binary form of the score, the AUC was 0.58 (95% CI: 0.51–

0.64, standard error = 0.04), with sensitivity of 0.53 and specificity of 0.62, and Brier score of

0.40 (Table 3 and Fig 2A). The three-level prediction tool classified 15.9% of AYALWH as

high risk, 25.6% medium risk, and 59.1% as low risk of LTFU, with medium- and high-risk

scores associated with significantly greater risk of actual LTFU (medium risk, HR 1.52, 95%CI:

0.93–2.49, high risk, HR 2.16, 95%CI: 1.25–3.73; Global Wald Chi-square = 7.72 and p-

value = 0.02 comparing medium and high to low-risk scores, degrees of freedom = 2).

In the validation cohort (n = 404), medium (HR 1.58, 95%CI: 1.07–2.33) and high-risk

scores (HR 1.46, 95%CI: 0.76–2.81) predicted greater risk of LTFU compared to low-risk
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scores and had a trend for an association (Global Wald Chi-square = 5.29 and p-value = 0.07,

degrees of freedom = 1). There was limited generalizability using 10-fold cross validation in

the full sample (AUC = 0.66, 95%CI: 0.63–0.72, standard error = 0.025, Chi-square = 11.72, p-

value<0.001).

Table 1. Characteristics of AYALWHa in the training and validation cohorts for the survey-EMRb and EMRb-alone tools.

Survey plus EMRb dataset (N = 795) Training Validation p-value*
Characteristic (n = 432) (n = 433)

Age

10–19 324 (75.0) 331 (76.4) - -

20–24 108 (25.0) 102 (23.6) 0.62

Female 274 (63.4) 284 (65.6) 0.51

Pays most of own expenses (n = 860) 25 (5.8) 23 (5.4) 0.77

Left school before age 18 (n = 858) 108 (25.2) 95 (22.1) 0.30

Mean social support score (n = 808) 3.5 (3.1, 4.0) 3.4 (3.0, 3.8) 0.17

Mean resilience score (n = 840) 3 (2, 3.5) 3 (2, 3.5) 0.58

Mild/moderate depressive symptomsc (n = 802) 74 (18.7) 77 (18.9) 0.95

Harmful alcohol used 8 (1.9) 1 (0.2) 0.02

Any drug use besides alcohol (vs. never) (n = 853) 4 (0.94) 10 (2.3) 0.11

Exposure to any violence in last 6 months 84 (19.4) 61 (14.1) 0.04

Self-reported in high-risk population 62 (14.4) 55 (12.7) 0.48

Knows their own HIV status 394 (91.2) 389 (89.8) 0.40

Would be ashamed if a family member had HIV (agree) (n = 851) 76 (17.8) 64 (15.1) 0.52

Would be ashamed if I had HIV (agree) (n = 852) 76 (17.9) 88 (20.6) 0.33

People should be ashamed for having HIV (n = 855) 35 (8.2) 42 (9.8) 0.15

Caregiver accompanied to visit 101 (23.5) 116 (26.9) 0.26

Not enrolled in a peer support group (n = 857) 230 (53.7) 219 (51.1) 0.43

At least 1 unmet clinical need 208 (48.2) 216 (49.9) 0.61

Seen at youth or pediatric clinic (vs adult) (n = 859)

LTFUe
147 (34.4)

78 (18.1)

145 (33.6)

88 (20.3)

0.83

0.40

EMRb dataset (N = 2,696)

Age group (years)

10–19 732 (54.3) 709 (52.6) - -

20–24 617 (45.7) 638 (47.4) 0.40

Female 956 (70.9) 952 (70.7) 0.91

Ever married or partnered 456 (41.8) 507 (45.6) 0.08

In care�6 months 1,044 (77.4) 1,084 (80.5) 0.05

Transferred in 203 (15.1) 211 (15.7) 0.66

On ARTf < 3 years (n = 2,669) 637 (47.8) 626 (46.9) 0.66

WHO Stage 1 or 2 (n = 2,188) 918 (85.9) 943 (84.3) 0.30

Age at ARTf initiation (years)

LTFUe
15.6 (8.0, 20.7)

370 (27.4)

15.8 (8.0, 20.5)

400 (29.7)

0.90

0.20

a AYALWH: adolescents and young adults living with HIV
b EMR: electronic medical records
c measured using Patient Health Questionnaire-9 score�5
d evaluated by the Alcohol Use Disorders Identification Test-Consumption >3
e LTFU: lost to follow-up
f ART: antiretroviral treatment

*P-values from Chi-square tests of proportions or t-tests of means.

https://doi.org/10.1371/journal.pone.0286240.t001
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Table 2. Univariable and multivariable results of prediction modeling in the survey plus EMRa and EMRa-alone tools.

Univariable model Full multivariable model Stepwise multivariable analysis (AIC)f Score

Characteristic Univariable β
(95%CI)

p-

value

Adjusted β
(95%CI)

Adjusted HRg

(95%CI)

p-

value

Adjusted β
(95%CI)

Adjusted HRg

(95%CI)

p-

value

Survey plus EMRa (N = 391)

Age group 20–24 (vs 10–19) 0.11 (-0.45–0.67) 0.70 -0.26 (-0.70–

0.17)

0.77 (0.50–1.18) 0.23

Female 0.06 (-0.40–0.53) 0.78 – –

Pays most of own expenses (n = 860) 0.69 (-0.15–1.54) 0.11 – –

Left school before age 18 -0.27, -0.89–00.35 0.39 – –

Mean social support score (n = 401) -0.21, (-0.42–

0.00)

0.06 – –

Mean resilience score (n = 419) 0.09 (-0.15–0.33) 0.45 – –

Mild/moderate depressive symptomsb 0.55 (0.10–1.00) 0.02 0.50 (0.06–

0.94)

1.66 (1.07–2.57) 0.03 0.49 (0.05–

0.92)

1.63 (1.05–2.51) 0.03 2

Harmful alcohol usec -0.36 (-1.38–0.65) 0.48 – –

Any drug use besides alcohol -0.63 (-2.51–1.26) 0.52 – –

Exposure to any violence in last 6

months (n = 432)

-0.40 (-1.13–0.35) 0.30 – –

Self-reported in high-risk population -0.09 (-0.82–0.64) 0.81 – –

Knows their own HIV status (n = 431) 0.38 (-0.77–1.53) 0.52 – –

Would be ashamed if a family member

had HIV (agree) (n = 426)

-0.21 (0.55–0.13) 0.24 – –

Would be ashamed if I had HIV (agree)

(n = 424)

0.09 (-0.30–0.47) 0.66 – –

People should be ashamed for having

HIV (n = 427)

-0.01 (-0.49–0.47) 0.97 – -

Caregiver accompanied to visit -0.63, (-1.63–

0.37)

0.22 ‘– ‘–

Not enrolled in a peer support group

(n = 428)

0.52 (-0.07–1.11) 0.09 0.37 (-0.29–

1.04)

1.45 (0.75–2.82) 0.27 0.37 (-0.26–

0.99)

1.44 (0.77–2.68) 0.25 1

At least 1 unmet clinical need 0.33 (0.00–0.66) 0.05 0.39 (0.09–

0.69)

1.47 (1.09–1.99) 0.01 0.32 (0.02–

0.63)

1.39 (1.02–1.88) 0.04 1

In care�6 months 0.36 (-0.21–0.93) 0.22 – –

Transfer in (yes) 0.23 (-0.76–1.22) 0.64 – –

On ARTd < 3 years (n = 430) 0.08 (-0.61–0.76) 0.83

Ever partnered (n = 342)e 0.31 (-0.01–0.63) 0.05 – –

WHO Stage 1 or 2 (n = 283) 0.001 (-0.26–0.26) 0.99 – –

Age at ARTd initiation 0.02 (-0.03–0.08) 0.40 – –

EMRa only tool (N = 1,349)

Age group 20–24 (vs 10–19) 0.36 (-0.17–0.90) 0.18 0.29 (-0.19–

0.77)

1.34 (0.83–2.17) 0.24 0.29 (-0.19–

0.77)

1.34 (0.83–2.17) 0.24 1

Female 0.08 (-0.26–0.41) 0.66 ‘– ‘– ‘– ‘–

In care�6 months 0.40 (-0.02–0.81) 0.06 0.30 (-0.04–

0.65)

1.35 (0.96–1.91) 0.08 0.30 (-0.04–

0.65)

1.35 (0.96–1.91) 0.08 1

Transfer in (yes) 0.11 (-0.20–0.42) 0.50 ‘– ‘–

On ARTd <3 years (n = 1,334) 0.25 (-0.21–0.71) 0.28 ‘– ‘–

Ever married or partnered (n = 1,090) 0.14 (-0.05–0.34) 0.14 ‘– ‘–

WHO Stage 1 or 2 (n = 1,069) ‘-0.36 (-0.67-

-0.04)

0.03 ‘– ‘–

(Continued)
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EMR-alone prediction tool

A total of 2,696 records from six facilities were included in this analysis. Most AYALWH were

ages 10–14 (28.2%) or 20–24 years (46.6%), female (70.8%), had been in HIV care at least 6

months (78.9%), and WHO stage 1 or 2 (85.1%). The median time on ART was 3.1 years

Table 2. (Continued)

Univariable model Full multivariable model Stepwise multivariable analysis (AIC)f Score

Characteristic Univariable β
(95%CI)

p-

value

Adjusted β
(95%CI)

Adjusted HRg

(95%CI)

p-

value

Adjusted β
(95%CI)

Adjusted HRg

(95%CI)

p-

value

Age at ARTd initiation (years)

(n = 1,347)

0.04 (-0.01–0.09) 0.14 ‘– ‘–

a EMR: electronic medical records
b measured using Patient Health Questionnaire-9 score�5
c evaluated by the Alcohol Use Disorders Identification Test-Consumption >3
d ART: antiretroviral treatment
e marital status dropped from the model because of >10% missing
f Stepwise models included variables with lowest Akaike Information Criteria (AIC)
g HR: Hazard Ratios from Cox regression modeling.

https://doi.org/10.1371/journal.pone.0286240.t002

Table 3. Survey plus EMRa and EMRa-only tool predictor, score and performance.

Predictor % LTFUd (n = 73) Score per predictor Risk level (total score) n (%) in each level n (%) LTFUd by risk level

Survey plus EMRa (n = 391)b

Support group 27 (15.0) 0 High (3 or 4) 62 (15.9) 18 (29.0)

No support group 46 (21.8) 1

PHQ-9c score 0–4 53 (16.7) 0 Medium (2) 98 (25.1) 21 (21.4)

PHQ-9c score 5+ 20 (27.4) 2 Low (0 or 1) 231 (59.1) 34 (14.7)

No unmet clinical needs�1

unmet clinical need

32 (15.4) 0

43 (20.7) 1

Performance of the binary form of scoref

Brier score 0.40 range 0–1 Sensitivity 0.53 Cut point�1.5* 24.4 (39/160)

AUCe, 95% CI 0.58 (0.51–0.64) range 0–1 Specificity 0.62 Cut point <1.5 14.7 (34/231)

EMRa-only tool (N = 1,349)

Age in years
10–19

20–24

168 (23.0) 202 (32.7) 0 High (2) 218 (16.2) 84 (38.5)

1 Medium (1) 486 (36.0) 144 (29.6)

Not new 260 (24.9) 110 (36.1) 0 Low (0) 645 (47.8) 142 (22.0)

Newly enrolled 1

Performance of the binary form of score

Brier score 0.46 range 0–1 Sensitivity 0.62 Cut point

�0.5

32.4 (228/704)

AUCe, 95% CI 0.58 (0.55–0.61) range 0–1 Specificity 0.51 Cut point

<0.5

22.0 (142/645)

a EMR: electronic medical records
b 38 of 433 AYALWH had missing PHQ-9 scores and 4 had missing responses to peer group enrollment and were excluded from the analysis
c PHQ-9: Patient Health Questionnaire-9
d LTFU: lost to follow-up
e AUC: area under the curve
fAUC and Brier scores assessed using the prediction tool with a binary score of <1.5 and 1.5–4.0.

https://doi.org/10.1371/journal.pone.0286240.t003
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(interquartile range [IQR] 0.1–7.6). Overall, 6-month LTFU in the EMR cohort was 28.6%

(n = 770), with no significant difference between training and validation cohorts (27.4% vs.

29.7%, p = 0.20) (Table 1). The training dataset included 1,349 records. In the univariable anal-

yses, we evaluated age group, marital status, sex, age at ART initiation (continuous), newly

enrolled, transfer status, time on ART, and WHO stage as predictors of LTFU (Table 2). WHO

status and newly enrolled were associated with significantly greater likelihood of LTFU in uni-

variable analyses. Age group was retained because it improved model performance.

The final predictive model using AIC included age group and newly enrolled status (lowest

AIC = 5518.17, partial log likelihood = -2592.085, k = 2 parameters). Individual scores ranged

from 0 (low risk) to 2 (high risk) (Table 2). The prediction tool performance using an optimal

cut point of 0.5 was poor and similar to the survey-plus-EMR tool. The AUC was 0.58 (95%CI:

0.55–0.61, standard error = 0.16), and sensitivity and specificity were 0.62 and 0.51, respec-

tively (Table 3 and Fig 2B). As a three-level score, there was a stepwise trend of higher risk of

LTFU with higher scores. When the prediction tool was evaluated in the validation cohort

(n = 1,347), medium (HR 1.65, 95%CI: 1.00–2.72) and high-risk scores (HR 2.40, 95%CI:

1.17–4.96) predicted significantly higher LTFU compared to low-risk scores (Global Wald

Chi-square = 6.84 and p-value = 0.03). In 10-fold cross validation, the prediction tool had an

AUC of 0.61 (95% CI:0.59–0.63, standard error = 0.0120, Chi-square = 14.04, p-value<0.001).

Fig 2. Area under the curve. a. Survey plus EMR (N = 391); b. EMR alone (N = 1,349).

https://doi.org/10.1371/journal.pone.0286240.g002
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Discussion

We developed two clinical prediction tools, one using EMR data combined with survey data

and one using only EMR data, to predict LTFU among AYALWH and found similarly poor

predictive performance. Overall, both tools showed poor performance by standard measures.

The survey-plus-EMR tool, which included PHQ-9 score, peer support group enrollment, and

any unmet care needs had slightly better performance (AUC) than the EMR-alone tool in the

training dataset. The EMR-alone tool, which only included age and time in care, predicted

LTFU in the validation cohort. The tools had similar generalizability when cross-validated in

the full samples. While both tools demonstrated moderate predictive ability, results may guide

future clinical prediction tools and decision-support interventions with AYALWH.

We chose the outcome of early LTFU to support early intervention before AYALWH are

lost. The survey-plus-EMR analysis evaluated several additional variables that are likely associ-

ated with adolescent LTFU [48] to determine whether their inclusion could improve tool per-

formance. These included depressive symptoms, alcohol and other drug use, social support,

peer support group attendance, and exposure to violence. The final full model included PHQ-

9 score, peer support group attendance, and any unmet clinical need at the time of clinic visit.

The EMR-alone tool included two variables from EMR, age group and time in care. Including

age-group improved performance of the EMR-alone tool although not the survey-plus-EMR

tool. One reason could be that the EMR-alone tool had different (and fewer) predictors than

the survey-plus-EMR tool.

We found that older age group (20–24 years) and longer time in care (six months or more)

were predictors of LTFU, and older age has been shown to be associated with LTFU in prior

studies [2]. Young adults may have higher risk of LTFU compared to adolescents because of

less caregiver support to adhere to clinic visits or life changes, including marriage or seasonal

travel. Longer time in care may have been a marker of AYALWH who had recently switched

to multi-month ART refills. This change to their visit routine may have resulted in LTFU.

Both versions of the tool were parsimonious, including fewer than five variables that are rela-

tively easy to obtain and simple scores ranging from 0 to 2 or 4.

Compared to other clinical prediction tools developed for HIV prevention and care in sub-

Saharan Africa, our tool included fewer variables and demonstrated lower performance by

AUC. The ability of our tool to discriminate between AYALWH who were lost and not lost in

both the training and validation cohorts ranged from 0.61 to 0.66, which is lower than the

commonly used threshold of 0.7 [29]. Other tools developed to predict risk of HIV infection

[33], HIV incidence among women [27, 28] and female adolescents [38, 49] and risk of viral

non-suppression among adults [49] report performance by AUC ranging from 0.69 [27, 33,

37] to>0.90 [38]. One study among AYALWH enrolled in care in South Africa developed and

validated a clinical prediction tool to determine readiness to transition to adult care, using the

outcome of viral suppression [50]. This tool showed good performance across measures (e.g.

AUC of 0.84) and included six predictors (ART regimen line, gender, HIV status disclosure,

HIV Adolescent Readiness to Transition Scale score [51], age at ART initiation, and prior alco-

hol use). Direct comparisons of prediction tools are challenging because prediction models are

highly sensitive to the variables included, variable section methods, and distribution of charac-

teristics in the underlying population [34, 52]. In addition, our study outcome of LTFU mea-

sures clinic attendance and is not a direct proxy for ART adherence or viral non-suppression.

Other HIV-related prediction tools with performance of<0.7 by AUC have been evaluated

in different research cohorts [37, 38] with intended use in routine care [37, 53]. For example,

Puttkammer et al. [31] developed a prediction tool of ART failure among adults in HIV care in

Haiti using the national EMR data, which had an AUC of 0.61. The authors then evaluated the
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feasibility of an intervention to improve viral suppression among adults with HIV in Haiti that

combined an EMR-based alert system using the prediction tool to identify clients at risk of

treatment failure and brief adherence counseling [53]. The intervention was feasible and

acceptable, and associated with significantly improved adherence and a non-significant

increased trend in viral suppression compared to baseline. However, providers reported chal-

lenges using the EMR-based tool including imperfect understanding of the alert criteria and

mismatch between what the alert showed and how the client felt at the visit, which could raise

doubts about the tool. Using prediction tools with sub-optimal performance (AUC <0.7) risk

incorrectly identifying clients as needing a specific intervention or missing clients who do.

However, as the study by Puttkammer et al., highlights, prediction tools with modest perfor-

mance can offer useful information about challenges of implementing prediction tools into

practice as well as other HIV service and client factors that need to be addressed for decision-

support interventions in HIV care. Given the modest performance of both tools in our study,

we do not recommend adapting these tools for routine care given the potential of mis-identify-

ing AYALWH at risk of LTFU. Instead, the predictors evaluated in survey-plus-EMR and

EMR-alone tools could be used as the basis for development of new prediction tools in similar

populations and inform potential targets of future decision-support interventions with

AYALWH.

Our study had strengths and limitations. To our knowledge, this is the first study to develop

and validate a clinical prediction tool to identify AYALWH at risk of LTFU. We assessed psy-

chosocial and service-related variables that have not been tested in prior prediction models for

LTFU, and we considered both survey-plus-EMR and EMR-alone versions. The EMR-alone

tool was limited to variables in that dataset, which were primarily clinical and demographic

variables. LTFU using EMR data is subject to misclassification due to variable data quality and

completeness [12]. We tried to minimize the possibility by using a definition of LTFU that

aligns with the definition that facilities use, which accounted for more staggered visit schedules

for clients in differentiated care. However, we could not verify whether some AYALWH we

classified as LTFU had transferred out or were receiving care at another facility temporarily

since EMRs are not synchronized across facilities. The survey-plus-EMR tool may have been

underpowered to evaluate predictors with prevalence less than 10% in the sample, including

harmful alcohol use and drug use, which may also be associated with LTFU in adolescent pop-

ulations [50]. We also had to exclude outcomes after the initiation of COVID-19 response

measures in Kenya, which reduced both sample size and follow-up time. The prevalence of

LTFU in the survey-plus-EMR tool cohort was substantially lower than in the EMR-alone

cohort, which likely reflected selection bias of AYALWH who enrolled in the survey when

they came for clinic visits. In addition, there was a higher proportion of females and AYALWH

ages 20–24 years in the EMR-alone compared to the survey-plus-EMR tool. The prevalence of

LTFU in the survey-plus-EMR tool cohort was substantially lower than in the EMR-alone

cohort, which likely reflected selection bias of AYALWH who enrolled in the survey. In addi-

tion, there was a higher proportion of females and AYALWH ages 20–24 years in the EMR-

alone compared to the survey-plus-EMR tool. It is possible that the number and type of client-

level predictors and associations with LTFU may differ in more urban settings. Differences in

samples limited direct comparisons between tools. However, by using both data sources, we

could evaluate a larger cohort (EMR-alone) that was generalizable to the clinic population and

a sample that included behavioral survey data that are not captured in the EMR. New probabi-

listic methods, specifically Machine Learning, are being applied to clinical prediction models

in HIV research [52]. While the data and technical requirements to use Machine Learning

were outside the scope of this study, future studies could evaluate the feasibility of using this

approach for prediction modeling in routine clinic settings [54, 55]. Finally, decisions about
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whether and how to use a prediction tool in routine practice depend on multiple consider-

ations, including stakeholder engagement in intervention development, available services, and

data systems [35] and qualitative and/or quantitative assessments of clinical usefulness [56–

59].

Conclusions

In summary, our clinical prediction tools using surveys-plus-EMR or EMR-alone showed

modest predictive ability to identify AYALWH at risk of loss to follow-up and would have lim-

ited use to improve clinical decision making in this population. Accurately predicting LTFU

among AYALWH remains challenging, especially as national guidelines change about visit

timing for AYALWH change. Regardless, these results offer insights for future provider deci-

sion-support interventions to reduce LTFU among AYALWH clients, specifically the impor-

tance of including standard mental health screening and peer support services with this

population.
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