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Abstract

Cardiomyopathy (CM) is a group of diseases distinguished by morphological and functional

abnormalities in the myocardium. It is etiologically heterogeneous and may develop via cell

autonomous and/or non-autonomous mechanisms. One of the most severe forms of CM

has been linked to the deficiency of the ubiquitously expressed RNase Z endoribonuclease.

RNase Z cleaves off the 3’-trailer of both nuclear and mitochondrial primary tRNA (pre-

tRNA) transcripts. Cells mutant for RNase Z accumulate unprocessed pre-tRNA molecules.

Patients carrying RNase Z variants with reduced enzymatic activity display a plethora of

symptoms including muscular hypotonia, microcephaly and severe heart hypertrophy; still,

they die primarily due to acute heart decompensation. Determining whether the underlying

mechanism of heart malfunction is cell autonomous or not will provide an opportunity to

develop novel strategies of more efficient treatments for these patients. In this study, we

used CRISPR-TRiM technology to create Drosophila models that carry cardiomyopathy-

linked alleles of RNase Z only in the cardiomyocytes. We found that this modification is suffi-

cient for flies to develop heart hypertrophy and systolic dysfunction. These observations

support the idea that the RNase Z linked CM is driven by cell autonomous mechanisms.

Introduction

Cardiomyopathy (CM) is a group of heart diseases that affect cardiac muscle, leading to

changes in heart morphology and contractility. It results in various adverse conditions includ-

ing arrhythmias, heart failure and sudden cardiac death. Heart diseases are the leading cause

of death for men and women of all racial and ethnic groups [1]. About 17.9 million people die

from a heart disease every year, making up 32% of all deaths worldwide. There are several

types of CM, the most prevalent one being the hypertrophic cardiomyopathy (HCM), which is

characterized by the thickening of left ventricular wall without lumen dilation. Another com-

mon type of CM is dilated cardiomyopathy (DCM), which is described as a dilation with sys-

tolic dysfunction of either left or both ventricles [2].
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CM affects people of all ages. Adult form of CM is often secondary to inflammation, malnu-

trition, and other environmental and health conditions [3, 4], while infantile or congenital

form occurs due to genetic factors. Infantile CM is etiologically heterogeneous; at least 80

genes have been linked to this group of diseases [5].

Recently the ELAC2 gene was added to the list of those associated with cardiomyopathy.

ELAC2 encodes a highly conserved RNase Z endoribonuclease which cleaves off the 3’-trailer

of both nuclear and mitochondrial pre-tRNA molecules and thereby rendering itself indis-

pensable for tRNA maturation [6, 7]. Mutations in the ELAC2 gene lead to an especially

aggressive form of HCM with early onset of symptoms and lethality within one year of birth

[8–11]. In addition to changes in cardiac morphology and function, infants carrying ELAC2
sequence variants exhibit multiple symptoms including psychomotor and growth retardation,

muscular hypotonia, microcephaly and lactic acidosis. Even though the range of clinical mani-

festations associated with ELAC2 variants is established, the cellular processes leading up to

the heart pathology are not understood. As a result, treatments for ELAC2 linked CM are still

limited to symptom management.

Given the multitude of medical conditions produced by mutations in ELAC2, we suggest

that this gene is highly pleiotropic affecting multiple organs and organ systems. This pheno-

typic complexity presents a challenge for finding the origin of key processes that lead to the

heart pathology. In many cardiomyopathies, cardiac cells display a cell autonomous response

to certain genetic alterations, such as mutations in sarcomere genes that encode proteins form-

ing the major functional unit of myocardium [12–14]. These mutations affect cardiomyocyte

contractility, thus causing a direct damage to systolic and diastolic properties of the heart. On

the other hand, there are cases of CM that are initiated through non-cell-autonomous mecha-

nisms. For example, non-contractile cardiac fibroblasts produce and release a pro-hypertro-

phic isoform of the Fgf-2 growth factor, which acts as a paracrine signal on cardiomyocytes to

induce overgrowth of a mammalian heart in certain types of HCM [15–17].

For some cases of cardiomyopathy that are associated with inheritable metabolic disorders,

the primary cause of cardiac complication has not been definitively established [18]. Propionic

acidemia (PA) is one of those inborn disorders caused by the dysfunction of the ubiquitously

expressed propionyl-CoA carboxylase (PCC) enzyme [19]. On one hand, the deficiency of

PCC causes accumulation of toxic compounds in cardiomyocytes suggesting cell autonomous

mechanism of cardiomyopathy. On the other hand, in several cases, liver transplantation led

to a complete normalization of cardiac dysfunction in patients with PA [20, 21], which implies

that cardiomyopathy associated with PCC deficiency, may develop via non-autonomous

mechanism as well.

Like PCC, the RNase Z enzyme is expressed ubiquitously. And while patients with reduced

RNase Z enzymatic activity display multiple symptoms, the primary cause of death is acute car-

diac decompensation. Knowing whether the underlying mechanism of heart hypertrophy and

malfunction is cell autonomous or not might benefit finding the appropriate treatment. It

appears that solely analyzing the medical cases of patients carrying ELAC2/RNaseZ variants

might not provide us with the answer. Thus, we decided to turn to the fruit fly, Drosophila mel-
anogaster, a highly tractable genetic model system.

Previously we described a Drosophila model of ELAC2/RNaseZ linked CM and demon-

strated that it exhibits all major symptoms of the human disease [22]. Here, our goal was to

establish a specific connection between cell autonomous presence of mutant RNase Z variants

in Drosophila heart and pathological traits of cardiomyopathy. Using CRISPR/Cas9 technology

we generated mosaic flies that carry null and/or missense RNase Z alleles in cardiac tube only.

Importantly, we found that presence of these alleles in cardiomyocytes is sufficient to cause
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heart hypertrophy and malfunction. Our findings support the idea that the ELAC2/RNaseZ
linked CM is driven by cell autonomous mechanisms.

Results

Knocking out RNase Z with CRISPR-TRiM

To inactivate cardiac RNase Z we used the CRISPR-mediated tissue-restricted mutagenesis

(CRISPR-TRiM) method that was designed to knock out (KO) target genes in any group of

cells [23]. This system is based on two transgenes, one that encodes tissue specific Cas9 and

another that encodes ubiquitous gRNAs targeting the gene of interest.

When Cas9-mediated DNA double-strand breaks (DSB) are repaired via nonhomologous

end joining (NHEJ), small insertions and deletions (indels) at or around the target sites are

created. Each repaired DSB could result in a loss-of-function mutation. Given that multiple

gRNAs increase the chance of gene disruption, we designed three gRNAs all targeting the 5’

end of RNase Z, where the indels have the maximum functional impact [24, 25]. Moreover, the

presence of multiple DSBs within the same locus could result in a loss of larger DNA fragments

in between corresponding cut sites after repair. The frequency of larger deletions increases

when gRNAs are located within a few hundred base pairs from each other [23]. To ensure an

efficient KO, we designed three gRNAs targeting a 600-bp fragment of the RNase Z locus (Fig

1A) and cloned them in a single construct under the ubiquitous U6 promoter. A new line car-

rying this multi gRNAZ transgene (U6-3xgRNAZ) was established and tested in a cross with

flies homozygous for the Act5C-Cas9 transgene. 100% of F1 offspring displayed early lethality,

which confirmed the efficiency of multiplexed 3xgRNAZ to knock out expression of the target

gene (the same result was achieved using the tub-Cas9 transgenic line). Importantly, Cas9

mediated RNase Z KO larvae (Act-Cas9>RNZKO and/or tub-Cas9>RNZKO) died during sec-

ond instar, the stage that was previously described as the effective lethal phase of the RNase Z
null mutant (Z24) [26]. The consistency in the lethal phases of Act-Cas9>RNZKO and Z24 high-

lights the efficacy of the chosen method and suggests that it is indeed the RNase Z gene which

is removed by CRISPR-TRiM.

One of the well-discussed risks of employing CRISPR technology is the off-target effect

which is a nonspecific and unintended genome modification [27–30]. While the three gRNAs

were identified and selected as uniquely specific for the RNase Z locus, there is still a possibility

that Cas9-mediated RNZKO larvae could carry modifications elsewhere in the genome that

affect their viability. To confirm the specificity of our gRNAs, we turned to a rescue experi-

ment. If early lethality of Act-Cas9>RNZKO larvae is indeed due to RNase Z knock out, this

phenotype could be rescued by expression of a wild-type RNase Z variant that is resistant to

CRISPR/Cas9 cleavage. To produce a DSB, the Cas9 nuclease requires a 3bp DNA sequence

(NGG) called the protospacer adjacent motif (PAM) which is present immediately down-

stream of the target sequence. As per our design, we have two PAM sites–AGG and TGG–

present in the open reading frame (ORF), and the third one, CGG, in the 5’UTR of RNase Z.

To disrupt Cas9 mediated cleavage, we introduced single-nucleotide replacements–G>T,

G>A, and G>C–into the PAM sites; the last two are silent mutations within ORF (Fig 1B). A

new transgenic line carrying Cas9 resistant RNase Z under its natural promoter was generated

and designated gZ+-PAMΔ. Western blot analysis confirmed that these three single-nucleotide

replacements did not affect RNase Z expression (Fig 1C). Importantly, Table 1, shows that this

expression driven by the gZ+-PAMΔ transgene efficiently rescues Z24 null mutant flies to adult-

hood, indicating that PAMΔ modifications do not affect RNase Z enzymatic activity and that

this protein variant is suitable for the rescue experiment.
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Next, we tested if gZ+-PAMΔ could rescue the lethal phenotype of Act-Cas9>RNZKO. First,

by simple fly crossing we combined two transgenes in one genotype– U6-3xgRNAZ;gZ+-
PAMΔ. Next, these flies were crossed to the Act5C-Cas9 line to produce Act-Cas9>gZ+ off-

spring. As a control, we used gZ+-PAM+ flies that express the unmodified RNase Z protein.

Fig 1. CRISPR-Cas9 mediated knockout of RNase Z and Cas9 resistant rescue constructs. (A) Schematic illustration of the RNase Z
locus. Positions of the three target sites (TS1-3) along with the corresponding Cas9:gRNA complexes targeting RNase Z are shown (not

to scale) relative to the transcription start site (TSS) marked by the standing arrow and the open reading frame marked with the gray

horizontal bars. Black horizontal half arrows indicate primers used for the molecular analysis of genomic DNA modifications. (B) The

V5-tagged RNase Z expression construct carrying single-nucleotide replacements. On the top, nucleotides shown in bold indicate PAM

sites; three nucleotide replacements that spoil the PAM sites and make RNase Z resistant to Cas9 are also indicated: G>T, G>A, and

G>C. At the bottom, the sites of CM-linked mutations (F155L and T494I) are shown with the corresponding nucleotide changes

introduced. (C) Western blot analysis of RNase Z proteins whose expression is driven by indicated transgenes. The white1118 stock flies

are used as a negative control; α-Tubulin is a loading control. RNase Z is detected with the anti-V5 antibody. (D) Sequence analysis of

modifications introduced by three gRNAs targeting RNase Z. The horizontal line illustrates the 1377-bp genomic DNA fragment

containing the entire target region along with the *350-bp upstream and downstream sequences. A population of these fragments was

PCR-amplified on gDNA subjected to CRISPR-Cas9 modification. 100 randomly selected fragments were sequenced and broken into

categories based on the size of the deletion they carry– 200/399, 400/599, etc. Representative fragments for every size range are shown

with horizontal gray bars, where dark gray indicates deleted nucleotides. Vertical dotted lines mark DSBs at respective target sites drawn

to scale. The graph to the right shows the number of fragments in each category.

https://doi.org/10.1371/journal.pone.0286214.g001

Table 1. Rescue of Z24 null mutants by gZ+-PAMΔ transgene.

Parental cross Progeny genotype a, b, c

Z24/CyO;+/+

x

Z24/CyO;gZ+-PAMΔ/

TM3,Sb

Z24;gZ+-PAMΔ/+ (n)
a, b

Z24/CyO;gZ+-PAMΔ/+

(n) b
Z24;TM3,Sb/+

(n) a
Z24/CyO;TM3,Sb/+

(n)

187 417 0 190

a Z24 homozygotes were identified by the straight wings (Cy+)
b Flies carrying the gZ+-PAMΔ rescue transgene were identified by the wild type bristles (Sb+)
c The efficiency of rescue was assessed by comparing the number of the rescued progeny (Cy+) to their heterozygous

siblings (Cy) among offspring that carry the rescue construct (Sb+): the expected ratio is 1:2, observed– 187:417

https://doi.org/10.1371/journal.pone.0286214.t001
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Table 2 summarizes results of two crosses. Among the adult offspring of the control cross, we

did not observe any females that carry all three transgenes Act5C-Cas9, U6-3xgRNAZ and gZ+-
PAM+. At the same time, the expected ratio (according to the Mendelian distribution) of

males (that carry U6-3xgRNAZ and gZ+-PAMΔ transgenes) to females (that carry Act5C-Cas9,

U6-3xgRNAZ and gZ+-PAMΔ transgenes) was observed in the experimental cross. Thus, the

gZ+-PAMΔ transgene effectively rescues the lethal phenotype of Act-Cas9>RNZKO. This exper-

iment confirms that the only vital gene being affected in Act-Cas9>RNZKO flies is RNase Z.

(The same result was achieved using the tub-Cas9 transgenic line).

In general, the outcome of the CRISPR-Cas9 mediated gene modification is not uniform in

all cells. Each DSB produced by Cas9 is tackled by the DNA repair system leading to a spec-

trum of modifications; it is particularly true when Cas9 targets a specific locus with multiple

gRNAs. To assess the variability in the outcome for our CRISPR-TRiM design, we investigated

the specifics of DNA damage introduced in the RNase Z locus. Fragments of tub-Cas9>RNZKO

genomic DNA encompassing the targeted region were PCR-amplified and cloned. 100 such

clones were randomly selected and sequenced. Strikingly, this analysis revealed that every

cloned fragment carried a deficiency either continuous or discontinuous. Most of the frag-

ments (97/100) displayed a continuous pattern with the size of deletions ranging from 445 bp

to over 1200 bp removing the entire sequence between the first and the third target sites (Fig

1D). Less frequently observed was the discontinuous pattern (3/100) wherein the total deletion

ranged from 245 bp to 720 bp. Importantly, at least 2 of the target sites were modified in all

fragments under the survey, with 78% of them harboring disruptions of all 3 target sites. Our

sequence analysis confirms that multiple gRNAs targeting the same locus withing a few hun-

dred base pairs from each other indeed produce a loss of DNA fragments in between corre-

sponding cut sites. Altogether, this data demonstrate that CRISPR-TRiM is a robust method

that efficiently knocks out RNase Z.

Loss of cardiac RNase Z causes larval lethality and cardiomyopathy

To tailor CRISPR-TRiM for heart analysis, Cas9 was expressed under control of the robust car-

diac-specific 4xtinCΔ4 enhancer [22]. We confirmed expression of Cas9 protein by Western

blotting (S1A Fig). To generate heart specific RNase Z KO we crossed 4xtinCΔ4-Cas9 flies with

those expressing 3xgRNAZ and studied their offspring (tinC-Cas9>RNZKO). Control animals

(tinC-Cas9>gZ+) were produced in the cross between 4xtinCΔ4-Cas9 and U6-3xgRNAZ;gZ+-
PAMΔ flies. In the absence of cardiac RNase Z, larvae develop slower, reaching the body size

and weight of wandering third instar on day 7 AED compared to day 5 AED for control

Table 2. PAMΔ modification makes the RNase Z transgene (gZ+-PAMΔ) resistant to Cas9.

Parental crosses a Progeny b, c

Females

(n) b
Males

(n)

♀ w; U6-3xgRNAZ; gZ+-PAM+ x ♂ Act-Cas9/Y 0 535

♀ w; U6-3xgRNAZ; gZ+-PAMΔ x ♂ Act-Cas9/Y 247 268

a The first cross is control, with unmodified RNase Z transgene (gZ+-PAM+); the second cross is experimental that

assesses the resistance of the modified RNase Z transgene (gZ+-PAMΔ)
b Only female progeny carries both U6-3xgRNAZ and Act-Cas9 transgenes, and thus, displays the CRISPR-Cas9

mediated knockout of endogenous RNase Z
c The resistance of the modified RNase Z transgene (gZ+-PAMΔ) to Cas9 was evaluated by comparing the number of

female and male progeny: the expected ratio is 1:1, observed– 247:268

https://doi.org/10.1371/journal.pone.0286214.t002
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animals (S1B and S1D Fig). Majority of tinC-Cas9>RNZKO larvae (93%) do not pupariate and

remain in prolonged 3rd instar for up to 20-day AED when they eventually die. The 7% escap-

ers die 1–2 days after pupariation. Thus, cardiac RNase Z is required for larval development

and viability.

We proceeded to analyze the cell-autonomous requirement for RNase Z in the heart by

investigating cardiac morphology and function in tinC-Cas9>RNZKO larvae. We used a previ-

ously described histological approach to measure the heart wall thickness of the 3rd instar. For

this, the whole animal was placed in paraffin and sliced 5 microns thick in transverse orienta-

tion through the A6/A7 segment where the widest part of the larval heart is located [22]. To

account for the variable thickness of the heart wall around its circumference, dorsal, ventral,

and lateral measurements were collected from three consecutive tissue slices and used to calcu-

late the average heart wall thickness for each animal. We established that the tinC--
Cas9>RNZKO larvae had a profound heart wall hypertrophy; their heart wall thickness was

increased by 100% compared to hearts of control tinC-Cas9>gZ+ larvae at the same develop-

mental stage (Fig 2A and 2B).

Using a non-invasive Optical Coherence Microscopy (OCM) technology we assessed the

effect of cardiac specific RNZKO on heart function (Fig 3 and S1 and S2 Movies). Recorded vid-

eos of beating larval hearts in transverse orientation in the A6/A7 segment were used to ana-

lyze heart lumen area at the end diastole (EDA) phase, when the heart is the most expanded,

and at the end systole (ESA) phase, when the heart is the most contracted. Based on the differ-

ence between these two values we calculated the Fractional Shortening (FSA), which is a mea-

sure of heart contractility [31]. We found that at diastole, tinC-Cas9>RNZKO hearts showed

some trend of enlargement, which however was not statistically significant when compared to

control larvae tinC-Cas9>gZ+ (Fig 3A and 3D). Importantly, these same hearts were hugely

dilated by *98% at systole (Fig 3B and 3D), which signifies a notable reduction in heart con-

tractility as evidenced by the reduced FSA values by 19% (Fig 3C). Overall, these results dem-

onstrate that cardiomyocyte-specific loss of RNase Z leads to larval heart hypertrophy

accompanied by systolic dysfunction and reduced heart contractility, in a cell autonomous

manner.

Missense alleles of RNase Z cause cardiomyopathy in a cell autonomous

manner

Our analysis of cardiac specific RNase Z loss-of-function animals provides valuable insights

into the requirement for this enzyme in Drosophila heart. However, given that all known cases

of ELAC2-associated CM are caused by missense rather than knockout alleles [32], we decided

to repeat tissue specific analysis but this time using the hypomorphic mutations of RNase Z.

Two of such mutations, F154L and T520I were identified in patients with established family his-

tory of CM [8, 10]. In our previous study we used these alleles to generate a fly model that reca-

pitulates main symptoms of CM patients and, thus, proves a cause-and-effect connection

between ELAC2 variants and CM [22]. To assess the cell autonomous action of RNase Z vari-

ants, we developed a new approach of spatially restricted mutagenesis that coupled tissue-spe-

cific CRISPR-Cas9 mediated KO with transgenic rescue. A similar protocol was recently

proposed by Chilian and co-authors [33]. An important distinguishing feature of our approach

is that instead of Gal4/UAS overexpression as a rescue system, we supply disease-associated pro-

tein variants in amounts defined by the activity of the natural RNase Z promoter. First, we cre-

ated two constructs carrying Cas9-resistant alleles of RNase Z homologous to human CM-

linked mutations–gZF155L-PAMΔ and gZT494I-PAMΔ (Fig 1B). Using Western blot analysis, we

confirmed stable expression of the new RNase Z variants in respective transgenic lines (Fig 1C).
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Next via fly crossing, we produced two lines each homozygous for two transgenes– U6-
3xgRNAZ;gZF155L-PAMΔ and U6-3xgRNAZ;gZT494I-PAMΔ. Finally, to generate mosaic flies that

carry a mutant variant of RNase Z only in cardiomyocytes, flies of those two lines were mated

with the 4xtinCΔ4-Cas9 flies. Except for cardiomyocytes, all cells in the offspring of these crosses,

tinC-Cas9>gZF155L and tinC-Cas9>gZT494I, have two forms of the RNase Z protein–the wild-

type encoded by the endogenous gene and the mutant form encoded by transgenes gZF155L-
PAMΔ or gZT494I-PAMΔ, respectively. In the heart however, the endogenous RNase Z is knocked

out via CRISPR-TRiM, leaving cardiomyocytes in possession of only mutant protein versions–

gZF155L or gZT494I.

Previously we showed that systemic expression of CM-linked RNase Z variants leads to

reduction of fly longevity and locomotor ability [22]. Here we sought to find out if lifespan and

fitness were still lessened by RNase Z variants confined to cardiomyocytes. It turned out that

flies with heart specific expression of gZF155L and gZT494I alleles exhibit a mild but statistically

significant reduction in longevity. The median lifespan is 46 days for tinC-Cas9>gZF155L flies

and 53 days for tinC-Cas9>gZT494I flies compared to 54 days for tinC-Cas9>gZ+ control flies

(Fig 4A). For fitness, we measured the locomotor activity of 9-day-old mutant flies using the

negative geotaxis assay. Our data show that only tinC-Cas9>gZF155L flies exhibit reduction in

climbing index (by 13%) while tinC-Cas9>gZT494I flies have climbing index comparable to the

control (Fig 4B).

We also studied cell-autonomous effects of cardiac RNase Z variants on heart morphology

and contractility. Using histological approach, we measured the cardiac wall thickness in the

A1/A2 segment where adult heart is the widest. Just like in larvae, we collected multiple mea-

surements around the circumference of adult heart to account for the variable thickness of the

wall. We found that tinC-Cas9>gZF155L and tinC-Cas9>gZT494I flies had an increase in heart

wall thickness by 60% and 68% respectively, compared to the tinC-Cas9>gZ+ controls (Fig 5A

and 5B).

Fig 2. Heart specific RNase Z KO causes heart hypertrophy. (A) Histological sections in transverse orientations

showing heart wall thicknesses of control tinC-Cas9>gZ+ and cardiac-specific mutant larvae tinC-Cas9>RNZKO.

Representative images are shown for A6/A7 abdominal segments of the heart of 3rd instar larvae. Arrows point at the

heart wall. Scale bar: 50μm. (B) Quantification of heart wall thicknesses measured from serial transverse histological

sections of larvae tinC-Cas9>gZ+ (n = 10) and tinC-Cas9>RNZKO (n = 16). **P<0.025 (one-way ANOVA followed by

Dunnett’s multiple comparison’s test). Error bars indicate the mean ± s.e.m.

https://doi.org/10.1371/journal.pone.0286214.g002
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Next, we studied adult heart function, using the OCM method, which allowed us to visual-

ize heart contractions in a non-invasive manner. We measured EDA and ESA in the A1/A2

segment of adult hearts in transverse orientation. Heart specific expression of RNase Z variants

caused dilation of heart lumen at systole by 60% for tinC-Cas9>gZF155L and 73% for tinC--
Cas9>gZT494I flies, which led to a reduction in heart contractility by 16% in tinC-Cas9>gZF155L

and 20% in tinC-Cas9>gZT494I flies (Fig 6A and 6B and S3–S5 Movies). These results show

Fig 3. Heart specific RNase Z KO impairs heart contractility. (A,B,C) Functional analysis of 3rd instar larval hearts.

End Diastolic Area (EDA) in (A), End Systolic Area (ESA) in (B) and Fractional Shortening (FSA) in (C) are shown for

control tinC-Cas9>gZ+ and cardiac-specific mutant tinC-Cas9>RNZKO larvae (for each genotype, n = 20). N.S., no

statistical significance; ***P<0.01, ****P<0.001 (one-way ANOVA followed by Dunnett’s multiple comparison’s test).

Error bars indicate the mean ± s.e.m. (D) OCM images of diastole and systole in A6/A7 heart segment of

tinC-Cas9>gZ+ and tinC-Cas9>RNZKO larvae.

https://doi.org/10.1371/journal.pone.0286214.g003
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that heart hypertrophy and reduction in contractility are caused by RNase Z variants in a cell

autonomous manner.

Fig 4. Heart specific RNase Z variants show a mild decrease in longevity and locomotor response. (A) Adult

longevity was assessed by daily counting live flies over time. Shown are survival rates for control tinC-Cas9>gZ+ and

cardiac-specific mutant–tinC-Cas9>gZF155L, tinC-Cas9>gZT494I adult flies (for each genotype, n = 50). **P<0.025

(Mantel-Cox test). (B) Negative geotaxis expressed as a climbing index is shown for control tinC-Cas9>gZ+ and mutant–

tinC-Cas9>gZF155L, tinC-Cas9>gZT494I flies (for each genotype, n> 70). N.S., no statistical significance; ****P<0.001

(one-way ANOVA followed by Dunnett’s multiple comparison’s test). Error bars indicate the mean ± s.e.m.

https://doi.org/10.1371/journal.pone.0286214.g004

Fig 5. Heart specific RNase Z variants cause heart hypertrophy. (A) Histological sections in transverse orientations

showing heart wall thicknesses of control tinC-Cas9>gZ+ and cardiac-specific mutant flies tinC-Cas9>gZF155L and

tinC-Cas9>gZT494I. Representative images are shown for A1/A2 abdominal segments of the heart of young adults (6–9

days after eclosion). Arrows point at the heart wall. Scale bar: 50μm. (B) Quantification of heart wall thicknesses

measured from serial transverse histological sections of adult flies tinC-Cas9>gZ+ (n = 9), tinC-Cas9>gZF155L (n = 11)

and tinC-Cas9>gZT494I (n = 8). ***P<0.01 (one-way ANOVA followed by Dunnett’s multiple comparison’s test).

Error bars indicate the mean ± s.e.m.

https://doi.org/10.1371/journal.pone.0286214.g005
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Discussion

CRISPR/Cas9-mediated knockout of RNase Z is specific and efficient

Our goal was to eliminate RNase Z expression in a controlled manner in order to understand

its role in heart development and function. As a model, Drosophila offers a variety of genetic

tools for gene disruption. To eliminate RNase Z gene expression, we decided to use the versa-

tile CRISPR/Cas9 gene editing system [23]. Several considerations led us to CRISPR/Cas9 over

other commonly used techniques such as the FLP/FRT recombination system [34], RNA inter-

ference (RNAi) [35], ZFN- and TALEN-based mutagenesis [36, 37]. The FLP/FRT system gen-

erates a mosaic tissue with twin spots of homozygous mutant and wild-type cells which does

Fig 6. Heart specific RNase Z variants impair heart contractility. (A) OCM images of diastole and systole in A1/A2

heart segment of control gZ+ (tinC-Cas9>gZ+) and cardiac-specific mutant–gZF155L (tinC-Cas9>gZF155L), gZT494I

(tinC-Cas9>gZT494I) adult flies. Flies of all genotypes were studied 6–9 days after eclosion. (B) Functional analysis of

adult fly hearts. EDA, ESA and FSA are shown for gZ+, gZF155L and gZT494I adult flies (for each genotype, n = 20). N.S.,

no statistical significance; *P<0.05, **P<0.025 (one-way ANOVA followed by Dunnett’s multiple comparison’s test).

Error bars indicate the mean ± s.e.m.

https://doi.org/10.1371/journal.pone.0286214.g006
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not suit our objective of introducing RNase Z KO in every cell of the heart. RNAi approach is

simple and straightforward in practice; however, it does not produce a complete knockout, but

rather a knockdown with variable efficiency depending on the target gene. Moreover, because

of possible partial base pairing of siRNAs, this approach is prone to the off-target effect [38].

ZFN- and TALEN-mediated gene knock out techniques are similar to CRISPR/Cas9 as they

also rely on double-strand DNA breaks coupled with error-prone repair. The specificity of

these nuclease-based techniques depends on their DNA-binding domains, which could be cus-

tomized to recognize a particular target sequence. Thus, simultaneous targeting of multiple

sites would require the engineering of several forms of ZFN and/or TALEN, which signifi-

cantly complicates the design. CRISPR/Cas9, on the other hand, is guided to a specific location

in the genome by a small gRNA. Thus, creating multiple DSBs within a specific locus does not

require multiple Cas9 nucleases but only several gRNAs, which is much easier to design.

While the CRISPR/Cas9 approach appeared to perfectly fit our goal, there were several con-

cerns related to its application. First, as a mutagen, CRISPR/Cas9 relies on the cellular DNA

repair mechanisms that do not produce uniform modification at the DSB site in every cell. The

error-prone NHEJ-mediated repair introduces small indels and nucleotide substitutions at the

target site. In some cells these modifications may lead to amorphic alleles via frame-shift or

nonsense mutations, and yet in others–to hypomorphic alleles via missense mutations. As a

result, the tissue, in which CRISPR/Cas9 is activated, ends up being mosaic and composed of

cells carrying different mutations, which could complicate the analysis. To avoid this issue and

to achieve a genuine KO in each cardiac cell, we employed not one but three gRNAs. They

were designed to target a 600-bp fragment within the 5’ end of RNase Z coding region, where

genetic modifications would have the highest functional impact [24, 25]. To confirm the effi-

ciency of our design, we combined multiplexed 3xgRNAZ with ubiquitously expressed Cas9.

All larvae carrying two transgenes– U6-3xgRNAZ and Act5C-Cas9 –died, which indicated that

expression of the essential RNase Z gene was successfully disrupted.

The second concern of CRISPR/Cas9 application is the off-target effects. Even with signifi-

cantly improved scoring algorithms and gRNA selection tools, a small possibility of nonspe-

cific genome modification still remains [39]. In this study, we used a two-pronged approach to

confirm the specificity of RNase Z knock out. First, by simple analysis of mutant phenotypes

we found a striking consistency in the lethal phases of Act-Cas9>RNZKO animals and those

carrying RNaseZ null Z24 allele. Both groups display early larval lethality, as most of them die

soon after first larval molt, 3 days AED (this study and [26]). This observation gave us some

confidence that the phenotype of Act-Cas9>RNZKO animals is caused by specific knock out of

RNase Z gene expression via CRISPR/Cas9. Still, the ultimate proof that a particular phenotype

results from inactivation of a specific gene is the rescue experiment with the same gene product

in vivo. Several techniques employed in the past made use of CRISPR/Cas9-resistant rescue

constructs encoding either a putative ortholog with diverged nucleotide sequence or the

endogenous gene in which target regions are modified with frequent silent nucleotide mis-

matches. However, in case of CRISPR/Cas9 the success of these strategies is questionable

because of the notorious tolerance of the system towards guide-target mismatches. In this

study, we created the CRISPR/Cas9 resistant rescue construct by introducing single-nucleotide

substitutions in three PAM sites [40]. These modifications are critical as they allow the gZ+-
PAMΔ transgene to escape the Cas9-mediated cleavage. When we combined this construct

with Act5C-Cas9 and U6-3xgRNAZ, it rescued animals to adulthood, confirming that the early

larval lethality phenotype was due to the specific knockout of RNase Z expression.

Assuming that targeting a gene with multiple gRNAs might increase the chances of muta-

genesis, many studies used multiplexed gRNAs for achieving gene knockout [41, 42]. Curi-

ously, the primary method for evaluating the outcome of the multi-gRNA activity was
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phenotypic analysis via scoring offspring lethality [43, 44]. Only few studies have looked at the

underlying genomic modifications to confirm a knockout. And even these studies evaluated

the multiplex approach indirectly–either by following the expression of the GFP reporter [23],

or by sequencing amplicons around the gRNA target sites [25]. In the latter case, the absence

of two gRNA targets was viewed as the loss of the intervening sequences. Here in our study, to

evaluate the KO of RNase Z, we looked at both lethality and the underlying molecular modifi-

cations. The expectation was that by employing three gRNAs targeting the 600-bp region

within the 5’ half of RNase Z, we might produce a loss of large DNA fragments rather than

small indels at individual target sites. To determine the status of CRISPR-Cas9 induced DNA

damage, we PCR-amplified the whole 600-bp region with primers located *350 bp 5’ and 3’

to the flanking gRNA target sites (Fig 1A). By sequencing 100 randomly selected gDNA frag-

ments we found the spectrum of deficiencies, ranging from *200 to *1200 bp. Importantly,

90% of deletions were losses of 600 bp or larger with the complete removal of the entire target

region. A closer look at these deletions showed that most of them encompassed all three target

sites. Our analysis illustrates the advantage of applying multiplexed gRNA with the 100% effi-

ciency (this study) compared to single gRNA with the reported 23% efficiency of mutagenesis

[33]. Taken together, the sequencing data and the lethal phenotype of the tub-Cas9>RNZKO

larvae, support the expectation that multiple gRNAs targeting the same locus within a few hun-

dred base pairs from each other produce large deficiencies resulting in knockout mutations.

Cardiac specific knockout of RNase Z

In general, loss of RNase Z activity in endoreplicating tissues results in cell growth deficiency.

Previous studies showed that either knockdown of RNase Z in salivary glands or a complete

knockout of its expression within somatic clones in larval fat body caused a dramatic reduction

in cell size [26, 45]. Here, however, we found that post-mitotic endocycling cardiac tube

deprived of RNase Z undergoes severe hypertrophy. The apparent inconsistency with prior

data is caused by the timing of RNase Z inactivation and the availability of maternal supply of

the enzyme. In the fat body, RNase Z expression was disrupted during early embryogenesis,

just a few hours after egg deposition. At that time, the developing embryo relies solely on the

maternal gene products. As this source is depleted, there is no more RNase Z owing to the

interrupted zygotic expression, which leads to halted fat body cell growth. In our current

research involving cardiomyocyte-specific RNase Z, disruption occurs only during late

embryogenesis at 10–11 hrs AED under the control of the 4xtinCΔ4 enhancer we employed. By

this developmental time point, zygotic RNase Z expression has been uninterrupted for multiple

hours; adequate levels of enzyme could have been produced to process the tRNA molecules

and thus aid in cell growth.

One of the first notable observations that we made in animals devoid of cardiac RNase Z is

their lethality; none of them survived to adulthood. This raises the question of whether the

heart itself is essential for fly viability or not. On one hand, it has been shown that to some

extent Drosophila can tolerate the loss of the heart. The heart-specific knockdown of a ribo-

somal protein RpL13 led to the absence of the heart tube structures. Interestingly, some ani-

mals with “no heart” phenotype were able to progress into the adult stages [46]. On the other

hand, cardiomyocyte-specific disruption of genes involved in actin dynamics and histone

modifications, resulted in 100% pre-adult mortality [47]. Adding our own data, we suggest

that there is some evidence that fly heart is an essential organ for life.

Importantly, when we looked at the heart of larvae with myocardium-specific loss of RNase

Z, we discovered gross structural and functional abnormalities. The heart wall was twice as

thick as that of the control animals, and the myocardial contraction was inefficient as the heart
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tube was still dilated by 98% in systole. These results are consistent with our previous finding

that linked RNase Z to cardiac hypertrophy [22]. In an attempt to understand why null alleles

of this gene cause heart overgrowth, we looked at the molecular function of the protein. RNase

Z is an endonucleolytic enzyme that processes nuclear and mitochondrial precursor tRNA

(pre-tRNA) 3’ ends [48]. It has been established that RNase Z knockout abrogates mitochon-

drial transcript processing, increases reactive oxygen species (ROS) and induces a switch to

aerobic glycolysis compensating for cellular ATP [49]. We suggest that heart hypertrophy and

impairment that we observed in tinC-Cas9>RNZKO larvae is due to mitochondrial distress.

Indeed, cases of cardiomyopathies that stem from defects in mitochondrial function have been

well documented through clinical studies [50]. Moreover, mitochondrial cardiomyopathy has

been reproduced and studied in several model organisms. In zebrafish, a knockout of mito-

tRNA modifying enzyme MTO1 causes multiple mitochondria flaws, which result in hypertro-

phy of cardiomyocytes and myocardial fiber disarray [51]. SOD2 is an essential antioxidative

enzyme scavenging ROS and protecting mitochondria; mice with reduced SOD2 activity

develop heart hypertrophy and display an increase in left ventricular volume in systole [52].

Mitochondria activity depends on mitochondrial gene expression, which is affected when

ELAC2 and/or organelle-specific RNase P endonucleases are inactivated. Mice lacking ELAC2

or mitochondrial RNase P in the heart have a short life span and die with profound cardiomy-

opathy [53, 54]. Given the indispensable role of Drosophila RNase Z in mitochondrial tran-

script processing [49] and in view of multiple cases of mitochondrial cardiomyopathy being

documented, it is reasonable to suggest that heart hypertrophy and disfunction that we

observed in RNase Z KO animals is due to impaired mitochondrial activity. Yet, the specific

molecular pathway that would connect mitochondria to heart failure remains unknown.

A different mechanism underlying heart pathology in tinC-Cas9>RNZKO larvae could be

drawn from studies suggesting a link between cardiac hypertrophy and non-coding RNA

(ncRNA) [55, 56]. In particular, there is a new and fast-growing class of ncRNA called tRFs–

tRNA-derived fragments. Those are represented by three types: tRF-5, tRF-3 and tRF-1 [57].

The first two originate from the 5’ and 3’ ends of mature tRNA, respectively. The tRF-1 group

originates from the pre-tRNA 3’-trailer released by RNase Z endonucleolytic cleavage. Impor-

tantly, a robust increase in tRF levels was observed in hearts with induced hypertrophy in rats

[58]. Furthermore, mutant Drosophila flies with defective tRNA biogenesis display alterations

in tRF populations [59]. In mice, heart-specific knockout of RNase Z impairs tRNA processing

resulting in imbalanced levels of different types of tRFs; mutant mice develop a severe form of

cardiomyopathy and die early [54]. More studies are needed to identify mechanistic insights

into the association between regulatory tRFs and myocardium hypertrophy.

Cardiac specific RNase Z variants promote CM

Multiple studies from different labs have highlighted the importance of Drosophila for the

identification and analysis of genes relevant to human cardiac pathophysiology [60, 61]. Given

a high degree of conservation in genes that control heart development and function between

Drosophila and mammals, researchers performed cardiac specific RNAi silencing to identify

genes whose inactivation would impair cardiomyocyte contractility [47, 62–66]. We used a dif-

ferent approach, as we started with a particular human gene, ELAC2, for which missense muta-

tions were correlated with the occurrence of an aggressive form of infantile CM [8, 10, 11, 32].

We validated a causal connection between ELAC2 mutant alleles and CM using Drosophila
homolog RNase Z [22]. Our strategy was based on replacing rather than silencing the endoge-

nous fly gene with the mutant RNase Z variants analogous to CM-causing alleles in human

patients. With this model, we showed that mutant flies did recapitulate major symptoms,
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including thicker heart wall, dilated heart lumen, and decreased cardiac contractility [22].

Besides CM, those flies exhibited other traits such as reduced fitness, shortened lifespan, and

neurodegeneration. Pleiotropy as a phenomenon associated with RNase Z is not surprising as

the gene is expressed ubiquitously and activity of the RNase Z protein is indispensable in

many cell types [26, 45, 67]. However, dissecting complex phenotypes with the goal to identify

the key processes leading to heart failure could be a daunting task, as malfunction of one tissue

can influence the severity of damage in other tissues.

In this study, we investigated the cell autonomous role of RNase Z in the Drosophila heart.

By employing a novel approach of CRISPR-TRiM mediated KO coupled with transgenic res-

cue, we generated a mosaic fly wherein only cardiomyocytes carry pathogenic alleles in place

of the wild-type RNase Z. Our study is the first attempt to characterize the cell autonomous

response to CM-associated mutations in vivo. Importantly, we found that cardiac-restricted

expression of the F155L and T494I mutant alleles was sufficient to compromise heart function

(Figs 5 and 6). Because of systolic dilation, fractional shortening was reduced by 16% in tinC--
Cas9>gZF155L and 20% in tinC-Cas9>gZT494I flies (Fig 6B). Given that similar reduction of

heart contractility– 17% and 23%–was observed in flies with systemic expression of gZF155L

and gZT494I [22], it appears that this damage arises solely from cardiomyocyte intrinsic cell-

autonomous processes. Interestingly, a similar conclusion cannot be made about myocardium

hypertrophy, as cardiac-specific mutants produced a 60% to 68% increase in heart wall thick-

ness (Fig 5) compared to 111–123% observed in systemic mutants gZF155L and gZT494I [22].

This indicates that in addition to cell autonomous there are nonautonomous processes that

contribute to the hypertrophic response. One of those could be deposition of Pericardin

(PRC), an insect collagen IV-like protein. PRC is a prominent ECM component; synthesized

and secreted by the fat body cells, it is deposited exclusively around Drosophila cardiac tube. A

recent study described an inter-organ communication circuitry that modulates cardiac ECM;

pericardial cells activated by elevated ROS levels release cytokine Upd3, which triggers fat

body to express and produce larger amounts of PRC [68]. Indeed, previously we observed that

hypertrophy in gZF155L and gZT494I systemic mutants is accompanied by higher levels of PRC

around the heart [22]. Knowing that Drosophila cells deprived of RNase Z accumulate ROS

[49], it is reasonable to suggest that pericardial cells expressing mutant alleles would communi-

cate the cytokine signal to the fat body and initiate fibrosis. However, in the mosaic flies

described in this study, expression of gZF155L and gZT494I alleles is restricted to the cardiomyo-

cytes, which leaves pericardial cell unaffected and hypertrophic hearts without excessive PRC

deposition.

Previous studies showed that flies with compromised heart activity display reduced lifespan

[69]. Not surprisingly, when we tested longevity of mutants with systemic expression of gZF155L

and gZT494I alleles, we found dramatic reduction in median lifespan down to 6–11 days [22]. In

the current study the same mutations, being restricted to cardiomyocytes in tinC-Cas9>gZF155L

and tinC-Cas9>gZT494I flies, produced a much milder effect. Their median lifespan was almost

normal: 46–53 days compared to 54 days for the tinC-Cas9>gZ+ control flies (Fig 4A). A similar

observation was made with respect to the locomotor activity, as cardiac-specific mutants dis-

played only 0% to 13% reduction in climbing index (Fig 4B) compared to 78–88% reduction

observed in flies with systemic mutations [22]. Put together, these results suggest that the impact

of cardiac-specific expression of two hypomorphic RNase Z alleles on longevity and fitness of

adult flies is very mild if any at all. Apparently, a strong reduction in both traits previously

observed in the systemic mutants is a response to impaired function of a different tissue or even

a cumulative response to multiple functions of several tissues/organs being impaired. Overall,

our data corroborates the pleiotropic effect of RNase Z and highlights the advantage of models
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with tissue-specific expression of its mutant forms in unravelling cell autonomous and nonau-

tonomous mechanisms underlying the pathogenesis of congenital CM.

Materials and methods

Fly stocks

Flies were maintained at 25˚C on standard cornmeal-molasses-agar medium. The following

flies from the Drosophila Stock Center (Bloomington, IN, USA) were used in this study: Act-
Cas9 (#54590), and tub-Cas9 (#81930). The dRNaseZ knockout flies (Z24) and transgenic lines

carrying gZ+-PAM+ (also referred to as genZ+-V5) were described previously [26]. Table 3

provides genotypes and detailed description of key fly stocks generated in this study.

DNA cloning and generation of transgenic fly strains

To express Cas9 under control of a cardiac specific promoter, we used the 4xtinCΔ4 promoter

that was generated and described previously [22]. Briefly, this promoter features four tandem

repeats of the cardiac enhancer tinCΔ4, from the tinman gene [70]. A pair of primers 5’-
aaaggaaccaattcagtcgaCGAATTGGGTACTCTAGAC-3’ and 5’-caagaaagct
gggtctagatAAAAGCTGGAGCTCCAC-3’ were used to PCR amplify the promoter from

the 4xtinCΔ4-pBSc plasmid serving as a template. The 4xtinCΔ4 fragment was cloned into the

SalI and EcorV sites of the Gateway pENTR3C vector (ThermoFisher, A10464) using the NEB-

uilder HiFi DNA Assembly master mix (New England BioLabs), and then transferred into the

pDest-APIC-Cas9 expression vector (Addgene, 121657) by an LR reaction using Gateway™ LR

Clonase™ II Enzyme mix (ThermoFisher, 11791020). Transgenic line carrying 4xtinCΔ4-Cas9

on the second chromosome at the 57F5 cytological region was generated using phiC31-me-

diated site-specific integration (Genetivison). Transgene expression was confirmed by West-

ern blot with anti-Cas9 antibodies (S1A Fig).

For targeted RNaseZ disruption, we used the flyCRISPR optimal target finder online tool

((http://targetfinder.flycrispr.neuro.brown.edu/). Three gRNAs with the highest score and

without any off-targets were selected and cloned under the ubiquitous promoter employing

strategy described in [23]. Briefly, we used a gRNA PCR template vector pMGC (gift from Dr.

Han, Cornell University, Ithaca, NY) to generate PCR products containing (F+E) gRNA scaf-

fold and tRNAGly as well as RNaseZ specific target sequences. The two primer pairs that we

used are: 5’-TTCCCGGCCGATGCATGTTCGCAGACACACGTTGCGTTTAAGAGCTATGCTG
GAAACAG-3’ with 5’-GGCTGATTTTACTAAATACATGCACCAGCCGGGAATC-3’ and
5’-TGT ATTTAGTAAAATCAGCCGTTTAAGAGCTATGCTGGAAACAG-3’ with 5’-
TTCCAGCATAGCT CTTAAACCGAAACGTCGCATTGACTGCTGCACCAGCCGGGAATC-3’
(letters in bold indicate Target Sequences 1–3). Using HiFi DNA Assembly kit, we intro-

duced the PCR products into SapI sites of pAC-U63-tgRNA-Rev expression vector (gift from

Dr. Han, Cornell University, Ithaca, NY). To establish a transgenic line, we used phiC31-me-

diated site-specific integration to insert the transgene into the AttP site on the second chromo-

some at 57F5 (GenetiVison).

To generate an RNase Z variant that is resistant to Cas9, we sequentially introduced a sin-

gle-nucleotide substitution into each of the three PAM sites (Fig 1B) within the genRNZ-V5

expression construct, which we created previuosly [26]. The genRNZ-V5 is the pCa4B2G

transformation vector that carries a 6.6-kb fragment of genomic DNA containing the complete

coding region for RNase Z tagged with the V5-epitope along with the 3-kb upstream and 1-kb

downstream sequences. Single nucleotide substitutions were introduced with the Q5 site-

directed mutagenesis Kit (New England Biolabs) using the following pairs of primers: 5’-
ACACGTTGCCTGTGCTGACGA-3’ with 5’-GTCTGCGAACAGCTGTTGC-3’ for PAM1,
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5’-TCTACAGAACCTTGCGAACG-3’ with 5’-TCGGCGATCTGGCTGATTTTAC-3’ for

PAM2 and 5’-CGTTTCGTCGTGCTAAAGAATC-3’ with 5’-TCGCATTGACTGCAGCA-

TAG-3’ for PAM3 (letters in bold indicate introduced nucleotide changes), yielding gZ+-

PAMΔ-V5 construct. Next, we introduced either one of CM-linked mutations into gZ+-

PAMΔ-V5, using Q5 site-directed mutagenesis kit (New England Biolabs). We used following

pairs of primers to introduce 594T>C, and 1669C>T mutations: 5’-AATGCGACGTCTCG
TCGTGCT-3’ with 5’-GACTGCAGC ATAGAGCCGAG-3’ for gZF155L and 5’-TAA
AATCAGCCAGATCGC-3’ with 5’-CTGACGAAATAC GATTGTATTTAG-3’ for ZT494I (let-

ters in bold indicate introduced nucleotide changes), yielding gZF155L-PAMΔ-V5 and gZT494I-

PAMΔ-V5 constructs. E. coli transformants were studied and successful cloning was confirmed

by restriction digestion and sequencing. To establish transgenic lines, we used phiC31-me-

diated site-specific integration to insert the transgenes into the AttP site on the third chromo-

some at 68A4 (Genetivison). Transgene expression was confirmed by Western blot with anti-

V5 antibodies (Fig 1C).

Western blot analysis

For adult fly analysis, protein extracts were prepared by homogenizing five whole animals in

Laemmli sample buffer. All samples were boiled for 3 min. Samples were separated on an SDS-

polyacrylamide gel and subjected to Western blotting. Blots were incubated overnight at 4˚C

with primary antibodies diluted in PBST supplemented with 5% dry milk powder (w/v). Anti-

bodies used were anti-V5 (Invitrogen, 1:10,000), anti-α-tubulin (Sigma, 1:5000), anti-Cas9

(Invitrogen, 1:10,000). Visualization of blots was done using KwikQuant Digital Western Blot

Detection System (Kindle Biosciences). Band densities were quantified using the KwikQuant

imaging software.

Genomic DNA analysis

For the analysis of variability in CRISPR/Cas9 mediated modifications, genomic DNA

(gDNA) was extracted from 100 tub-Cas9>RNZKO larvae (NucleoSpin Tissue kit, Macherey--

Nagel). The 1377-bp fragment containing the entire target region along with the*350-bp

upstream and downstream sequences was amplified on the gDNA template with the following

primers: 5'-AACGCACGTGGGCATTAGAG-3' and 5'-TAAGGCGTGAAGTGCACCAC-3'
(Fig 1A), using Q5 Polymerase (New England Biolabs). PCR fragments were purified (QIA-

quick PCR Purification kit, Qiagen) and cloned into the pGEM-T Easy Vector (Promega). 100

clones were randomly selected and sequenced unidirectionally with M13 primer that anneals

to the vector (Azenta Lifesciences) to study genomic modifications.

Table 3. Experimental models.

Complete genotype Abbreviation Description

{Act5C-Cas9.P}/+;{U6-3xgRNAz}/+ Act-Cas9>RNZKO Ubiquitous knockout of endogenous RNase Z

{Act5C-Cas9.P}/+;{U6-3xgRNAz}/+;gZ+-PAMΔ Act-Cas9>gZ+ Ubiquitous knockout of RNase Z rescued with Cas9 resistant wild type RNase Z transgene

{4xtinCΔ4-Cas9/{U6-3xgRNAz} tinC-Cas9>RNZKO Cardiac knockout of endogenous RNase Z

{4xtinCΔ4-Cas9/{U6-3xgRNAz};{gZ+-PAMΔ}/+ tinC-Cas9>gZ+ Cardiac knockout of RNase Z rescued with Cas9 resistant wild type RNase Z transgene

{4xtinCΔ4- Cas9/{U6-3xgRNAz};{gZF155L-PAMΔ}/

+

tinC-Cas9>gZF155L Cardiac knockout of RNase Z rescued with Cas9 resistant F155L variant of RNase Z

transgene

{4xtinCΔ4- Cas9/{U6-3xgRNAz};{gZT494I-PAMΔ}/+ tinC-Cas9>gZT494I Cardiac knockout of RNase Z rescued with Cas9 resistant T494I variant of RNase Z

transgene

https://doi.org/10.1371/journal.pone.0286214.t003
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Longevity assay

Longevity was measured as previously described [22]. Briefly, adult males and females of indi-

cated genotypes were collected on the day of eclosion and placed into same-sex cohorts of ten

flies per vial. The number of survivors in each vial was scored daily. The flies were placed in

fresh vials three times per week (Monday, Wednesday, and Friday) during the entire test. Sta-

tistical analysis was performed using Mantel-Cox test.

Negative geotaxis assay

Flies’ locomotor activity was tested using the geotaxis assay as previously described [71, 72].

Flies were collected on the day of eclosion under brief CO2 anesthesia (1–2 min), sorted in

groups of 10 (5 males and 5 females) and allowed to recover at least 18 h at 25˚C prior to the

assay. Next day, flies were transferred into vials marked with lines forming four equally spaced

quadrants. Each vial was gently tapped to bring flies to the bottom of the vial and initiate the

negative geotaxis response. Flies were allowed to climb up for four seconds before a photo-

graph is taken to record position of each fly in the vial. Each fly was assigned a rating based on

the quadrant it reached; flies that did not climb and stayed at the bottom were scored as zero.

Weighted average of three consecutive trials was calculated for each vial and represented a

climbing index for that vial.

Histological analysis

To ensure all animals are studied at the same developmental point, we synchronized them by

behavioral and morphological criteria as described elsewhere [45]. Fly heart wall thickness was

measured as previously described [22]. Briefly, 3rd instar larvae of mixed sexes were fixed in

FAAG solution (80% EtOH, 5% Acetic acid, 4% Formaldehyde, 1% Gluteraldehyde) for 24hrs

at 4˚C.). Adult flies (6-9d old females) were fixed in Carnoy’s fixative overnight at 4˚C. After

fixation, both larval and adult samples were dehydrated through increasing gradient of EtOH

solutions, washed with xylenes and then placed into hot paraffin. Solidified paraffin blocks

were sliced in transverse orientation at 5μm thickness; sliced sections were placed on slides for

subsequent Hematoxylin and Eosine staining.

Sections were rehydrated and stained with Hematoxylin and Eosin (Sigma). All histological

samples were analyzed under the Zeiss Axio Imager M1 microscope, brightfield images were

captured with AxioCam MRc camera. Wall thickness was measured (ImageJ) and calculated

as an average of three measurements from each section, in three consecutive sections of the

heart.

Optical coherence microscopy

Fly heart contraction was measured as previously described [22, 73–75]. Briefly, a superlumi-

nescent diode (cBLMD-T-850-HP, Superlum, Ireland) with a central wavelength of *850 nm

and a bandwidth of *170 nm was used as the light source for the OCT system. The axial and

transverse resolutions provided by the system were*3.3 μm and *2.8 μm in tissue, respec-

tively. The backscattered light from the reference and sample arms was detected using a

2048-pixel spectrometer (CS800-840/180-80-OC2K-U3, Wasatch Photonics, USA), operated

at 20k A-scans/s. Sensitivity of the system was determined to be * 95 dB. M-mode images

which repeated scanning at the same xz plane were acquired at a frame rate of *126 Hz. Flies

were mounted on a glass slide by a double-sided tape (larvae) or glue (adult files) with the dor-

sal side exposed for imaging.
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Larval hearts were studied in A6/A7 segments. We measured end-diastolic areas (EDAs)

and end-systolic areas (ESAs) of 30 consecutive best visible heartbeats per larva, using ImageJ

(National Institutes of Health, USA). Fractional shortening (FSA) was calculated as

(EDA-ESA)/EDA×100%.

Adult hearts were studied at the transition of A1-to-A2 segment (*50 μm from the poste-

rior end of the thorax), where the heart chamber is widest and best visible. Usually, adult heart

contractions display some variability over time. To account for that, we collected EDA and

ESA measurements from the heart beats spaced at three-second intervals throughout the 30

seconds of time-lapse OCM images, which gave us 10 impartially selected heart beats from

each recording.

Statistical analysis

All graphs and statistical analyses were performed in Microsoft Excel and GraphPad Prism9.

Statistical data are presented as mean ± standard error of the mean (s.e.m). P values for all the

comparisons was determined by one-way ANOVA followed by Dunnett’s multiple compari-

son’s test unless specified. The mean difference was considered statistically significant at the

95% confidence level. Results were considered as not significant (ns) when P>0.05, significant

when 0.01<P< 0.05 (*), very significant when 0.001<P<0.025 (**) and extremely significant

when P<0.001 (***) or P<0.0001 Figures were assembled with Adobe Photoshop (Adobe Sys-

tems, San Jose, CA).

Supporting information

S1 Fig. Generation and characterization of Cardiac-specific RNaseZ knockout. A. Expres-

sion of tinC-Cas9. Western blot analysis of proteins extracted from larval hearts of tinC-Cas9

and Act-Cas9 transgenic animals. B, C, D. Loss of cardiac RNaseZ delays larval develop-

ment. B. Representative images of WT control (U6-3xgRNAZ) larvae at 5d AED and tinC--

Cas9>RNZKO larvae at 5d and 7d AED C. Body length of U6-3xgRNAZ at 5d AED, and

tinC-Cas9>RNZKO larvae at 5d and 7d AED (n = 10). D. Body mass of U6-3xgRNAZ at 5d

AED, and tinC-Cas9>RNZKO larvae at 5d and 7d AED (n = 3 repeats with 10 larvae measured

each repeat).

(TIF)

S1 Movie. M-mode video of tinC-Cas9>gZ+ beating heart in 3rd instar. Video is captured

around A7 segment.

(MP4)

S2 Movie. M-mode video of tinC-Cas9>RNZKO beating heart in 3rd instar. Video is cap-

tured around A7 segment.

(MP4)

S3 Movie. M-mode video of 7-day old tinC-Cas9>gZ+ beating adult heart. Video is cap-

tured around A1 segment.

(MP4)

S4 Movie. M-mode video of 7-day old tinC-Cas9>gZF155L beating adult heart. Video is cap-

tured around A1 segment.

(MP4)

S5 Movie. M-mode video of 7-day old tinC-Cas9>gZT494I beating adult heart. Video is cap-

tured around A1 segment.

(MP4)
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S1 Raw images. Raw images for Western blots presented in Figs 1C and S1A.

(PDF)
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