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Abstract

Managing flexibility in the relative bed allocation for COVID-19 and non-COVID-19 patients

was a key challenge for hospitals during the COVID-19 pandemic. Based on organizational

information processing theory (OIPT), we propose that the local electronic health record

(EHR) systems could improve patient outcomes through improved bed allocation in the local

area. In an empirical analysis of county-level weekly hospital data in the US, relative capac-

ity of beds in hospitals with higher EHR was associated with lower 7-, 14-, and 21-day for-

ward-looking COVID-19 death rate at the county-level. Testing for cross-state variation in

non-pharmaceutical interventions along contiguous county border-pair analysis to control

for spatial correlation varying between state variations in non-pharmaceutical intervention

policies, 2SLS analysis using quality ratings, and using foot-traffic data at the US hospitals

our findings are generally supported. The findings have implications for policymakers and

stakeholders of the local healthcare supply chains and EHR systems.

Introduction

During COVID-19, hospitals in the US have faced increased pressure to manage their limited

bed capacity [1, 2]. Bed capacity is sticky in the short run, requiring hospitals to engage in

operational flexibility by delaying, postponing, or vetting through non-COVID-19 patients

with the most urgent needs [3–5]. The operational flexibility is reflected in the relative alloca-

tion of beds between COVID-19 and non-COVID-19 patients [referred to as “relative capac-

ity” for this study]. Local coordination among health providers could be a pivotal element to

helping manage bed capacity and improving the flow of patients through shared resources,

information, and knowledge [6–9]. Electronic health records (EHR) systems may therefore

provide the necessary circuitry for coordination [8] as hospitals manage bed capacity to

improve COVID-19 mortality.

EHR investments were crucial to coordination. Studies have demonstrated that the pres-

ence of “EHR-derived information about patients’ disease condition, treatments,
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interventions, clinical exams with other data sources is of paramount importance for a deeper

comprehension of the COVID-19 disease mechanism and severity manifestation” [10, p. 9].

Facing a variety of challenges during COVID-19, the vertical and lateral fit enhanced by EHR

could improve administrative and clinical responses. As the hospital copes with the need to

manage COVID-19 and non-COVID-19 health care demands, the degree of EHR adoption

may facilitate improved management of uncertainty and complexity to lower mortality, man-

aging length of stay, and readmissions. EHR provides the necessary infrastructure to improve

administrative and clinical capabilities in times of COVID-19 [11–14]. Inter- and intra-hospi-

tal coordination supported by EHR could lower local death rates of COVID [15–17].

Our conceptual framework as illustrated in Fig 1, with sticky bed capacity, allocation of

beds for COVID-19 and non-COVID-19 patients became a critical trade-off for hospitals [7,

9]. To overcome the sticky short-term bed capacity (i.e., to manage the hatched area in Fig 1),

EHR systems could improve coordination across patient types and also strengthen local coor-

dination in the healthcare operations ecosystem. We focused on the extent of pre-COVID-19

EHR adoption—both in health registries and technology—to predict whether such invest-

ments ameliorated the forward-looking local death rates of COVID-19 [18–20]. We use death

rates after 7 days, 14 days and at 21 days (the periods when the probability of death was the

highest after infection).

Fig 1. Conceptual model.

https://doi.org/10.1371/journal.pone.0286210.g001
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Elaborating on real and observed mechanisms, COVID-19 mortality outcomes are driven

by a complex interchange and coordination of patient care needs in the local health ecosystem.

As such, hospital-level outcomes of COVID-19 patients would censor the more intensive local

coordination witnessed throughout the US during the pandemic. Pre-COVID-19 EHR adop-

tion could help assess the impact on broader outcomes in the local health ecosystem by facili-

tating the flow of information, capacity, speed of response, and coordinated response

necessary to lower COVID-19 mortality. Due to the variations in state-level non-pharmaceuti-

cal interventions [11, 21, 22] and patient-level heterogeneity in political ideologies, patients

may also vary in the need and desire to take precautions and seek care. These heterogeneities

make patient-level outcomes less meaningful as the variance explained by hospital actions

would also be confounded by local social and political factors.

The line of sight from EHR coordination among hospitals and providers and COVID-19

death outcomes is representative of complex adaptive systems in the face of the pandemic [23].

Based on the critical realism perspective [24–26], managing the dual care needs of COVID-19

and non-COVID-19 patients represents the “real” world where microdynamics of patient care,

potential confounds in spillovers between the two patient types, and a complex healthcare sup-

ply chain of interactions among stakeholders presents a challenging setting of the “observed”

world providing perspective and experiences through the released data from the government.

Consistent with critical realism, though we cannot observe the flows and stocks of coordina-

tion abilities in a local healthcare supply chain during a pandemic, it will be a possible episte-

mic fallacy to assume that we can ontologically test for the mechanisms driving individual

patient level COVID-19 outcomes in the high-pressure, high-stakes pandemic context.

We also test for cross-state variation in non-pharmaceutical interventions along a contigu-

ous border-county pair analysis, use 2SLS analysis based on quality ratings, and use foot-traffic

data at the US hospitals COVID-19 death outcomes. Our study authors approached two prac-

titioners in the healthcare field: 1) a cardiologist who is an advanced heart failure specialist;

and 2) an oncologist who was also a hospitalist and worked during the peak of COVID-19 pan-

demic. We enquired about the bed capacity during the pandemic and how hospitals with vari-

able EHR capabilities managed the patient flow with local hospitals. The practitioners stated

that EHR systems helped with the bed allotment during the pandemic. In some hospitals with

higher EHR capabilities, there were centralized bed allotment system that were connected to

other nearby hospitals. Both practitioners agreed that our research question is valid and rele-

vant to test.

To somewhat address the potential limitations of focusing on forward-looking local level

death rates in a county, we use both a simulation based on the SIR model (provided in S1 File)

and the available weekly empirical data. Our proposed model aims to make the following con-

tributions. First, with relation to the Hippocratic oath of ‘do no harm,’ operational flexibility

reflected in relative capacity of beds for COVID-19 and non-COVID-19 goals remained a criti-

cal challenge to lowering COVID-19 death rates [3–5]. In other words, a greater focus on test-

ing, admitting, and managing both patient types must have played a critical role in lowering

death rates under stickier short-term hospital bed capacity. With the US facing among the

highest documented COVID-19 deaths in the world, hospital critical care is a continuing

choke point, adding to increased stress points and fractures at multiple interfaces of hospital

supply chains.

Though the demand for beds increased rapidly during COVID-19, hospitals also cut down

on non-urgent care and postponed non-essential surgeries to make room for COVID-19

patients. At the core of their ability to manage capacity could be the extent of pre-COVID-19

EHR adoption. With strained bed capacity and intermittent surges, we expect that pre-

COVID-19 EHR investments will help mitigate, but not alleviate forward-looking death rates.
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EHR adoption levels could play an elemental role in providing infrastructure for a spectrum of

care needs at multiple levels of a local healthcare ecosystem. Though we do not imply that scal-

ing EHR in the short term is possible, the findings add to the calls by experts [8, 27, 28] on the

need for improved EHR adoption for future pandemics.

Second, from an operations management perspective, available bed capacity has been a crit-

ical constraint for hospitals during COVID-19 [27, 28]. With many hospitals running at capac-

ity, managing the allocation of beds for COVID-19 patients remains a critical challenge. With

unexpected case surges, coupled with the limited ability to scale capacity hospitals, it became

equally critical to service COVID-19 patients while also ensuring those with non-COVID-19

co-morbidities received critical care. The relative capacity for COVID-19 and non-COVID-19

beds is a critical challenge to lowering future death rates in the local area. Our core premise is

that EHR percentage levels from the pre-COVID-19 years could form the basis for managing

capacity, coordinating with local hospitals and care providers, and thereby facilitating the

improved death rates.

Third, empirically, we focused on a theory-based approach and drew inferences based on

simulation and empirical analysis. Our is among the first study that leverages recently released

weekly data on US hospitals and validates the propositions using a simulation and empirical

study. Our empirical results are robust to a variety of specifications and also to contiguous

county border-pair analysis controlling for spatial correlation varying between state variations

in non-pharmaceutical intervention policies [29]. We also find support for the effects in a

2SLS model. We aim to leverage the weekly variation in bed allocations and forward-looking

decline in death rates.

In the next section, we present a theoretical background, followed by the empirics. We have

included simulation models in the S1 File. We then discuss the results, provide theoretical and

practical implications and highlight limitations and future research directions. We list our

conclusions in end.

Theoretical background

Based on organizational information processing theory (OIPT) in the supply chain literature

[30–32], during COVID-19 EHRs may be essential to managing uncertainty and complexity

in the scale, uncertainty, and ambiguity of healthcare operations where bed capacity could not

be expanded in the short-run [8, 10, 15]. EHR improves cost-savings, increases operational

efficiency, enhances patient access and satisfaction, and most importantly, improves the over-

all quality of care [33–37]. EHR systems include digitization of physicians, lab, pharmacy, and

nursing-related tasks, data, reports, and orders. EHR systems also provide clinical decision-

making guidelines, reminders, and alerts, and facilitate the access, viewing of records and tests.

EHR applications are multicontextual and multidimensional ranging from computerized

orders to diagnostic decision-making and from vertical and lateral information exchange

interfaces to coordinated response protocols. The studies have demonstrated the value of EHR

in driving the cost logic, the coordination logic, and the decentralization logic to improve

healthcare delivery, and clinical and administrative outcomes [38]. EHR helps administrative

workers coordinate and manage information flows, and assists frontline workers in making

complex and time-sensitive health delivery decisions.

Because the percentage of EHR adoption cannot also be adjusted in the short run during a

pandemic, we focus on the pre-COVID-19 level EHR adoption in a hospital. In the past

decade, the US government has provided significant incentives to invest in EHR systems.

Among the most important federal law are the Health Information Technology for Economic

and Clinical Health (HITECH) Act of 2009 and the Federal Health IT Strategic Plan [39]. As a
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part of the American Recovery and Reinvestment Act (ARRA), about $30 billion in incentives

were provided for EHR adoption. Among the non-federal hospitals, EHR adoption was 84% in

2015 [40].

EHR systems, local healthcare supply chains, and COVID-19 response

According to organizational information processing theory (OIPT) when facing complex,

interdependent and uncertain tasks, firms must collate, analyze and use information [30–32].

COVID-19 significantly increased uncertainty, or the “difference between the amount of infor-

mation required to perform the task and the amount of information already possessed by the

organization” (Galbraith, 1973, p. 5) [41]. EHR may strengthen information processing capac-

ity in an increasingly uncertain COVID-19 environment. Consistent with prior supply chain

research applying OIPT [31, 42, 43] we consider OIPT as a critical lens in studying the benefi-

cial effects of EHR in improving the relative COVID-19 and non-COVID-19 capacity alloca-

tions [17]. Based on OIPT, EHR allows for horizontal (among hospitals and care providers)

and vertical (among labs and pharmacies) relationships through improved contact intensity,

greater liaison, and stronger integration necessary to improving COVID-19 related response

[44]. Vertical information processing helps improve the intake and processing of patients and

the provision of necessary health inputs and post-discharge care. Similarly, horizontal infor-

mation processing among hospitals improves data access, operational planning, and flexibility

in managing the unpredictable and fluid COVID-19 environment.

Consistent with the supply chain literature, coordination among healthcare providers

through EHR is essential to promoting the necessary coordination in a local decentralized

healthcare ecosystem [45, 46]. Healthcare systems are “a decentralized supply chain largely

characterized by a lack of coordination mechanisms (financial or contractual) among physi-

cians, hospitals, and patients (i.e., Schmoltzi & Wallenburg, 2012; Tachizawa & Wong, 2015)”

[47 p. 38] where EHR could be the necessary infrastructure to improve coordination. EHR

data are essential to not only sharing and reusing the data to facilitate decision making but are

also essential to supporting critical treatment and capacity sharing [48]. The collaborative data

structures driven by the interoperability of EHR improve collaboration and are increasingly at

the center stage of local response to COVID-19 [49–51]. EHR may drive responsive and resil-

ient point-of-care solutions. EHR levels may facilitate the necessary development, implementa-

tion, and flow of data sharing and improved coordination and communication to develop a

local quasi-coordinated response during the times of COVID-19 [28]. The local orchestration

of information, data, and patients across labs, hospitals, clinics, and physicians helps improve

care for those without COVID-19 and thereby more effectively manage the allocation of

COVID-19 and non-COVID-19 care.

Facilitating EHR provides the necessary mode of vertical and horizontal flow of informa-

tion, decisions, and patients in hospital supply chains. Facilitating the need for intensive infor-

mation exchange and coordination across supply members, EHR acts as the necessary means

to improve the inter-and intra-hospital flow of patients, supplies, and information [52]. EHR

may enhance the integration across outpatient/inpatient, medical, nursing, and other depart-

ments to improve information sharing and collaboration [52–55]. Internal integration is

essential to managing the relative capacity of bed capacity by meeting the need for frequent,

timely, and accurate information sharing in real-time [52, 54–57]. EHR may further improve

the timeliness and quality of care by improving interactions with patients by improving com-

munication and interchange of important patient health information and records within and

across the local healthcare providers. The information interchange is essential to managing

capacity while ensuring care during COVID-19 [48]. With evolving needs of the local
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healthcare ecosystem under COVID-19 hospitals must have access to and share EHR informa-

tion to improve the effective flow of resources and information.

During COVID-19, the shared interdependencies are at the core of managing scarce

resources [58–60]. As the demand for hospital beds increases, the need for improved manage-

ment of non-COVID-19 patients increases, where shared inputs and interdependencies could

help improve the care of non-COVID-19 by delaying non-urgent care. EHRs are easily shared

across care providers, to decentralize available information, draw on expertise to manage

admissions and discharges. EHR improves the clinical dimension (care provider and patient

interactions) and operational dimension (tools and technologies) to manage capacity, reducing

errors and improving the speed of responsiveness during COVID-19 [15].

The complex interdependencies among a variety of EHR systems may be central to improv-

ing the efficacy of bed allocations during COVID-19 in managing scale and complexity to

manage county-level death rates. The lateral and vertical interdependencies and coordination

facilitated by EHR systems may improve the efficacy of relative bed allocation on local

COVID-19 outcomes [61–63]. Improved information processing capabilities that allow for the

creation and delivery of healthcare services by coordinating vertical and horizontal inter-

dependencies across local healthcare providers, labs, insurance, and medical experts.

Relative bed allocation between COVID-19 and non-COVID-19 patients is rooted in oper-

ational flexibility. In allocating bed capacity, EHR levels may allow for essential inter-and

intra-functional collaboration and information sharing may help improve flexibility through

real-time information sharing to improve flexibility, speed, and responsiveness. At lower EHR

levels, flexibility and integrative information processing may not be feasible. As hospitals try to

intake COVID-19 patients, EHR may help speed up, re-prioritize or re-route non-COVID-19

patients to delay or postpone surgeries. Limited EHR percentage may limit the necessary close

and intensive coordination to manage close and intensive coordination necessary to develop

plans to respond to uncertainty in supply and demand, ad-hoc resolution of care decisions,

and improving flexibility in healthcare services by serving patients with available resources

during a pandemic.

Our SIR simulation model (in S1 File) [denoted by the number of susceptible people, the

number of infected, and the number of recovered persons] shows that a coordinated solution

facilitated by EHR may lead to lower COVID-19 death rates.

Empirical analysis

Data and sample

All data sources used for this study were publicly available and anonymized. The data on rela-

tive bed allocations are from the weekly reports from the hospitals in the ‘COVID-19 Reported

Patient Impact and Hospital Capacity by Facility database.’ We use the earliest to the latest

available weekly data, from July 31st, 2020 to February 12th, 2021. Hospitals registered with

the Center for Medicare & Medicaid Services (CMS) are the respondents in the data, and the

data are released by the Department of Health and Human Services. Additional details on the

data are available from https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-

and-Hospital-Capa/anag-cw7u The weekly data are from Friday to Thursday, and provide

information on bed allocations for COVID-19 and non-COVID-19 beds, along with informa-

tion on staffed beds and relative capacity of ICU beds. The data also provides the level of cover-

age in reporting of beds, the information we use to control for the quality of the information

provided by hospitals.

We collect additional hospital facility-level EHR data from CMS’ Medicare EHR incentive

program for providers. This dataset provides information on meaningful use measures among
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hospitals that received incentive payments for adopted, implemented, upgraded, or demon-

strated meaningful use of certified EHR technology. Additional details are available at https://

www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms The EHR data

for eligible hospitals can be obtained here: https://www.cms.gov/Regulations-and-Guidance/

Legislation/EHRIncentivePrograms/DataAndReportsWe obtain county-level COVID-19

death data from USAFacts, an organization that collects data released by CDC and state-/local-

public health agencies. Additional details on the COVID-19 data are available from https://

usafacts.org/visualizations/coronavirus-covid-19-spread-map/ We also obtain hospital charac-

teristics from the Hospital General Information dataset released by CMS. Additional details on

the hospital general information data is available here https://data.cms.gov/provider-data/

dataset/xubh-q36u Further, selected hospital personnel data was obtained from provider of

service files from CMS. Refer to provider of service files at https://data.cms.gov/provider-

characteristics/hospitals-and-other-facilities/provider-of-services-file-hospital-non-hospital-

facilities/data. We then merge the COVID-19 data with the hospital capacity and EHR data.

Our final sample consists of 3,640 hospitals and a total of 73,706 hospital week observations.

Empirical specification

We use a random-effects model with robust standard errors on the panel data to predict the

impact of EHR and relative capacity on future local COVID-19 death rates. Due to the time-

invariant measure of pre-COVID-19 EHR extent of usage, we use the random-effects model.

Our empirical specification is as follows:

Ycw; t þ 7; t þ 14; or t þ 21

¼ a1EHRh þ a2RCðhwÞ þ a3ðEHRh � RCðhwÞÞ þ X þ lw þ ðStateðhÞ � lwÞ þ εhw ð1Þ

Where c is the county, h is the hospital, t is the date of the weekly hospital report, and w is

the week of the year. Ycw is the t+7, t+14, and t+21 day COVID-19 death rates in the county.

The death rates are per ‘000 population. We take a log of death rates per ‘000 population.

RC(hw) is the relative capacity of beds for COVID-19 and non-COVID-19 patients. The

measure is computed by dividing the total number of adult patients hospitalized that are con-

firmed or suspected of COVID-19 in a given week by the total number of beds (7-day average)

in the hospital during the week.

EHRh is the extent of pre-COVID adoption of EHR in a hospital. The measure includes two

types of EHR measures. Both measures are based on the factor score derived from principal

component analysis. The first measure is the extent of EHR usage based on seven items. Each

item is reported as a percentage in the CMS hospital-level data. The seven items are: (i) Com-

puterized Provider Order Entry (CPOE); (ii) share of medication orders recorded using

CPOE; (iii) share of patients who have electronic access to their health information and use it;

(iv) share of patients who have electronic access to their health information and use it within

36 hours after information is available; (v) share of patients who were subsequently provided

patient-specific education resources; (vi) share of transitions of care where medication recon-

ciliation was performed; and (vii) share of transitions of care where health information of

patients was exchanged electronically.

The second measure of the EHR registry is a dichotomous measure based on whether or

not a hospital report results to the public health agency. The five items are whether the hospital

is active in engagement with public health agency in submitting: (i) electronic laboratory

results; (ii) immunization data; (iii) specialized registry; (iv) whether the hospital is in active

engagement with public health agency to submit syndromic surveillance data; and (v) whether

the hospital uses clinical decision support to improve performance on high priority health
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conditions. Our coefficient of interest is α3, or the estimate of the interaction between EHRh
and RC(hw).

X is a vector of controls. The controls include the type of hospital—critical access or short-

term hospital, hospital ownership type (Federal hospitals are the omitted category), whether or

not the hospital provides emergency services, hospital staffing (physicians, registered nurses,

licensed practical or vocational nurses). To control for the quality of weekly reporting, we also

include a set of coverage variables, an indicator of the number of times a hospital reported a

particular line item during the week of data collection. We also include the prior total number

of emergency department (ED) visits during the past seven days as controls. Finally, we

include whether or not a hospital is located in a metro area.

To control for week × state fixed effects, we include (State(h)×λw) where State(h) is the state

where the hospital is located and λw is the week of the year dummy. We control for state-week-

of-the-year fixed effects to account for the ongoing changes in the state (e.g., changes in lock-

down policies and mobility).

Table 1 presents the summary statistics of all the variables used in this study.

Main analysis

Table 2 presents the results of our main analysis. Models 1, 2, and 3 present the estimates of

the impact of EHR percentage on relative capacity on county COVID-19 death rates in t+7, t

+14, and t+21 days, respectively. We find that EHR adoption and relative capacity for COVID-

19 and non-COVID-19 beds is associated with lower county COVID-19 death rates.

Fig 2 shows that with the increasing relative capacity of beds for COVID-19 and non-

COVID-19 beds, a higher EHR percentage was associated with a lower incidence of death

rates (the dashed line). Similarly, Fig 3 shows similar inferences for higher EHR registry and

death rates.

Impact on foot traffic at hospitals

We also test whether the relative capacity of beds and EHR adoption impact foot traffic to hos-

pitals after 14 days (the infection period at the time for the virus strain). Both the local

COVID-19 incidence and death rates could impact the foot traffic at hospitals. We obtain daily

foot traffic data from SafeGraph, a data company that compiles anonymized location data to

various points of interest. We obtained the data for all the hospitals and health locations

(NAICS sector 6221, 6222, 6223) and then match it with our study sample of hospitals. We

then compute the cumulative foot traffic rate until time, t (defined as the natural log of cumu-

lative foot traffic to the hospital until time, t per 1,000 county population + 1).

Our empirical specification is as follows:

Foot traffichw;tþ14days

¼ a1EHRh þ a2RCðhwÞ þ a3ðEHRh � RCðhwÞÞ þ a4Covid19Incidcwt
þ a5ðCovid19Incidcwt � RCðhwÞÞ þ a6Covid19Deathcwt þ a7ðCovid19Deathcwt � RCðhwÞÞ

þ X þ lw þ ðStateðhÞ � lwÞ þ εhw ð2Þ

Where the outcome variable is the cumulative foot traffic rate at the hospitals until time t+14

days. Covid19Incid is the cumulative COVID-19 incidence rate at the county, c until time t in

week w. Covid19Death is the cumulative COVID-19 death rate at the county, c until time, t in

week w. We also include the interaction of EHR adoption (percentage and registry) with

cumulative COVID-19 incidence rate (and death rate) until time, t. All other controls are the

same as those in Eq (1).
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Table 1. Summary statistics.

Variable N mean sd

Dependent variables
COVID-19 county death rate (t+7) days 64,730 0.5572 0.3328

COVID-19 county death rate (t+14) days 60,728 0.5682 0.3298

COVID-19 county death rate (t+21) days 57,507 0.5788 0.3273

Independent variables and covariates
Relative capacity 73,706 0.1042 0.1005

EHR factor analysis percentage 73,706 0.0010 0.8424

EHR factor analysis registry 73,706 0.0143 0.7174

Hospital type—critical access hospitals 73,706 0.1680 0.3739

Hospital ownership—Government hospital district 73,706 0.0986 0.2982

Hospital ownership—Government local 73,706 0.0658 0.2480

Hospital ownership—Government state 73,706 0.0135 0.1154

Hospital ownership—Physician 73,706 0.0145 0.1197

Hospital ownership—proprietary 73,706 0.1703 0.3759

Hospital ownership—voluntary nonprofit church 73,706 0.0787 0.2693

Hospital ownership—voluntary nonprofit other 73,706 0.0847 0.2785

Hospital ownership—voluntary nonprofit private 73,706 0.4712 0.4992

Hospital provides emergency services 73,706 0.9494 0.2191

Log of the total number of full-time equivalent physicians 73,706 1.5314 1.6872

Log of the total number of full-time equivalent registered nurses 73,706 4.9364 1.5523

Log of the total number of full-time equivalent licensed practical or vocational nurses 73,706 2.2114 1.4282

Total beds seven-day coverage 73,706 6.8683 0.5915

All adult hospital beds seven-day coverage 73,706 6.7385 1.1029

All adult hospital inpatient beds seven-day coverage 73,706 6.7490 1.0702

Inpatient beds used seven-day coverage 73,706 6.8602 0.6220

All adult hospital inpatient beds occupied seven-day coverage 73,706 6.8099 0.8371

Total adult patients hospitalized confirmed and suspected of COVID-19 seven day

coverage

73,706 6.8596 0.6277

Total adult patients hospitalized confirmed COVID-19 coverage 73,706 6.8428 0.7185

Total pediatric patients hospitalized confirmed and suspected of COVID-19 coverage 73,706 6.8530 0.6493

Total pediatric patients hospitalized confirmed COVID-19 coverage 73,706 6.8157 0.7755

Inpatient beds seven day coverage 73,706 6.8410 0.7287

Total ICU beds seven-day coverage 73,706 6.8362 0.7688

Total staffed adult ICU beds seven-day coverage 73,706 6.7304 1.1264

ICU beds used seven-day coverage 73,706 6.8433 0.7291

Staffed adult ICU bed occupancy seven-day coverage 73,706 6.7679 0.9978

Staffed ICU adult patients confirmed and suspected of COVID-19 seven day coverage 73,706 6.8122 0.8587

Staffed ICU adult patients confirmed COVID-19 seven day coverage 73,706 6.8080 0.8773

Total patients hospitalized and confirmed of influenza seven-day coverage 73,706 4.3521 3.3187

ICU patients confirmed influenza seven-day coverage 73,706 4.3507 3.3193

Total patients hospitalized and confirmed of influenza and COVID-19 seven-day

coverage

73,706 4.3475 3.3202

Previous day total ED visits seven-day sum 73,706 640.3113 663.8941

Hospital is in metro area 73,706 0.8590 0.3480

Instrumental variable: Hospital overall rating 64,783 3.1215 1.1177

https://doi.org/10.1371/journal.pone.0286210.t001
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Table 2. Main results.

(1) (2) (3)

VARIABLES COVID-19 county death rate

(t+7) days

COVID-19 county death rate

(t+14) days

COVID-19 county death rate

(t+21) days

Relative capacity 0.211*** 0.250*** 0.289***
(0.0119) (0.0123) (0.0127)

EHR percentage 0.0107*** 0.0107*** 0.0108***
(0.00163) (0.00166) (0.00171)

EHR percentage × Relative capacity -0.188*** -0.197*** -0.207***
(0.0103) (0.0106) (0.0109)

EHR registry 0.00460** 0.00418** 0.00377*
(0.00182) (0.00187) (0.00193)

EHR registry × Relative capacity -0.0798*** -0.0797*** -0.0807***
(0.0105) (0.0109) (0.0114)

Hospital type—critical access hospitals -0.0323*** -0.0352*** -0.0361***
(0.00442) (0.00469) (0.00490)

Hospital ownership—Government hospital district 0.187*** 0.188*** 0.189***
(0.0114) (0.0118) (0.0120)

Hospital ownership—Government local 0.210*** 0.212*** 0.213***
(0.0120) (0.0125) (0.0127)

Hospital ownership—Government state 0.139*** 0.139*** 0.139***
(0.0130) (0.0135) (0.0137)

Hospital ownership—Physician 0.186*** 0.189*** 0.192***
(0.0124) (0.0128) (0.0130)

Hospital ownership—proprietary 0.206*** 0.206*** 0.207***
(0.0111) (0.0115) (0.0117)

Hospital ownership—voluntary nonprofit church 0.165*** 0.165*** 0.164***
(0.0113) (0.0117) (0.0119)

Hospital ownership—voluntary nonprofit other 0.142*** 0.142*** 0.142***
(0.0113) (0.0117) (0.0119)

Hospital ownership—voluntary nonprofit private 0.164*** 0.165*** 0.165***
(0.0111) (0.0115) (0.0116)

Hospital provides emergency services -0.0507*** -0.0520*** -0.0527***
(0.00376) (0.00386) (0.00397)

Log of total number of full-time equivalent physicians 0.00706*** 0.00700*** 0.00689***
(0.000584) (0.000593) (0.000604)

Log of total number of full-time equivalent registered nurses 0.00487*** 0.00416*** 0.00377***
(0.000762) (0.000762) (0.000762)

Log of total number of full-time equivalent licensed practical or

vocational nurses

0.00409*** 0.00484*** 0.00587***

(0.000695) (0.000710) (0.000724)

Total beds seven day coverage -0.000827 -0.000485 -0.00386

(0.00357) (0.00371) (0.00361)

All adult hospital beds seven day coverage 0.0103*** 0.0108*** 0.0113***
(0.00183) (0.00191) (0.00191)

All adult hospital inpatient beds seven day coverage -0.00960*** -0.0102*** -0.0101***
(0.00249) (0.00258) (0.00266)

Inpatient beds used seven day coverage 0.00826* 0.00877* 0.00915*
(0.00470) (0.00503) (0.00506)

All adult hospital inpatient beds occupied seven day coverage -0.00547** -0.00501* -0.00656**
(Continued)
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Table 2. (Continued)

(1) (2) (3)

VARIABLES COVID-19 county death rate

(t+7) days

COVID-19 county death rate

(t+14) days

COVID-19 county death rate

(t+21) days

(0.00258) (0.00271) (0.00274)

Total adult patients hospitalized confirmed and suspected of

COVID-19 seven day coverage

-0.0277*** -0.0261*** -0.0228***

(0.00738) (0.00775) (0.00772)

Total adult patients hospitalized confirmed of COVID-19 coverage 0.0231*** 0.0203*** 0.0168***
(0.00587) (0.00616) (0.00624)

Total pediatric patients hospitalized confirmed and suspected of

COVID-19 coverage

0.00378 0.00327 0.00259

(0.00558) (0.00577) (0.00579)

Total pediatric patients hospitalized confirmed of COVID-19

coverage

-4.84e-05 0.000970 0.00102

(0.00422) (0.00431) (0.00422)

Inpatient beds seven day coverage -0.00764* -0.00813** -0.00590

(0.00396) (0.00408) (0.00423)

Total ICU beds seven day coverage 0.0109*** 0.0112*** 0.0107**
(0.00377) (0.00397) (0.00423)

Total staffed adult ICU beds seven day coverage -0.00571*** -0.00617*** -0.00664***
(0.00221) (0.00232) (0.00240)

ICU beds used seven day coverage -0.00883** -0.0106** -0.00950*
(0.00439) (0.00474) (0.00491)

Staffed adult ICU bed occupancy seven day coverage 0.0119*** 0.0141*** 0.0139***
(0.00276) (0.00292) (0.00297)

Staffed ICU adult patients confirmed and suspected of COVID-19

seven day coverage

0.0119* 0.0119* 0.0127*

(0.00658) (0.00706) (0.00689)

Staffed ICU adult patients confirmed of COVID-19 seven day

coverage

-0.00691 -0.00724 -0.00472

(0.00636) (0.00678) (0.00665)

Total patients hospitalized and confirmed of influenza seven day

coverage

0.0202*** 0.0210*** 0.0200***

(0.00495) (0.00484) (0.00463)

ICU patients confirmed of influenza seven day coverage -0.00566 -0.00659 -0.00664

(0.00580) (0.00573) (0.00547)

Total patients hospitalized and confirmed of influenza and

COVID-19 seven day coverage

-0.0206*** -0.0195*** -0.0178***

(0.00356) (0.00347) (0.00331)

Previous day total ED visits seven day sum 3.61e-06 2.23e-06 1.14e-06

(2.36e-06) (2.16e-06) (1.94e-06)

Hospital is in metro area -0.0519*** -0.0563*** -0.0639***
(0.00457) (0.00486) (0.00507)

Constant 0.386*** 0.397*** 0.404***
(0.0177) (0.0181) (0.0187)

Week of the year fixed effects Yes Yes Yes

Week of the year fixed effects × State fixed effects Yes Yes Yes

Observations 64,728 60,724 57,504

(Continued)
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Table 3 shows the results of the impact of EHR percentage (and EHR registry) and relative

capacity on cumulative foot traffic rate at the hospitals after 14 days. Model 1 shows the results

without controls but includes the fixed effects, and Model 2 includes all controls. We find that

for our preferred model (Model 2), the interaction between relative capacity at the time, t, and

EHR registry was negative and significant on the cumulative foot traffic rate after t+14 days.

We also find that the interaction of EHR (percentage and registry) with cumulative county

incidence rates were positively associated with foot traffic. Further, the cumulative county

death rates interaction with EHR percentage was negatively related to foot traffic.

Analysis by components of EHR

Table 4 presents the results of interactions by each component of EHR items used for the prin-

cipal components analysis used to compute EHR percentage and EHR registry measures. We

find that higher relative capacity was associated with lower local COVID-19 death rates when

the facility had a higher share of medication orders recorded using Computerized Provider

Table 2. (Continued)

(1) (2) (3)

VARIABLES COVID-19 county death rate

(t+7) days

COVID-19 county death rate

(t+14) days

COVID-19 county death rate

(t+21) days

R-squared 0.594 0.594 0.591

Robust standard errors in parenthesis

*** p<0.01

** p<0.05

* p<0.1

https://doi.org/10.1371/journal.pone.0286210.t002

Fig 2. Relative capacity and EHR percentage on local COVID-19 death rate.

https://doi.org/10.1371/journal.pone.0286210.g002
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Order Entry; share of patients having electronic access to their health information, and used it

or shared it for transitions of care where medication reconciliation/electronic exchange of

health information was performed.

Analysis by quartile of county death rate

The COVID-19 caseload varied significantly by region and city in the US. To assess whether

our findings are an artifact of effects-driven by counties that experienced lower COVID-19

caseloads, and therefore, demonstrating greater efficacy of pre-COVID-19 EHR efficacy, we

conduct a quantile regression analysis. We split the sample by quartiles of death rates in each

county. Table 5 presents the results for each quartile of a county death rate. We find that our

main results are consistent across different quartiles of local death rates, especially for EHR

percentage and relative capacity interaction.

Analysis by hospital type

We further analyze whether there is heterogeneity in results by type of hospitals–namely, criti-

cal access hospitals and short-term hospitals. In Table 6, we find that our main findings are

consistent for short-term and critical access hospitals for EHR percentage interaction. We find

consistent results for EHR registry interaction for short term hospitals.

Contiguous border county-pair analysis

As a robustness test, we also perform a spatial heterogeneity analysis by comparing hospitals

between counties bordering contiguous states. This design allows us to control for unobserved

spatial factors that could be correlated with outcomes and considers potential spillover effects

across state borders between adjacent counties from states with different COVID-19 policies.

Fig 3. Relative capacity and EHR registry on local COVID-19 death rate.

https://doi.org/10.1371/journal.pone.0286210.g003
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Fig 4 shows the border counties that contain at least one hospital and are used in the analysis.

Our specification is as follows:

Ycw;tþ7;tþ14;or tþ21

¼ a1EHRh þ a2RCðhwÞ þ a3ðEHRh � RCðhwÞÞ þ X þ lw þ ðCounty pairðhcmÞ � lwÞ þ εhcmwð3Þ

Where h is the hospital, c is the county,m is the adjacent county across the state border, and w
is the week. X is a set of controls as described in Eq (1). We include the interaction of week of

the year dummy and (λw) and county pair dummy.

Table 3. Impact on foot traffic at hospitals.

(1) (2)

VARIABLES Cumulative foot traffic rate to hospitals at t+14

days

Cumulative foot traffic rate to hospitals at t+14

days

Relative capacity at time, t 1.059*** 0.939***
(0.0768) (0.0711)

EHR percentage -0.0796*** -0.0457

(0.0305) (0.0302)

EHR percentage × Relative capacity -0.410*** -0.0882

(0.0774) (0.0710)

EHR registry -0.161*** -0.118***
(0.0393) (0.0356)

EHR registry × Relative capacity -0.650*** -0.307***
(0.0820) (0.0707)

Cumulative county incidence rate of COVID-19 at time, t -0.626*** -0.378***
(0.0174) (0.0165)

Cumulative county death rate of COVID-19 at time, t -0.0593* -0.280***
(0.0319) (0.0297)

EHR percentage × Cumulative county incidence rate of

COVID-19

0.0350*** 0.0194*

(0.0120) (0.0116)

EHR percentage × Cumulative county death rate of COVID-

19

-0.113*** -0.136***

(0.0281) (0.0265)

EHR registry × Cumulative county incidence rate of COVID-

19

0.0566*** 0.0255*

(0.0157) (0.0138)

EHR registry × Cumulative county death rate of COVID-19 -0.0386 -0.0247

(0.0379) (0.0334)

Constant 5.728*** 5.490***
(0.0503) (0.142)

Week of the year fixed effects Yes Yes

Week of the year fixed effects × State fixed effects Yes Yes

All additional controls as in Table 2 No Yes

Observations 56,154 54,649

R-squared 0.426 0.499

Robust standard errors in parenthesis

*** p<0.01, ** p<0.05, * p<0.1

https://doi.org/10.1371/journal.pone.0286210.t003

PLOS ONE Bed capacity and COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0286210 October 26, 2023 14 / 27

https://doi.org/10.1371/journal.pone.0286210.t003
https://doi.org/10.1371/journal.pone.0286210


Table 4. Analysis by EHR components.

(1) (2) (3)

VARIABLES COVID-19 county death

rate (t+7) days

COVID-19 county death

rate (t+14) days

COVID-19 county death

rate (t+21) days

Share of laboratory orders recorded using Computerized Provider Order Entry

(CPOE)

0.105*** 0.104*** 0.105***

(0.0107) (0.0110) (0.0113)

Share of medication orders recorded using Computerized Provider Order Entry

(CPOE)

-0.0113 -0.00395 4.66e-05

(0.0162) (0.0167) (0.0172)

Share of patients who have electronic access to their health information and use it -0.0617*** -0.0713*** -0.0718***
(0.0105) (0.0110) (0.0113)

Share of patients who have electronic access to their health information and use it

within 36 hours after information is available

-0.186*** -0.192*** -0.195***

(0.0121) (0.0125) (0.0129)

Share of patients who were subsequently provided patient-specific education

resources

0.0412*** 0.0439*** 0.0405***

(0.00620) (0.00640) (0.00657)

Share of transitions of care where medication reconciliation was performed 0.0471*** 0.0548*** 0.0548***
(0.0127) (0.0131) (0.0134)

Share of transitions of care where heath information of patients were exchanged

electronically

0.0426*** 0.0414*** 0.0449***

(0.00609) (0.00626) (0.00645)

Hospital is in active engagement with public health agency to submit electronic

laboratory results

-0.0854*** -0.0914*** -0.0999***

(0.00853) (0.00873) (0.00905)

Hospital is in active engagement with public health agency to submit immunization

data

-0.0182 -0.0185 -0.0164

(0.0125) (0.0128) (0.0131)

Hospital is in active engagement to submit data to specialized registry -0.0341*** -0.0357*** -0.0374***
(0.00381) (0.00393) (0.00405)

Hospital is in active engagement with public health agency to submit syndromic

surveillance data

-0.00598 -0.00816 -0.00935*

(0.00521) (0.00538) (0.00556)

Relative capacity 1.558*** 1.523*** 1.493***
(0.195) (0.199) (0.206)

Share of laboratory orders recorded using Computerized Provider Order Entry

(CPOE) × Relative capacity

-0.524*** -0.550*** -0.593***

(0.0738) (0.0756) (0.0782)

Share of medication orders recorded using Computerized Provider Order Entry

(CPOE) × Relative capacity

-0.421*** -0.517*** -0.601***

(0.107) (0.110) (0.113)

Share of patients who have electronic access to their health information and use

it × Relative capacity

-0.451*** -0.400*** -0.394***

(0.0784) (0.0813) (0.0836)

Share of patients who have electronic access to their health information and use it

within 36 hours after information is available × Relative capacity

0.0513 0.108 0.130

(0.0803) (0.0831) (0.0869)

Share of patients who were subsequently provided patient-specific education

resources × Relative capacity

0.105** 0.0988** 0.123***

(0.0409) (0.0423) (0.0440)

Share of transitions of care where medication reconciliation was

performed × Relative capacity

-0.466*** -0.514*** -0.512***

(Continued)
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Table 7 shows the results of our analysis. We find that our original findings of higher rela-

tive capacity with higher EHR percentage or registry are associated with both lower county

death rates at 7-, 14-, and 21-day forward-looking periods.

Endogeneity tests

Though the contiguous county pair analysis across state borders allows control for spatial spill-

overs from neighboring states, endogeneity is also a concern. We use overall hospital quality

star rating as an instrument to predict relative capacity. The star rating is released in the year

2020 is derived from hospitals that report through Inpatient/Outpatient Quality Reporting

program. See CMS link on overall hospital quality star ratings here: https://data.cms.gov/

provider-data/topics/hospitals/overall-hospital-quality-star-rating and the data can be

obtained from https://data.cms.gov/provider-data/dataset/xubh-q36uThe rating takes the

weighted average scores of seven groups of measures such as mortality, the safety of care, read-

mission, patient experience, the effectiveness of care, timeliness of care, and efficient use of

medical imaging. These ratings are based on the information before the onset of COVID-19.

We expect the direction of effect in the first stage of 2SLS to be negative for the following

reasons. A hospital with a lower rating may be overwhelmed with the flow of COVID-19

Table 4. (Continued)

(1) (2) (3)

VARIABLES COVID-19 county death

rate (t+7) days

COVID-19 county death

rate (t+14) days

COVID-19 county death

rate (t+21) days

(0.0786) (0.0813) (0.0843)

Share of transitions of care where heath information of patients were exchanged

electronically × Relative capacity

-0.131*** -0.121*** -0.138***

(0.0402) (0.0410) (0.0422)

Hospital is in active engagement with public health agency to submit electronic

laboratory results × Relative capacity

0.0926 0.148** 0.209***

(0.0579) (0.0585) (0.0596)

Hospital is in active engagement with public health agency to submit immunization

data × Relative capacity

-0.0750 -0.0596 -0.0718

(0.0737) (0.0762) (0.0791)

Hospital is in active engagement to submit data to specialized registry × Relative

capacity

0.0976*** 0.110*** 0.129***

(0.0262) (0.0269) (0.0279)

Hospital is in active engagement with public health agency to submit syndromic

surveillance data × Relative capacity

-0.169*** -0.164*** -0.154***

(0.0346) (0.0359) (0.0378)

Constant 0.644*** 0.668*** 0.690***
(0.0368) (0.0374) (0.0387)

All controls Included Included Included

Week of the year fixed effects Yes Yes Yes

Week of the year fixed effects × State fixed effects Yes Yes Yes

Observations 64,728 60,724 57,504

R-squared 0.602 0.602 0.600

Robust standard errors in parenthesis

*** p<0.01

** p<0.05

* p<0.1

https://doi.org/10.1371/journal.pone.0286210.t004

PLOS ONE Bed capacity and COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0286210 October 26, 2023 16 / 27

https://data.cms.gov/provider-data/topics/hospitals/overall-hospital-quality-star-rating
https://data.cms.gov/provider-data/topics/hospitals/overall-hospital-quality-star-rating
https://data.cms.gov/provider-data/dataset/xubh-q36uThe
https://doi.org/10.1371/journal.pone.0286210.t004
https://doi.org/10.1371/journal.pone.0286210


patients and they may over-allocate beds to COVID-19 patients and significantly delay care of

non-COVID-19 patients. A hospital with a higher rating may not be that quickly over-

whelmed, it would have the capacity to set additional beds and scale of rising demand without

significantly lowering care for non-COVID-19 patients. The star rating may have a direct

influence on relative capacity as higher quality hospitals would have resources and infrastruc-

ture to allocate beds to COVID-19 patients and also more effectively manage the care of non-

COVID-19 patients during a pandemic.

Our first stage results are shown in Table 8 Model 1. We find that the overall star rating of

hospitals has a reduced effect on the relative capacity of COVID-19 patients concerning non-

COVID-19 patients.

We then predict the relative capacity and use them in our second stage equation as follows:

Ycw;tþ7;tþ14;or tþ21 ¼ a1EHRh þ a2Predicted RCðhwÞ þ a3ðEHRh � Predicted RCðhwÞÞ þ X þ lw þ ðStateðhÞ
� lwÞ þ εhw ð4Þ

Table 5. Analysis by quartile of county death rate.

Quartile of county

death rate

Relative

capacity

EHR factor analysis

percentage

EHR percentage × Relative

capacity

EHR factor analysis

registry

EHR registry × Relative

capacity

COVID-19 county

death rate (t+7) days

1 0.152*** 0.00164 -0.0575*** 0.00723*** -0.0421***
(0.0104) (0.00119) (0.00812) (0.00131) (0.00864)

2 0.0643*** -0.000850 -0.0157*** -0.00384*** 0.0151**
(0.00652) (0.000813) (0.00536) (0.000979) (0.00603)

3 0.0380*** -0.00177** -0.00143 -0.000230 -0.000404

(0.00610) (0.000831) (0.00499) (0.000866) (0.00452)

4 -0.0454** 0.0148*** -0.0723*** 0.0195*** -0.0160

(0.0195) (0.00241) (0.0165) (0.00333) (0.0209)

COVID-19 county

death rate (t+14) days

1 0.192*** 0.000206 -0.0620*** 0.00554*** -0.0412***
(0.0121) (0.00134) (0.00933) (0.00144) (0.00950)

2 0.107*** -0.00131 -0.0221*** -0.00567*** 0.0216***
(0.00792) (0.000939) (0.00635) (0.00112) (0.00694)

3 0.0802*** -0.00173* -0.00795 -0.000701 -0.00478

(0.00767) (0.000935) (0.00596) (0.000956) (0.00560)

4 -0.0154 0.0152*** -0.0734*** 0.0193*** -0.0220

(0.0203) (0.00245) (0.0169) (0.00341) (0.0215)

COVID-19 county

death rate (t+21) days

1 0.231*** -6.91e-05 -0.0708*** 0.00525*** -0.0441***
(0.0144) (0.00155) (0.0111) (0.00159) (0.0106)

2 0.155*** -0.00177 -0.0249*** -0.00673*** 0.0233***
(0.00974) (0.00108) (0.00765) (0.00126) (0.00868)

3 0.121*** -0.00167 -0.0187** -0.00204* -0.00492

(0.00934) (0.00107) (0.00735) (0.00107) (0.00669)

4 0.0214 0.0174*** -0.0918*** 0.0191*** -0.0337

(0.0209) (0.00251) (0.0174) (0.00354) (0.0219)

All controls are included in all models. The results presented in each row are obtained from regressions for each quartile. Robust standard errors in parenthesis

*** p<0.01

** p<0.05

* p<0.1

https://doi.org/10.1371/journal.pone.0286210.t005
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Table 6. Analysis by hospital type.

Critical Access Hospitals (1) (2) (3)

VARIABLES COVID-19 county death rate (t+7)

days

COVID-19 county death rate (t+14)

days

COVID-19 county death rate (t+21)

days

Relative capacity 0.170*** 0.199*** 0.205***
(0.0357) (0.0381) (0.0399)

EHR percentage 0.0171*** 0.0167*** 0.0215***
(0.00471) (0.00500) (0.00532)

EHR percentage × Relative capacity -0.0749* -0.0916** -0.142***
(0.0398) (0.0427) (0.0457)

EHR registry -0.0192*** -0.0242*** -0.0283***
(0.00505) (0.00543) (0.00580)

EHR registry × Relative capacity 0.0533 0.0809* 0.0658

(0.0390) (0.0415) (0.0435)

Constant 0.498*** 0.482*** 0.502***
(0.0359) (0.0384) (0.0393)

All controls Included Included Included

Week of the year fixed effects Yes Yes Yes

Week of the year fixed effects × State fixed

effects

Yes Yes Yes

Observations 8,603 7,446 6,750

R-squared 0.686 0.695 0.697

Short Term Hospitals (4) (5) (6)

VARIABLES COVID-19 county death rate (t+7)

days

COVID-19 county death rate (t+14)

days

COVID-19 county death rate (t+21)

days

Relative capacity 0.256*** 0.299*** 0.343***
(0.0125) (0.0129) (0.0133)

EHR percentage 0.00543*** 0.00589*** 0.00500***
(0.00169) (0.00173) (0.00176)

EHR percentage × Relative capacity -0.167*** -0.177*** -0.180***
(0.0105) (0.0108) (0.0112)

EHR registry 0.0101*** 0.00982*** 0.00959***
(0.00187) (0.00191) (0.00195)

EHR registry × Relative capacity -0.0930*** -0.0954*** -0.0950***
(0.0108) (0.0112) (0.0117)

Constant 0.414*** 0.435*** 0.432***
(0.0213) (0.0218) (0.0225)

All controls Included Included Included

Week of the year fixed effects Yes Yes Yes

Week of the year fixed effects × State fixed

effects

Yes Yes Yes

Observations 56,001 53,147 50,624

R-squared 0.595 0.593 0.591

Robust standard errors in parenthesis

*** p<0.01

** p<0.05

* p<0.1

https://doi.org/10.1371/journal.pone.0286210.t006
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Fig 4. Border county analysis.Note. Reprinted from–maptile- package output maps in Stata 17 under a Unlicense

license, a free and unencumbered software released into the public domain. For the full legal text of the Unlicense, see

http://unlicense.org, original copyright 2023.

https://doi.org/10.1371/journal.pone.0286210.g004

Table 7. Border county analysis.

(1) (2) (3)

VARIABLES COVID-19 county death rate (t+7)

days

COVID-19 county death rate (t+14)

days

COVID-19 county death rate (t+21)

days

Relative capacity 0.0533*** 0.0550*** 0.0602***
(0.0146) (0.0156) (0.0157)

EHR percentage 0.00532*** 0.00507*** 0.00536***
(0.00155) (0.00155) (0.00158)

EHR percentage × Relative capacity -0.0346*** -0.0341*** -0.0380***
(0.00851) (0.00869) (0.00890)

EHR registry 0.0230*** 0.0217*** 0.0208***
(0.00204) (0.00206) (0.00206)

EHR registry × Relative capacity -0.0578*** -0.0537*** -0.0509***
(0.00901) (0.00918) (0.00934)

Constant 0.658*** 0.697*** 0.711***
(0.0400) (0.0390) (0.0357)

All controls Included Included Included

Week of the year fixed effects Yes Yes Yes

Week of the year fixed effects × State fixed

effects

Yes Yes Yes

Observations 17,804 16,741 15,856

R-squared 0.942 0.942 0.942

Robust standard errors in parenthesis

*** p<0.01

** p<0.05

* p<0.1

https://doi.org/10.1371/journal.pone.0286210.t007
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The second stage results are presented in Models 2 to 4 of Table 8. Consistent with our

main results, we find that higher predicted relative capacity and higher EHR adoption reduces

county death rates.

Discussion

Summary of findings. During COVID-19, the EHR could have improved the ability to

manage care through the relative capacity of beds could have been a critical element improving

COVID-19 death rates. Based on both a simulation and empirical exercise using pre-COVID-

19 EHR penetration and weekly allocation of COVID-19 vs. non-COVID-19 beds, we find

that local incidence of death rates decline. With sticky hospital bed capacity, EHR percentage

is associated with meaningful impact on lower case and death rate at 7-, 14-, and 21-days in

the future. The findings provide a simulation-based and empirical test on the extent of EHR

presence in improving the hospital bed allocation and therefore death rates. Our findings are

robust to a variety of specifications, contiguous border-county pairs, and 2SLS estimates.

A significant body of healthcare supply chain literature has focused on the value of EHR

[64]. As local health care ecosystems struggle to respond to the pandemic, based on the swift-

Table 8. Two-stage least squares estimates.

(1) (2) (3) (4)

First stage Second Stage

VARIABLES Relative

capacity

COVID-19 county death rate (t

+7) days

COVID-19 county death rate (t

+14) days

COVID-19 county death rate (t

+21) days

Instrument: Hospital overall star rating -0.00238***
(0.000281)

Predicted Relative capacity 9.370*** 9.401*** 9.460***
(0.354) (0.362) (0.371)

EHR factor analysis percentage 0.00229*** 0.0943*** 0.0946*** 0.0885***
(0.000386) (0.0117) (0.0122) (0.0126)

EHR percentage × Predicted relative

capacity

-1.078*** -1.091*** -1.050***

(0.0995) (0.104) (0.108)

EHR factor analysis registry 0.00127** 0.0202 0.0299** 0.0215

(0.000548) (0.0143) (0.0151) (0.0159)

EHR registry × Predicted relative capacity -0.291** -0.380*** -0.309**
(0.123) (0.130) (0.137)

Constant 0.155*** -0.996*** -0.982*** -0.994***
(0.00819) (0.0571) (0.0586) (0.0600)

All controls Included Included Included Included

Week of the year fixed effects Yes Yes Yes Yes

Week of the year fixed effects × State fixed

effects

Yes Yes Yes Yes

Cragg-Donald Wald F statistic 22 17.36 13.36

Anderson-Rubin Wald test 99.56 97.68 95.58

Observations 64,780 57,870 54,534 51,763

R-squared 0.476 0.599 0.595 0.591

Robust standard errors in parenthesis

*** p<0.01

** p<0.05

* p<0.1

https://doi.org/10.1371/journal.pone.0286210.t008
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even flow framework [64], the relative capacity of beds and leveraging EHR may be important to

managing operational flexibility [65]. Though operational efficiency is not the end goal in a pan-

demic, EHR may be necessary plumbing to not only provide the necessary hardware for informa-

tion interchange, but in times of a pandemic, may provide the necessary interfaces to improve the

relational capital through improved trust, knowledge, and information exchange [66].

The study responds to the growing calls for studying the implications of the COVID-19

pandemic for the hospital supply chain. As one of the early studies on the impact of EHR on

local death rates, the empirical design allows for the test for the efficacy of EHR in times of cri-

sis. The shock of the pandemic was unexpected and it, therefore, allows for a quasi-experimen-

tal design in a supply chain that is not only tightly regulated but the one that has faced

significant pressures, fissures, and disconnects. The findings also contribute to the larger litera-

ture on supply chain resilience [67, 68] and responsiveness [69]. Vertical and lateral interde-

pendencies managed by EHR in the local pandemic milieu are an important consideration.

This study, therefore, aims to address the dearth of understanding on how hospitals managed

bed capacity among patients and the potential role of EHR adoption levels in lowering death

rates.

Third, though IT integration and technology adoption are the mainstay of the hospital sup-

ply chain system, the systems are by nature endogenous and the possibility of resilience and

response to shocks are generally designed into and planned for [70, 71]. COVID-19 pandemic,

though a morbid shock, allows us to test for the efficacy of pre-pandemic EHR investments

that increasingly are the fabric of interconnectivity among providers in the local ecosystem. By

focusing on the level of EHR, we modeled and tested for the potential integration value that

EHR integration may provide. We hope that our findings provide some insights into the value

of EHR in handling sticky bed capacity limitations during a pandemic.

Fourth, the focus on EHR is important given the informational intensity spikes during a

pandemic. Though healthcare supply chain networks are by their very nature information-

intensive, the need for improved knowledge exchange and flow is at its highest during a pan-

demic. Though the pre-pandemic level EHR infrastructure did not account for pandemic

needs, we expect that EHR provided the necessary complementarity to manage, if not improve,

the information exchange and resource flow overloads.

Practical implications

The findings of this study provide practical implications for policymakers, hospital manage-

ment, and stakeholders in the local healthcare ecosystem. With sticky hospital bed capacity,

balancing care for COVID-19 and non-COVID-19 patients is a critical goal for hospitals. In

doing so, EHR investments could not only help manage the care of non-COVID-19 patients

but may also help improve the local flow of patients among hospitals, clinics, and local physi-

cians to manage capacity and provide care. Though a significant body of research has focused

on the value of EHR in improving hospital performance, the COVID-19 presents a viable

exogenous shock to test whether investments in EHR led to improved management of the rela-

tive capacity of COVID-19 and non-COVID-19 hospital beds. Our research question draws

on the value of the flow of patients driven by EHR under the exogenous shock of COVID-19.

EHR networks form the essential backbone for developing, implementing, sharing, and

leveraging medical data through data-sharing networks and platforms. Though governments

across the world have focused on this important investment, it is not uniformly implemented

and/or adopted, and its efficacy is increasingly questioned by a variety of stakeholders. Our

findings provide support to the value of EHR. Despite the regulatory and logistic burdens of

implementing such systems at scale, our findings show that the interoperability of these
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systems is at the center stage of improving the effectiveness of bed capacity management. With

the sudden onset of COVID-19, our findings show that public health investments in EHR,

though costly in the short-run can be justified in the long-term.

Limitations and directions for future research

Our findings are not without limitations. First, we focused on future (7-, 14-, 21-day) death

rate outcomes at the county level as our outcome for several reasons. First, the choice of

COVID-19 mortality incidence rates at 7th, 14th, and 21st days are based on the incubation

and typical mortality rates since the start of infection. Ideally, if reallocation is targeted at pro-

viding more beds for COVID cases, and thereby reducing availability of beds for non-COVID

cases, a more relevant measure should be the changes in COVID to non-COVID deaths or

total deaths. We thank the editor for this suggestion. To our knowledge, the reports of

COVID-19 related deaths are more accurately reported, and the mortality rates related to non-

COVID-19 rates are not uniformly reported or available and available on a delayed basis (mak-

ing COVID-19 to non-COVID-19 mortality rates less comparable on similar time scales). Fur-

thermore, different morbidities lead to mortality at a varying pace and therefore, one may

overcount or undercount the mortalities from non-COVID-19 deaths during a given period.

Given the limitations of our main measure of COVID-19 death rates, an accurate measure of

non-COVID-19 death rates at the 7th, 14th, and 21st days would have been more ideal.

Second, because the COVID-19 shock-related response was in-situ in the ongoing capacity

and the ongoing coordination among local hospitals, management of relative capacity at the

hospital level would also spill over into other local hospitals, allowing for improved manage-

ment, admissions, and care among local hospitals in the local area. Focusing on hospital-level

outcomes censors the effects of incoming and outgoing spillovers from managing the relative

capacity of beds and the value of EHR percentage that could have ongoing benefits in manag-

ing the local ecosystem.

Third, due to local co-dependence, there is strong evidence that hospitals co-opt in the local

area to manage the capacity and flow of patients [72], and with increasing, ownership concen-

tration greater coordination among local hospitals is increasingly evident [73]. As such, we

expect that greater regional coordination among hospitals, evident in the recent COVID-19

crisis [74, 75], calls for an assessment of regional level improvements in regional incidence

rates. Nevertheless, richer theorization and empirical testing based on additional hospital-level

micro-data could add further insights.

Fourth, although we control for state effects and conduct a county border pair analysis

where many variations in non-pharmaceutical interventions occurred, the intra-regional vari-

ations within the counties are not observed. Variations in state and local responsiveness driven

by policy differences could be important influencers on the identified association. However,

we controlled for state-time effects, analyzed only border counties, and a variety of factors to

somewhat assuage this concern for complex and emerging dynamics during a pandemic.

Fourth, there is no federal mandate on the COVID-19 bed allocation reporting requirements.

However, this voluntary reporting has very high reporting rates, and we expect that the

reported data is accurate as there is no incentive to misreport. However, due to the pandemic

setting, there may be errors of commission and omission. Though we control for weekly hospi-

tal fixed-effects, the variations in stress levels among the staff, shortage of equipment are addi-

tional factors to consider for future research. Furthermore, capacity may spillover from less

efficient hospitals to more efficient ones. However, the emerging efficiencies in responsiveness

cannot be observed. Fifth, there may be non-hospital-related county-level factors that could

influence COVID-19 death rates. Though our hospital capacity and non-COVID-19 controls
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could closely relate to the location, there may be some confounders influencing the outcomes.

Finally, our analysis is limited to the US, and the identified relationships may vary in other

countries during the pandemic.

Conclusion

There have been growing calls to understand how hospital supply chains have responded to

COVID-19. The response is not easy given the limited ability to expand capacity in the short-

run. In this study, we investigated the role relative bed capacity allocation played in lowering

local death rates. The simulation and empirical results demonstrate that EHR may be the

driver of coordination and integration in an ecosystem under significant pressure in the face

of a pandemic. We hope that the findings of this study provide a framework for future research

to further study the value of EHR and complementary systems that help lower the incidence of

COVID-19 and improve patient care.
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