

RESEARCH ARTICLE

Characteristics of cardiopulmonary exercise testing in patients with combined post- and pre-capillary pulmonary hypertension due to left heart disease

Ayumi Goda *, Yoshiaki Yanagisawa, Shinsuke Takeuchi, Kaori Takeuchi, Hanako Kikuchi, Takumi Inami, Takashi Kohno, Toru Satoh, Kyoko Soejima

Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan

* ayumigoda@ks.kyorin-u.ac.jp

Abstract

Background

Pulmonary hypertension (PH) is a common and morbid complication of left heart disease (LHD), comprising two subtypes: (1) isolated post-capillary pulmonary hypertension (Ipc-PH) and (2) combined post-capillary and pre-capillary pulmonary hypertension (Cpc-PH). Knowledge regarding the physiological characteristics that distinguish Cpc-PH, which has a worse prognosis, from Ipc-PH remains limited. Therefore, this study aimed to assess the utility of cardiopulmonary exercise testing (CPET) variables in detecting Cpc-PH.

Methods and results

Among 105 consecutive patients with LHD (age: 55 ± 13 years; male/female = 79/26) who underwent right heart catheterization and CPET, 45 (43%) were classified as PH-LHD (mean pulmonary artery pressure >20 mmHg). Ipc-PH ($n = 24$) was defined as pulmonary vascular resistance (PVR) ≤ 3 WU and Cpc-PH ($n = 21$) as PVR > 3 WU. Patients with Cpc-PH had a significantly lower peak partial pressure of carbon dioxide (PETCO₂) (Non-PH/Ipc-PH/Cpc-PH = 38.2 ± 6.6 vs. 38.3 ± 6.0 vs 33.0 ± 4.4 mmHg, $p = 0.006$), higher VE vs. VCO₂ slope (Non-PH/Ipc-PH/Cpc-PH = 33.0 [28.3, 36.6] vs. 32.5 [28.1, 37.8] vs. 40.6 [33.6, 46.1], $p = 0.007$), and lower $\Delta V\text{O}_2/\Delta\text{WR}$ (Non-PH/Ipc-PH/Cpc-PH = 8.5 ± 1.4 vs. 8.0 ± 1.7 vs. 6.8 ± 2.0 mL/min/watt, $p = 0.001$) than those with Ipc-PH and non-PH. Using multivariable logistic regression analysis, CPET variables were found to be independent predictors of Cpc-PH (lower peak PETCO₂: odds ratio, 0.728 [95% confidence interval (CI): 0.616 – 0.840], $p = 0.003$ and lower $\Delta V\text{O}_2/\Delta\text{WR}$: odds ratio, 0.747 [95% CI: 0.575 – 0.872], $p = 0.003$).

Conclusion

From our exploratory analysis, CPET variables, especially in the lower peak PETCO₂ and lower $\Delta V\text{O}_2/\Delta\text{WR}$, were associated with Cpc-PH in patients with left heart disease.

Citation: Goda A, Yanagisawa Y, Takeuchi S, Takeuchi K, Kikuchi H, Inami T, et al. (2023) Characteristics of cardiopulmonary exercise testing in patients with combined post- and pre-capillary pulmonary hypertension due to left heart disease. PLoS ONE 18(5): e0286057. <https://doi.org/10.1371/journal.pone.0286057>

Editor: Milos Brankovic, University of Minnesota Medical Center Fairview: M Health Fairview University of Minnesota Medical Center East Bank, UNITED STATES

Received: August 12, 2022

Accepted: May 9, 2023

Published: May 22, 2023

Copyright: © 2023 Goda et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: The relevant data would be made available only upon request as per the “Ethical Guidelines for Medical and Health Research Involving Human Subjects.” The Kyorin University School of Medicine Ethics Committee does not allow access of patient information to be provided to a third party without prior approval. However, access to the de-identified data containing sensitive patient information can be

made available following approval. Requests for approval can be made to the Kyorin University School of Medicine Ethics Committee (E-mail: rec@ks.kyorin-u.ac.jp) for approval."

Funding: This research was funded by a Grant-in-Aid for Scientific Research (21K08087 [A.G.]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Pulmonary hypertension (PH) is a common and morbid complication of left heart disease (LHD). It comprises the following two subtypes: (1) isolated post-capillary PH (Ipc-PH) and (2) combined post-capillary and pre-capillary PH (Cpc-PH) [1]. Pathologically and genetically, Cpc-PH is considered to possess characteristics that are intermediate between those of pulmonary arterial hypertension (PAH), that is pre-capillary PH, and LHD, that is post-capillary PH [2–4]; furthermore, it has a worse prognosis than that of Ipc-PH. However, knowledge regarding the clinical or physiological characteristics that distinguish between these two sub-phenotypes remains limited [5]. The efficacy of pulmonary vasodilators in Cpc-PH has been explored recently [6, 7]. Despite the increased importance of detection and differentiation of Cpc-PH to enable a tailored approach for PH treatment, an invasive evaluation for PH remains mandatory.

The cardiopulmonary exercise test (CPET) is a well-established noninvasive test for assessing functional capacity and exercise limitation. Based on pathophysiology, it provides mechanistic insights and important information on gas exchange, ventilatory efficacy, and cardiac function during exercise [8, 9]. Peak oxygen consumption (peak VO_2), which reflects the cardiac output (CO) during exercise, and other ventilatory variables (such as the ventilation/carbon dioxide-production relationship slope [VE vs. VCO_2 slope]) remain the most frequently applied variables in the CPET and have been used as markers of disease severity and prognosis in patients with heart failure (HF) and PAH [10–13]. In terms of the CPET, PAH is characterized by a lower peak VO_2 , marked hyperventilation, a low end-tidal partial pressure of carbon dioxide (PETCO₂), and an elevated VE vs. VCO_2 slope [13, 14]. The combination of a low PETCO₂ and high ventilatory equivalents for carbon dioxide (VE/VCO₂) at the anaerobic threshold (AT) has been considered suggestive of PH [15]. Previous reports on the differentiation of Cpc-PH have proposed the usefulness of various ventilatory parameters, such as the VE/VCO₂ at AT, PETCO₂, dead-space ventilation-to-tidal ventilation (VD/VT), and lowest VE/VCO₂%pred; however, no consensus has been reached yet [16, 17].

An examination of the CPET variables in patients with Cpc-PH may provide mechanistic insights into the pathophysiology of Cpc-PH and facilitate the detection of early abnormal adaptations leading to Cpc-PH. Therefore, this study aimed to assess the utility of CPET variables in the non-invasive detection of Cpc-PH, which is considered to possess characteristics of both pre-capillary and post-capillary components.

Methods

This study complied with the principles of the Declaration of Helsinki and was approved by the Committee for Clinical Studies and Ethics of the Kyorin University School of Medicine (No 1261). Written informed consent was waived by the ethics committee because of the retrospective nature of this study.

Study patients

We retrospectively enrolled patients with LHD undergoing both right heart catheterization (RHC) and CPET under stable clinical conditions at our hospital between 2012 and 2017. During this period, elective RHC was performed in 255 patients whose primary diagnosis was LHD. Patients whose primary diagnosis was not LHD (e.g., right-sided HF, constrictive pericarditis, high-output HF) and those whose RHC was performed in urgent settings (e.g., acute coronary syndrome, cardiogenic shock) were not included. The clinical indication for RHC

was according to the international guideline [18]. In total, 2,211 patients, without comorbidities influencing exercise performance or usual contraindications for CPET, underwent CPET for the purpose of exercise prescription or exercise tolerance assessment. Finally, the study population comprised 105 consecutive hospitalized patients with LHD who underwent both RHC and CPET. Patients with dilated cardiomyopathy (n = 56), hypertrophic cardiomyopathy (n = 3), secondary cardiomyopathy (n = 6), ischemic cardiomyopathy (n = 13), valvular heart disease (n = 13), hypertensive heart disease (n = 5), and diastolic dysfunction (n = 9) were included.

Right heart catheterization

RHC was performed using a 6-F double-lumen, balloon-tipped, flow-directed Swan–Ganz catheter (Harmac Medical Products, Inc., Buffalo, NY, USA) via the transjugular approach.

The baseline hemodynamic data were recorded; the zero-reference level (mid-chest) was adjusted at the commencement of pressure measurement, and the pulmonary artery wedge pressure (PAWP) was obtained as the mean value of the arterial trace during occlusion. Measurements were obtained at the end of a normal expiration with the patients in a resting-state supine position to assess the right chamber, right atrium pressure (RAP), right ventricular end-diastolic pressure, pulmonary artery pressure (PAP; mean PAP, systolic PAP, and diastolic PAP), and PAWP [19]. The O₂ saturation in the pulmonary artery (SvO₂) and in the arterial blood i.e. in the radial or femoral artery (SaO₂) was measured. The CO was determined by the Fick method using the following formula: CO (L/min) = VO₂/(1.34 × hemoglobin × [SaO₂ – SvO₂]). The pulmonary vascular resistance (PVR) was calculated as follows: PVR (Wood units [WU]) = (mean PAP – PAWP)/CO. The diastolic pulmonary pressure gradient (DPG) was calculated as follows: DPG = diastolic PAP – PAWP. The pulmonary arterial compliance (PAC) were calculated as: PAC (ml/mmHg) = stroke volume/ pulse pressure.

Hemodynamic definition

To investigate the hemodynamics according to the presence of pulmonary vasculopathy, we divided patients into the following PH subgroups according to the recommendations in 2019 [1]: (i) non-PH group (mean PAP ≤ 20 mmHg), (ii) Ipc-PH group (mean PAP > 20 mmHg with PVR ≤ 3.0 WU), and (iii) Cpc-PH group (mean PAP > 20 mmHg with PVR > 3.0 WU).

CPET

An incremental symptom-limited exercise test was performed within 3 weeks of RHC using an electromagnetically braked cycle ergometer (Strength Ergo 8, Fukuda Denshi, Tokyo, Japan) according to the ramp protocol. The test comprised a 3-minute resting period, followed by 3 min of warm up at an ergometer setting of 10 W (60 rpm); this was subsequently followed by testing that involved a 1–2 W increase in the exercise load every 6 s (10–20 W/min), depending on the predicted maximum exercise capacity, such that a maximal effort was attained within 8–15 min. The heart rate, arterial blood pressure in the brachial artery, and electrocardiogram were monitored continuously during the test.

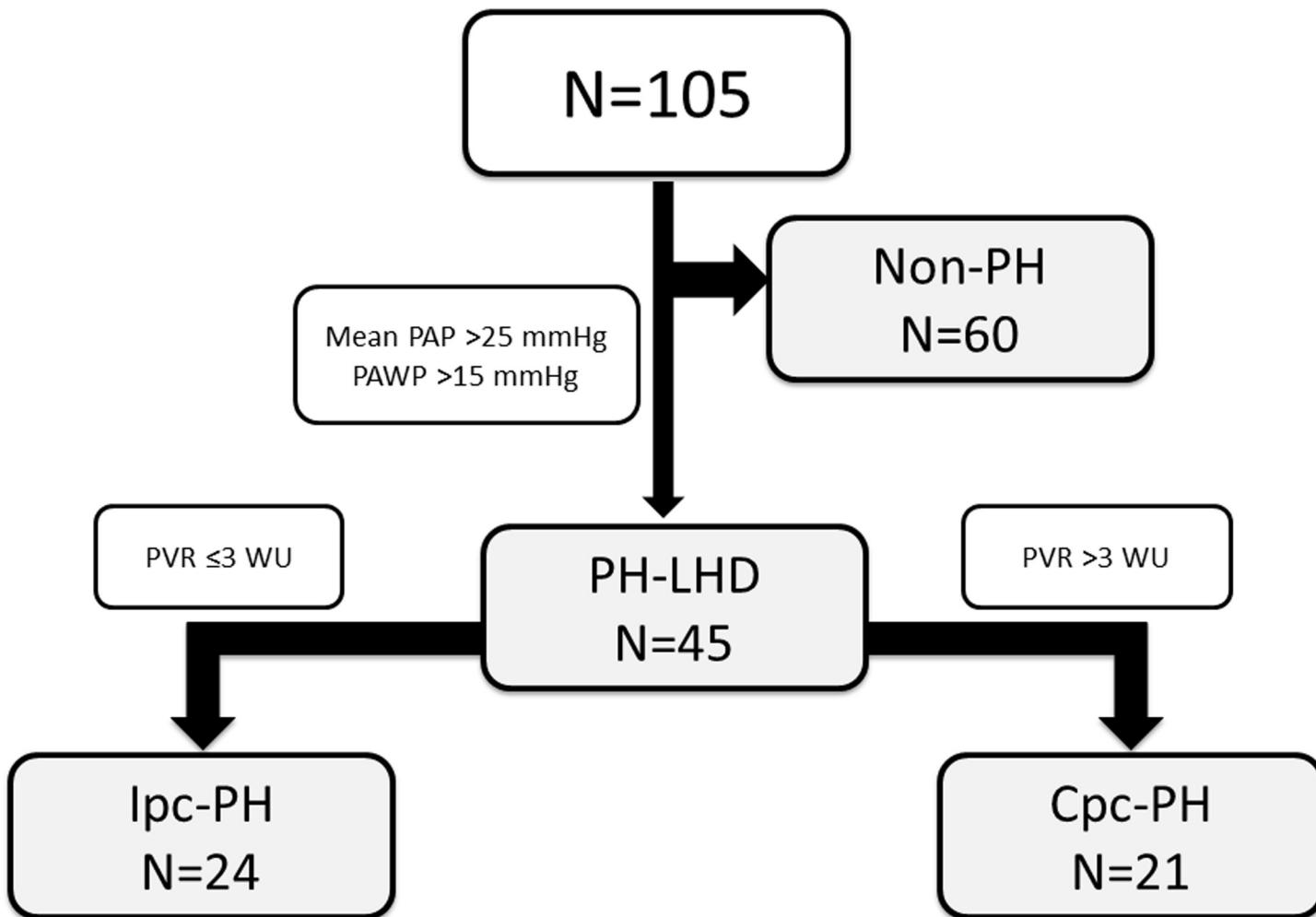
During exercise, oxygen consumption (VO₂), carbon dioxide output (VCO₂), and minute ventilation (VE) were measured using a metabolic cart (AE-302S; MINATO, Tokyo, Japan). Prior to calculating the parameters from the respiratory gas analysis, an eight-point moving average of the breath-by-breath data was obtained. Peak VO₂ was defined as the average value obtained during the last 30 s. The AT point was determined using the V-slope method in addition to the following conventional criteria: VE/VO₂ increased after registering as flat or decreasing, whereas VE/VCO₂ remained constant or decreased [20, 21]. The VE vs. VCO₂

slope was calculated from the commencement of incremental exercise to the respiratory compensation (RC) point using least squares linear regression [11]. The PETCO₂ was recorded at rest, AT, and peak exercise. The slope of VO₂ increase to work-rate increase (Δ VO₂/ Δ WR), reflecting the rate of CO increase, was calculated from the data recorded between 30 s after the commencement of incremental exercise and 30 s before the end of the exercise using least squares linear regression.

Echocardiography

Transthoracic Doppler echocardiography was performed, and echocardiograms were stored digitally on an ATRADA (Cannon, Japan) ultrasound system. The frame rate was maintained at a minimum of 60/s. For Doppler recordings, an average of 3–5 consecutive beats were measured using a horizontal sweep of 75–100 cm/s.

The left ventricular (LV) dimensions and left atrial diameter (LAD) were measured from the parasternal long axis view. The LV ejection fraction (LVEF) was calculated using Simpson's biplane method from the apical four- and two-chamber views. Mitral inflow was assessed in the apical four-chamber view with the pulsed-wave Doppler sample volume placed at the tips of the mitral valve leaflets during diastole; the early (E) and late (A) peak diastolic velocities of mitral inflow and the E wave deceleration time were thus measured. Mitral annular motion was assessed using pulsed-wave tissue Doppler with the sample volume placed in the septal (e' septal). The E/e' ratio was calculated.


Statistical analysis

Analyses were performed using SPSS (version 26.0; IBM Corp., Armonk, NY, USA). The Shapiro–Wilk test and histogram analyses were performed to assess for normality. Continuous variables are presented as mean \pm standard deviation or median (25th, 75th interquartile range), where appropriate. Comparisons of more than two groups were performed using a one-way analysis of variance (with the Bonferroni post-hoc test) or the Kruskal–Wallis test (with the Dunn's post-hoc test), where appropriate. Categorical variables are presented as percentages and were compared using the Fisher's exact test or the Pearson's χ^2 test. Univariable and multivariable logistic regression analyses were performed to predict Cpc-PH using the CPET parameters. Significant independent variables were identified using stepwise selection ($p < 0.05$). Receiver operating characteristic curves were constructed, and the area under the curve (AUC) was calculated. The cutoff value resulting in the highest product of sensitivity and specificity was considered optimal for the detection of Cpc-PH. The relationship between hemodynamic phenotype and all-cause death was evaluated with Kaplan–Meier analysis. Differences between survival curves were assessed using the log-rank test. The association between the CPET parameters and mortality was assessed using Cox proportional hazard models. Variables that were significant in the univariate analysis were entered into the multivariable Cox proportional hazard models. Statistical significance was set at $p < 0.05$.

Results

General characteristics

The 105 enrolled patients with LHD who underwent RHC and the CPET were predominantly male (75%), with a mean age of 55 ± 13 years and a mean LVEF of $39 \pm 14\%$. Overall, 45 patients (43%) were classified as having PH-LHD. Among them, 24 patients (23%) had Ipc-PH and 21 patients (20%) had Cpc-PH (Fig 1). The general characteristics of the non-PH, Ipc-PH, and Cpc-PH groups are shown in Table 1. There were no significant differences in the age,

Fig 1. Flow chart of patients with LHD who underwent the CPET and RHC. Cpc: combined post-capillary and pre-capillary, CPET: cardiopulmonary exercise test, Ipc: isolated post-capillary, LHD: left heart disease, PAP: pulmonary artery pressure, PAWP: pulmonary artery wedge pressure, PH: pulmonary hypertension, PVR: pulmonary vascular resistance, RHC: right heart catheterization.

<https://doi.org/10.1371/journal.pone.0286057.g001>

LHD etiology, and hemoglobin level among the three groups. Patients in the Cpc-PH group were predominantly male, had higher brain natriuretic peptide levels, and had lower LVEF as compared to the levels of those in the non-PH and Ipc-PH groups.

Hemodynamic parameters

The hemodynamic parameters of the study groups are shown in Table 1. The PAWP, PAP, and mean RAP were significantly higher in the Ipc-PH and Cpc-PH groups than in the non-PH group. However, these variables did not differ between the Ipc-PH and Cpc-PH groups. The CO was significantly lower in the Cpc-PH group than in the non-PH and Ipc-PH groups (non-PH vs. Ipc-PH vs. Cpc-PH = 3.8 [3.1, 4.6] vs. 4.0 [3.3, 5.0] vs. 3.2 [2.6, 3.8] L/min, $p = 0.004$). The PVR was significantly higher in the Cpc-PH group than in the non-PH and Ipc-PH groups (non-PH vs. Ipc-PH vs. Cpc-PH = 1.7 [1.2, 2.4] vs. 2.0 [1.1, 2.2] vs. 3.2 [3.0, 4.4] WU, $p < 0.001$).

Table 1. Baseline characteristics of the patients.

	Non-PH (n = 60)	Ipc-PH (n = 24)	Cpc-PH (n = 21)	P value	Non-PH vs Ipc-PH	Non-PH vs Cpc-PH	Ipc-PH vs Cpc-PH
Age, years	55 ± 13	52 ± 10	59 ± 13	0.229	0.994	0.812	0.261
Sex, (male/female)	40/20	23/1	17/4	0.015			
BMI, kg/m²	22.1 [20.0, 25.4]	23.4 [20.3, 27.9]	23.7 [20.8, 26.2]	0.152			
Etiology							
Cardiomyopathy, n (%)	37 (62%)	17 (71%)	11 (52%)	0.445			
Ischemia, n (%)	6 (10%)	2 (8%)	5 (24%)	0.201			
Valvular, n (%)	7 (12%)	3 (13%)	3 (14%)	0.952			
Others, n (%)	10 (17%)	2 (8%)	2 (10%)	0.507			
BNP, ng/mL	161 [68, 224]	211 [87, 445]	615 [326, 774]	<0.001	0.086	<0.001	0.005
Hemoglobin, g/dL	14.3 ± 2.0	14.0 ± 2.4	14.4 ± 2.3	0.726	1.000	1.000	1.000
Echocardiography							
LVEF, %	38 [29, 50]	36 [31, 38]	28 [22, 40]	0.015	1.000	1.000	1.000
Dd, mm	59 [53, 64]	61 [58, 66]	61 [54, 69]	0.172			
Ds, mm	50 [41, 55]	53 [47, 59]	54 [44, 62]	0.102			
E/e'	12.1 [10.3, 14.8]	15.0 [9.9, 20.6]	16.7 [11.2, 22.0]	0.058			
LAD, mm	40 [33, 45]	46 [41, 49]	48 [42, 55]	<0.001	0.005	<0.001	0.189
Hemodynamic data							
PAWP, mmHg	9 [7, 11]	19 [16, 22]	20 [17, 27]	<0.001	<0.001	<0.001	0.696
Systolic PAP, mmHg	26 [22, 31]	42 [35, 46]	49 [40, 58]	<0.001	<0.001	<0.001	0.135
Diastolic PAP, mmHg	11 [8, 13]	19 [16, 21]	21 [18, 29]	<0.001	<0.001	<0.001	0.296
Mean PAP, mmHg	16 [14, 20]	27 [23, 30]	33 [26, 41]	<0.001	<0.001	<0.001	0.132
RVEDP, mmHg	5 [4, 6]	8 [7, 11]	10 [8, 12]	<0.001	0.001	<0.001	0.313
Mean RAP, mmHg	4 [3, 6]	7 [5, 9]	9 [6, 12]	<0.001	<0.001	<0.001	0.187
DPG, mmHg	1 [-1, 3]	0 [-3, 2]	1 [-1, 4]	0.066			
SaO₂, %	97 [95, 98]	97 [96, 98]	96 [94, 98]	0.524			
SvO₂, %	71 [69, 74]	70 [66, 73]	64 [57, 68]	<0.001	0.252	<0.001	0.004
CO, L/min	3.8 [3.1, 4.6]	4.0 [3.3, 5.0]	3.2 [2.6, 3.8]	0.004	0.363	0.005	0.002
PVR, Wood Units	1.7 [1.2, 2.4]	2.0 [1.1, 2.2]	3.2 [3.0, 4.4]	<0.001	0.756	<0.001	<0.001
PAC, ml/mmHg	3.2 [2.5, 4.7]	2.4 [2.0, 3.2]	1.6 [1.1, 2.0]	<0.001	0.018	<0.001	0.005

Values are reported as the mean ± SD or median (25th, 75th interquartile range), where appropriate.

BMI: body mass index, BNP: brain natriuretic peptide, CO: cardiac output, Cpc: combined post-capillary and pre-capillary, Dd: Dimension diastolic, DPG: diastolic pressure gradient, Ds: Dimension systolic, Ipc: isolated post-capillary, LAD: left atrial diameter, LVEF: left ventricular ejection fraction, PAC: pulmonary arterial compliance, PAP: pulmonary artery pressure, PAWP: pulmonary artery wedge pressure, PH: pulmonary hypertension, PVR: pulmonary vascular resistance, RAP: right atrium pressure, RVEDP: right ventricular end-diastolic pressure, SaO₂: arterial oxygen saturation, SvO₂: mixed venous oxygen saturation.

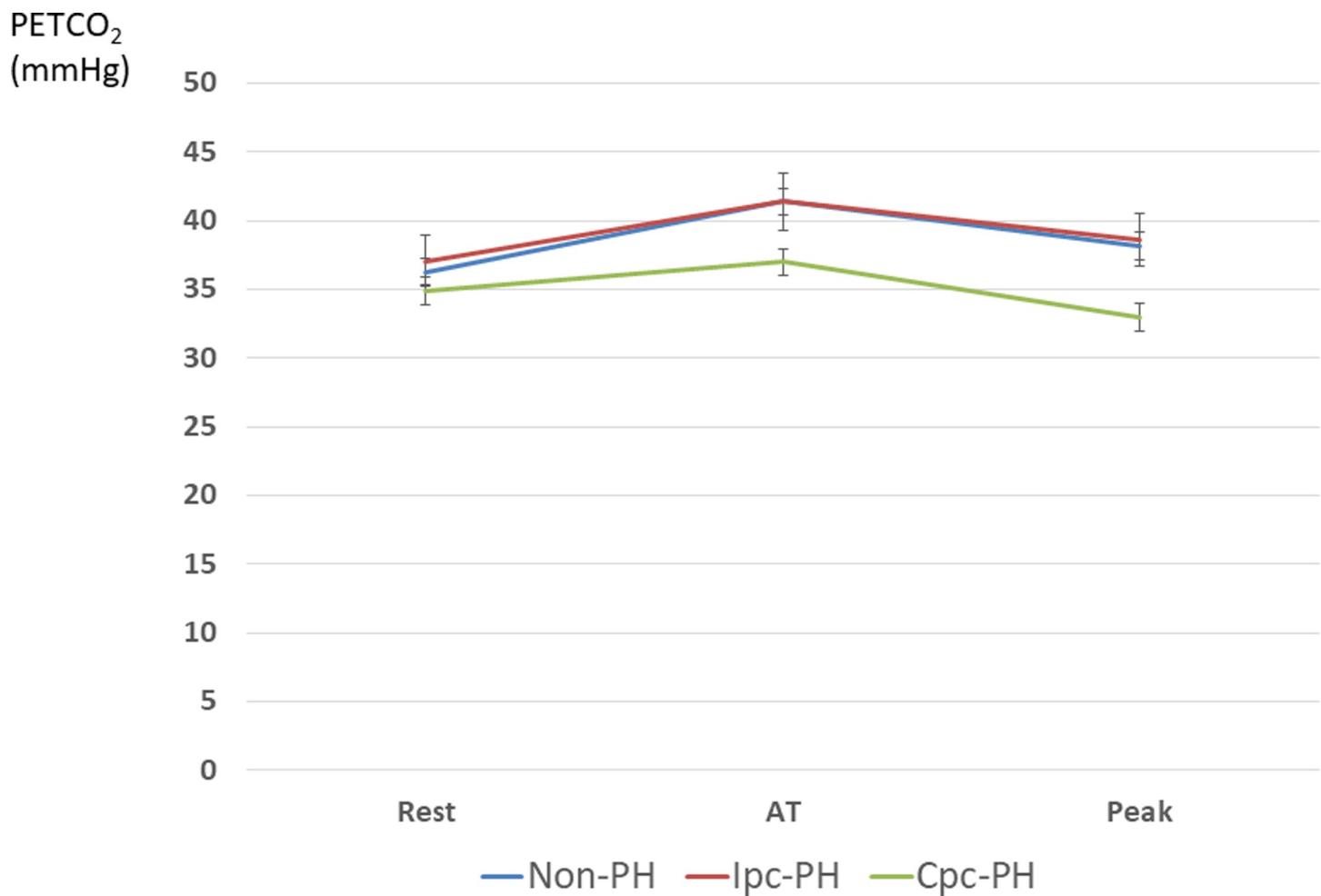
<https://doi.org/10.1371/journal.pone.0286057.t001>

CPET parameters

The characteristics of the CPET variables according to the hemodynamics are listed in Table 2. Compared to the Ipc-PH and non-PH groups, the Cpc-PH group had a significantly lower peak PETCO₂ (non-PH vs. Ipc-PH vs. Cpc-PH = 38.2 ± 6.6 vs. 38.3 ± 6.0 vs. 33.0 ± 4.4 mmHg, p = 0.002), higher VE vs. VCO₂ slope (non-PH vs. Ipc-PH vs. Cpc-PH = 33.0 [28.3, 36.6] vs. 32.5 [28.1, 37.8] vs. 40.6 [33.6, 46.1], p = 0.007), and lower ΔVO₂/ΔWR (non-PH vs. Ipc-PH vs. Cpc-PH groups = 8.5 ± 1.4 vs. 8.0 ± 1.7 vs. 6.8 ± 2.0 mL/min/watt; p = 0.001) (Fig 2).

Table 2. Exercise parameters.

	Non-PH (n = 60)	Ipc-PH (n = 24)	Cpc-PH (n = 21)	P value	Non-PH vs Ipc-PH	Non-PH vs Cpc-PH	Ipc-PH vs Cpc-PH
Rest							
HR, bpm	76 [67, 87]	80 [70, 93]	70 [68, 81]	0.148			
VO₂, mL/min	222 ± 43	243 ± 43	234 ± 51	0.129	0.161	0.798	1.000
VCO₂, mL/min	197 [167, 216]	213 [186, 265]	191 [170, 249]	0.128			
R	0.89 [0.84, 0.94]	0.89 [0.87, 0.93]	0.86 [0.82, 0.90]	0.171			
VE, L/min	9.8 [7.9, 10.6]	10.2 [9.0, 10.9]	10.6 [8.8, 11.4]	0.162			
VE/VO₂	43.9 ± 7.8	43.4 ± 9.3	45.4 ± 10.0	0.705	1.000	1.000	1.000
VE/VCO₂	48.9 ± 8.4	47.9 ± 10.0	52.3 ± 8.4	0.212	1.000	0.398	0.295
PETCO₂, mmHg	36.3 ± 4.6	37.1 ± 4.3	34.9 ± 3.7	0.232	1.000	0.592	0.278
Anaerobic threshold							
Work rate, Watt	50 ± 17	49 ± 13	46 ± 21	0.706	1.000	1.000	1.000
HR, bpm	101 [88, 113]	93 [88, 109]	98 [89, 108]	0.533			
VO₂, mL/min	700 ± 204	676 ± 160	627 ± 205	0.304	1.000	0.415	0.617
VCO₂, mL/min	637 ± 193	619 ± 129	572 ± 200	0.343	1.000	0.470	0.722
R	0.91 [0.86, 0.94]	0.92 [0.86, 0.96]	0.92 [0.88, 0.96]	0.840			
VE, L/min	23.0 ± 5.0	22.8 ± 4.8	23.7 ± 6.9	0.175	1.000	1.000	1.000
VE/VO₂	33.7 ± 6.3	33.8 ± 9.4	38.8 ± 6.4	0.023	1.000	0.023	0.077
VE/VCO₂	37.1 ± 6.8	36.6 ± 7.6	42.8 ± 7.4	0.006	1.000	0.009	0.015
PETCO₂, mmHg	41.4 ± 5.4	41.4 ± 5.5	37.0 ± 4.6	0.005	1.000	0.006	0.020
AT VO₂, mL/min/kg	10.8 [9.3, 13.0]	9.5 [8.6, 11.4]	9.3 [7.5, 12.1]	0.010	0.060	0.005	0.368
Peak							
Work rate, Watt	90 ± 33	91 ± 20	85 ± 37	0.799	1.000	1.000	1.000
HR, bpm	128 ± 28	122 ± 29	112 ± 28	0.059	1.000	0.054	0.554
VO₂, mL/min	1074 [824, 1359]	1064 [907, 1363]	916 [623, 1028]	0.099			
VCO₂, mL/min	1237 ± 464	1237 ± 322	1073 ± 513	0.343	1.000	0.289	0.416
R	1.11 ± 0.11	1.16 ± 0.11	1.12 ± 0.12	0.320	0.396	1.000	1.000
VE, L/min	45.3 ± 14.4	45.2 ± 11.2	46.5 ± 18.3	0.991	1.000	1.000	1.000
VE/VO₂	42.2 ± 8.2	43.7 ± 10.9	50.0 ± 7.3	0.002	1.000	0.001	0.014
VE/VCO₂	37.3 [33.0, 42.6]	35.5 [30.6, 41.8]	43.4 [40.2, 51.6]	<0.001	0.385	<0.001	<0.001
PETCO₂, mmHg	38.2 ± 6.6	38.3 ± 6.0	33.0 ± 4.4	0.002	1.000	0.002	0.006
Peak VO₂, mL/min/kg	17.8 ± 5.2	15.1 ± 3.1	13.8 ± 4.2	0.002	0.161	0.003	0.558
VE vs. VCO₂ slope	33.0 [28.3, 36.6]	32.5 [28.1, 37.8]	40.6 [33.6, 46.1]	0.007	0.963	0.002	0.009
ΔVO₂/ΔWR, mL/min/watt	8.5 ± 1.4	8.0 ± 1.7	6.8 ± 2.0	0.001	0.727	<0.001	0.054


Values are reported as mean ± standard deviation or as median (25th, 75th interquartile range), where appropriate.

AT: anaerobic threshold, bpm: beats per minute, Cpc: combined post-capillary and pre-capillary, HR: heat rate, Ipc: isolated post-capillary, PETCO₂: end-tidal partial pressure of carbon dioxide, PH: pulmonary hypertension, R: respiratory exchange ratio, VCO₂: carbon dioxide output, VE: minute ventilation, VO₂: oxygen consumption, ΔVO₂/ΔWR: slope of the increase in the VO₂ to the increase in the work rate.

<https://doi.org/10.1371/journal.pone.0286057.t002>

Predictors of Cpc-PH among the CPET variables

According to the univariable logistic regression analysis, lower peak PETCO₂ (odds ratio, 0.838 [95% confidence interval {CI}: 0.757–0.927], p = 0.001), lower ΔVO₂/ΔWR (odds ratio, 0.559 [95% CI: 0.395–0.792], p = 0.001), lower AT VO₂ (odds ratio, 0.727 [95% CI: 0.558–0.945], p = 0.017), lower peak VO₂ (odds ratio, 0.827 [95% CI: 0.724–0.945], p = 0.005), higher VE vs. VCO₂ slope (odds ratio, 1.090 [95% CI: 1.030–1.152], p = 0.003), and higher VE/VCO₂ at AT (odds ratio, 1.111 [95% CI: 1.036–1.191], p = 0.003) were significant predictors of Cpc-PH (Table 3). The lower peak PETCO₂ (odds ratio, 0.868 [95% CI: 0.777–0.971], p = 0.003)

Fig 2. Evolution of the PETCO₂ from rest to peak exercise in the three groups of patients. AT: anaerobic threshold, Cpc: combined post-capillary and pre-capillary, Ipc: isolated post-capillary, PETCO₂: end-tidal partial pressure of carbon dioxide, PH: pulmonary hypertension.

<https://doi.org/10.1371/journal.pone.0286057.g002>

and lower $\Delta\text{VO}_2/\Delta\text{WR}$ (odds ratio, 0.583 [95% CI: 0.408–0.833], $p = 0.003$) were the optimal predictors in the multivariable logistic regression analysis. Receiver operating characteristic

Table 3. Univariable and multivariable logistic regression analyses for determinants of Cpc-PH.

Variable	Univariable			Multivariable		
	Odds ratio	95% CI	P value	Odds ratio	95% CI	P value
AT VO ₂	0.727	0.558–0.945	0.017			
Peak VO ₂	0.827	0.724–0.945	0.005			
$\Delta\text{VO}_2/\Delta\text{WR}$	0.559	0.395–0.792	0.001	0.583	0.408–0.833	0.003
VE vs. VCO ₂ slope	1.090	1.030–1.152	0.003			
VE/VCO ₂ at AT	1.111	1.036–1.191	0.003			
PETCO ₂ at rest	0.916	0.819–1.024	0.123			
Peak PETCO ₂	0.838	0.757–0.927	0.001	0.868	0.777–0.971	0.013

CI: confidence interval, AT: anaerobic threshold, PETCO₂: end-tidal partial pressure of carbon dioxide, VO₂: oxygen consumption, VCO₂: carbon dioxide output, VE: minute ventilation, $\Delta\text{VO}_2/\Delta\text{WR}$: slope of increase in the VO₂ to the increase in the work rate.

<https://doi.org/10.1371/journal.pone.0286057.t003>

curve analysis revealed that the peak PETCO₂ (AUC: 0.728, 95% CI: 0.616–0.840, p = 0.003) and ΔVO₂/ΔWR (AUC: 0.724, 95% CI: 0.575–0.872, p = 0.003) were indicators of Cpc-PH with predictive value (Fig 3).

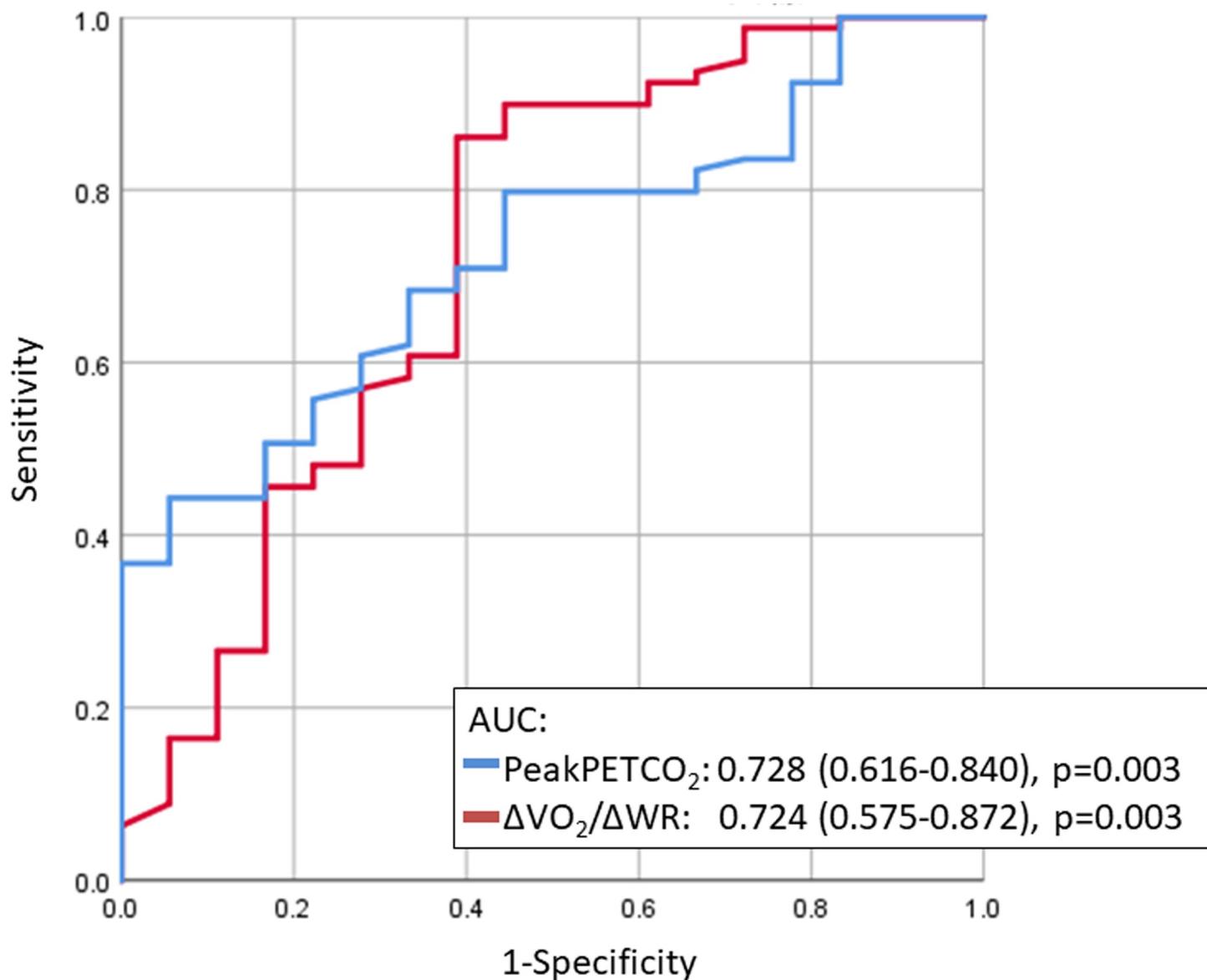
Predictors of mortality among the CPET variables

Over an average follow-up period of $2,108 \pm 1,260$ days, 18 patients died. According to the Kaplan–Meier analysis, there were significant differences in mortality among the non-PH, Ipc-PH, and Cpc-PH groups ($\chi^2 = 6.4$, p = 0.041) (Fig 4).

Table 4 presents the univariate predictors of death. Univariate Cox proportional hazards analysis identified lower ΔVO₂/ΔWR (hazard ratio: 0.621, 95% CI 0.455–0.846, p = 0.003), higher VE vs. VCO₂ slope (hazard ratio: 1.105; 95% CI 1.053–1.160, p < 0.001), and lower peak PETCO₂ (hazard ratio: 0.882, 95% CI 0.809–0.963, p = 0.005) as prognostic indices of death. In multivariate Cox proportional hazards analysis, lower ΔVO₂/ΔWR (hazard ratio: 0.666, 95% CI 0.485–0.915, p = 0.012) and lower peak PETCO₂ (hazard ratio: 0.899, 95% CI 0.813–0.994, p = 0.037) were identified as independent prognostic markers (Table 4).

Discussion

In our exploratory analysis, we investigated the CPET parameters in patients with non-PH, Ipc-PH, and Cpc-PH according to the criteria of 2019 [1]. In our cohort, 35% of the patients who underwent RHC had PH-LHD, with Cpc-PH accounting for 20% of the entire cohort. Therefore, Cpc-PH appeared to be a relatively uncommon condition, consistent with previous findings [17]. The present study's results also revealed that the peak effort PETCO₂ and ΔVO₂/ΔWR were the optimal predictors of Cpc-PH, thereby corroborating the findings of previous studies where ventilatory variables from CPET proved useful in differentiating Cpc-PH [16, 17].


Characteristics of Cpc-PH

PH is a common complication of LHD, and it develops in response to a passive increase in left-sided filling pressures, more specifically the left atrial pressure. While it is associated with a poor prognosis [22], Cpc-PH is known to have an even worse prognosis [5].

Genetically, Cpc-PH resembles PAH. Assad et al. found that patients with Cpc-PH had genetic abnormalities in pathways that were highly active in the lungs and were known to contribute to the pathophysiology of PAH. These exploratory genetic findings suggest that Cpc-PH may have a pathophysiology distinct from that of Ipc-PH [2].

From a pathological perspective, progressive thickening and collagen proliferation occur in the lamina densa in order to protect against fluid accumulation in the interstitium of the endothelium and the vascular wall as well as in the alveoli [3, 4, 23]. In Ipc-PH, small arteries exhibit endothelial dysfunction and vasoconstriction, despite no defined changes in the composition of small pulmonary arteries. The pulmonary veins also show a certain degree of thickness and a tendency towards arteriolarization. Moreover, in Cpc-PH, the venous system becomes fully arteriolarized, and small arteries exhibit a clear muscularization process and remodeling; an impairment of gas exchange diffusion or a lengthening of the path between air and the red blood cells is prominent.

In an effort to differentiate Cpc-PH from Ipc-PH in a non-invasive manner, a physiology-based approach is important to detect these pathological changes. In our cohort, the low value of peak effort PETCO₂ value, which is one of the ventilatory variables in the CPET, was an optimal indicator of Cpc-PH; thus, it reflected a marked impairment of CO₂ release into the alveolar space.

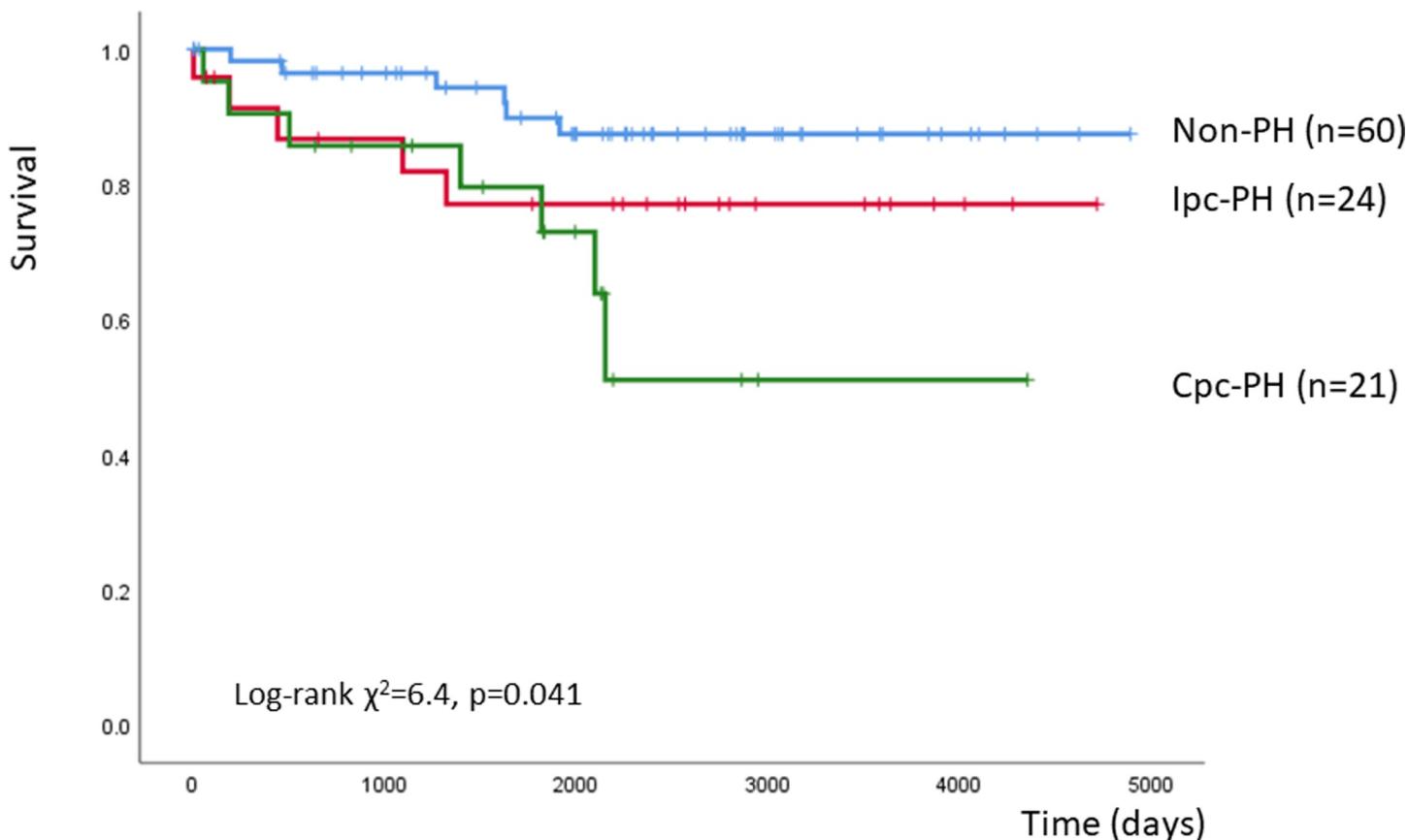


Fig 3. Receiver operating characteristic curves of the peak PETCO₂ and ΔVO₂/ΔWR to detect Cpc-PH. AUC: area under the curve, Cpc-PH: combined post-capillary and pre-capillary PH, PETCO₂: end-tidal partial pressure of carbon dioxide, ΔVO₂/ΔWR: slope of the increase in the VO₂ to the increase in the work rate.

<https://doi.org/10.1371/journal.pone.0286057.g003>

Usefulness of peak effort PETCO₂ in the detection of Cpc-PH

The differentiation of Cpc-PH between PAH (pre-capillary PH) and PH-LHD (post-capillary PH) using the CPET was reported by Caravita et al. [17]. They found that VE/VCO₂ at the AT was useful in the detection of Cpc-PH and that Cpc-PH was an intermediate between PAH and Ipc-PH in terms of gas exchange. Among the ventilatory parameters obtained using the submaximal exercise test, a low PETCO₂, high VE/VCO₂, and high VD/VT were reportedly characteristic of Cpc-PH [16]. Moreover, the exacerbation of pulmonary gas exchange abnormalities in patients with Cpc-PH was related to an excessive rise in the pulmonary vascular pressures [16]. Zhong et al. also reported that VE/VCO₂-related parameters were diagnostic variables for the presence of pre-capillary components in patients with PH-LHD [24]. Among

Fig 4. Kaplan-Meier plot stratified by PH phenotype. Cpc: combined post-capillary and pre-capillary, Ipc: isolated post-capillary, PH: pulmonary hypertension.

<https://doi.org/10.1371/journal.pone.0286057.g004>

the ventilatory variables, the lowest VE/VCO₂%pred, which was obtained from the submaximal exercise test, was the optimal predictor of Cpc-PH (as demonstrated by an AUC of 0.77). From our data, the peak PETCO₂ was also particularly useful in detecting Cpc-PH (as demonstrated by an AUC of 0.73). This is comparable to the findings reported by Zhong et al. In the maximal exercise test, the peak PETCO₂ was the optimal diagnostic variable. Our findings

Table 4. Univariate and multivariate Cox proportional hazard analyses for predictors of mortality.

Variable	Univariate			Multivariate		
	Hazard ratio	95% CI	P value	Hazard ratio	95% CI	P value
AT VO ₂	0.871	0.702–1.081	0.209			
Peak VO ₂	0.897	0.799–1.008	0.068			
ΔVO ₂ /ΔWR	0.621	0.455–0.846	0.003	0.666	0.485–0.915	0.012
VE vs. VCO ₂ slope	1.105	1.053–1.160	<0.001			
VE/VCO ₂ at AT	1.062	1.000–1.129	0.051			
PETCO ₂ at rest	0.875	0.897–1.096	0.875			
Peak PETCO ₂	0.882	0.809–0.963	0.005	0.899	0.813–0.994	0.037

CI: confidence interval, AT: anaerobic threshold, PETCO₂: end-tidal partial pressure of carbon dioxide, VO₂: oxygen consumption, VCO₂: carbon dioxide output, VE: minute ventilation, ΔVO₂/ΔWR: slope of increase in the VO₂ to the increase in the work rate.

<https://doi.org/10.1371/journal.pone.0286057.t004>

(i.e., lower peak PETCO₂ and lower ΔVO₂/ΔWR in Cpc-PH) solidified the usefulness of CPET parameters for Cpc-PH detection.

In the HF population, the PETCO₂ is a known CPET variable that potentially possesses prognostic information [25]. In particular, Arena et al. reported that PETCO₂ changes from rest to the RC point, PETCO₂ at the RC point, and PETCO₂ at peak exercise were all significant predictors of cardiac related events. Low value of PETCO₂ during exercise have been classically considered to strongly reflect a low CO during exercise. Matsumoto et al. found that PETCO₂ at the RC point was significantly correlated with the CO at peak exercise in patients with cardiac disease [26]. Furthermore, they concluded that the decrease in CO lead to a decrease in alveolar capillary perfusion and PCO₂ into the alveolar air, resulting in a decrease in PETCO₂ during exercise. Moreover, Tanabe et al. revealed a significant correlation between the PETCO₂ and cardiac index at peak exercise in patients with HF [27].

Mechanisms by which peak effort PETCO₂ predicts Cpc-PH

In patients with PAH, the PETCO₂ decline associated with exercise was more distinct than that in those with LHD [28]. Hemnes et al. demonstrated that the measurement of resting PETCO₂ at bedside may distinguish patients with PAH from those with pulmonary venous hypertension or no PH [29]. Moreover, Welch et al. also demonstrated that this readily available resting PETCO₂ may be a physiologically relevant marker of poor prognosis in PAH [30]. They reported that lung diffusion for carbon monoxide (DLCO) is correlated with the resting PETCO₂, suggesting that these variables could provide potentially similar insights into the degree of pulmonary vasculopathy in patients with PAH. DLCO measures the ability of a gas to diffuse from the alveoli to the red blood cells in the pulmonary capillaries and depends on the alveolar–capillary membrane diffusive capacity and the capillary volume (which is the amount of blood flowing through the ventilated alveolar–capillary units over a period of time i.e. a few seconds) [31]. Lack of capillary perfusion leads to decrease exchanging gas into the alveolar capillaries and causes increased dead space. The correlation between the PETCO₂ and DLCO suggests that both are markers of dead-space ventilation and that the PETCO₂ may also reflect the capillary membrane diffusive capacity and capillary volume i.e. the CO. The peak PETCO₂ may better capture the pathological changes in Cpc-PH, whereby the venous system becomes fully arteriolarized and gas exchange is strongly impaired.

Usefulness of ΔVO₂/ΔWR in the detection of Cpc-PH

The lower ΔVO₂/ΔWR represents a poor increase in CO during exercise (a prognostic predictor), and has been suggested to be related to the severity of HF and pulmonary vascular disease in patients with HF [9, 32, 33]. Bandera et al. reported that ΔVO₂/ΔWR flattening was an indicator of an abnormal pulmonary vascular response to exercise (i.e., right ventricular-pulmonary artery uncoupling) [34]. Consistent with these physiological findings, ΔVO₂/ΔWR was also predictive of Cpc-PH in the present study; a lower ΔVO₂/ΔWR may represent both a poor increase in CO during exercise and exacerbation of the pulmonary vascular dysfunction in Cpc-PH.

Limitations

This study has certain limitations. First, our study population only included patients who were able to undergo the exercise stress test. Second, owing to the limited sample size, the interpretation of the multivariate analysis results was limited and the statistical tests were underpowered in terms of establishing novel models including several variables to predict Cpc-PH, and

further studies with large study populations are warranted. Finally, our cohort comprised a heterogeneous population of patients with cardiac disease.

Conclusions

Our exploratory study reveals that the CPET variables, especially in the lower peak PETCO₂ and lower ΔVO₂/ΔWR, are useful in differentiating Cpc-PH in patients with LHD. These findings might be explained, at least in part, by the presence and extent of pathologic and physiologic pulmonary vascular changes.

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

Author Contributions

Formal analysis: Ayumi Goda.

Funding acquisition: Ayumi Goda.

Investigation: Ayumi Goda, Yoshiaki Yanagisawa, Shinsuke Takeuchi, Kaori Takeuchi, Hanako Kikuchi, Takumi Inami.

Methodology: Ayumi Goda.

Project administration: Ayumi Goda.

Supervision: Toru Satoh.

Writing – original draft: Ayumi Goda.

Writing – review & editing: Takashi Kohno.

References

1. Vachiery JL, Tedford RJ, Rosenkranz S, Palazzini M, Lang I, Guazzi M, et al. Pulmonary hypertension due to left heart disease. *Eur Respir J*. 2019; 53(1). Epub 2018/12/14. <https://doi.org/10.1183/13993003.01897-2018>
2. Assad TR, Hemnes AR, Larkin EK, Glazer AM, Xu M, Wells QS, et al. Clinical and Biological Insights Into Combined Post- and Pre-Capillary Pulmonary Hypertension. *J Am Coll Cardiol*. 2016; 68(23):2525–36. Epub 2016/12/10. doi: S0735-1097(16)36493-2 [pii] <https://doi.org/10.1016/j.jacc.2016.09.942> PMID: 27931609.
3. Opitz CF, Hoeper MM, Gibbs JS, Kaemmerer H, Pepke-Zaba J, Coghlan JG, et al. Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension: A Pathophysiological Continuum. *J Am Coll Cardiol*. 2016; 68(4):368–78. Epub 2016/07/23. doi: S0735-1097(16)33314-9 [pii] <https://doi.org/10.1016/j.jacc.2016.05.047> PMID: 27443433.
4. Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, et al. Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated With Heart Failure and Preserved or Reduced Ejection Fraction. *Circulation*. 2018; 137(17):1796–810. Epub 2017/12/17. doi: CIRCULATIONAHA.117.031608 [pii] <https://doi.org/10.1161/CIRCULATIONAHA.117.031608> PMID: 29246894.
5. Palazzini M, Dardi F, Manes A, Bacchi Reggiani ML, Gotti E, Rinaldi A, et al. Pulmonary hypertension due to left heart disease: analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and insights for future changes. *Eur J Heart Fail*. 2017; 20(2):248–55. Epub 2017/05/04. <https://doi.org/10.1002/ejhf.860> PMID: 28464427.
6. Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. *Circ Heart Fail*. 2011; 4(1):8–17. Epub 2010/11/03. <https://doi.org/10.1161/CIRCHEARTFAILURE.110.944694> PMID: 21036891.
7. Garcia-Lunar I, Blanco I, Fernandez-Friera L, Prat-Gonzalez S, Jorda P, Sanchez J, et al. Design of the beta3-Adrenergic Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure

Trial. JACC Basic Transl Sci. 2020; 5(4):317–27. Epub 2020/05/06. <https://doi.org/10.1016/j.jactbs.2020.01.009> PMID: 32368692; PubMed Central PMCID: PMC7188870.

- 8. Guazzi M, Cahalin LP, Arena R. Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure. J Card Fail. 2013; 19(7):461–7. Epub 2013/07/10. doi: S1071-9164(13)00136-X [pii] <https://doi.org/10.1016/j.cardfail.2013.05.005> PMID: 23834922.
- 9. Guazzi M, Bandera F, Ozemek C, Systrom D, Arena R. Cardiopulmonary Exercise Testing: What Is its Value? J Am Coll Cardiol. 2017; 70(13):1618–36. <https://doi.org/10.1016/j.jacc.2017.08.012> PMID: 28935040.
- 10. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Jr, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991; 83(3):778–86. Epub 1991/03/11. <https://doi.org/10.1161/01.cir.83.3.778> PMID: 1999029.
- 11. Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark AL, et al. Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1997; 29(7):1585–90. Epub 1997/06/01. [https://doi.org/10.1016/s0735-1097\(97\)00078-8](https://doi.org/10.1016/s0735-1097(97)00078-8) [pii]. PMID: 9180123.
- 12. Guazzi M, Reina G, Tumminello G, Guazzi MD. Exercise ventilation inefficiency and cardiovascular mortality in heart failure: the critical independent prognostic value of the arterial CO₂ partial pressure. Eur Heart J. 2005; 26(5):472–80. Epub 2004/12/25. <https://doi.org/10.1093/eurheartj/ehi060> PMID: 15618042.
- 13. Farina S, Correale M, Bruno N, Paolillo S, Salvioni E, Badagliacca R, et al. The role of cardiopulmonary exercise tests in pulmonary arterial hypertension. Eur Respir Rev. 2018; 27(148). Epub 2018/05/04. <https://doi.org/10.1183/16000617.0134-2017> PMID: 29720508.
- 14. Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001; 104(4):429–35. Epub 2001/07/27. <https://doi.org/10.1161/hc2901.093198> PMID: 11468205.
- 15. Yasunobu Y, Oudiz RJ, Sun XG, Hansen JE, Wasserman K. End-tidal PCO₂ abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest. 2005; 127(5):1637–46. Epub 2005/05/13. <https://doi.org/10.1378/chest.127.5.1637> PMID: 15888840.
- 16. Taylor BJ, Smetana MR, Frantz RP, Johnson BD. Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension. J Card Fail. 2015; 21(8):647–55. Epub 2015/04/19. doi: S1071-9164(15)00089-5 [pii] <https://doi.org/10.1016/j.cardfail.2015.04.003> PMID: 25887446.
- 17. Caravita S, Faini A, Deboeck G, Bondue A, Naeije R, Parati G, et al. Pulmonary hypertension and ventilation during exercise: Role of the pre-capillary component. J Heart Lung Transplant. 2016; 36(7):754–62. Epub 2017/01/31. doi: S1053-2498(16)30471-5 [pii] <https://doi.org/10.1016/j.healun.2016.12.011> PMID: 28131663.
- 18. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017; 136(6):e137–e61. Epub 2017/04/30. <https://doi.org/10.1161/CIR.0000000000000509> PMID: 28455343.
- 19. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013; 62(25 Suppl):D42–50. <https://doi.org/10.1016/j.jacc.2013.10.032> PMID: 24355641.
- 20. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986; 60(6):2020–7. Epub 1986/06/01. PubMed <https://doi.org/10.1152/jappl.1986.60.6.2020> PMID: 3087938.
- 21. Sue DY, Wasserman K, Moricca RB, Casaburi R. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest. 1988; 94(5):931–8. <https://doi.org/10.1378/chest.94.5.931> PMID: 3180897.
- 22. Gerges M, Gerges C, Pistrutto AM, Lang MB, Trip P, Jakowitsch J, et al. Pulmonary Hypertension in Heart Failure. Epidemiology, Right Ventricular Function, and Survival. Am J Respir Crit Care Med. 2015; 192(10):1234–46. Epub 2015/07/17. <https://doi.org/10.1164/rccm.201503-0529OC> PMID: 26181215.
- 23. Guazzi M, Naeije R. Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives. J Am Coll Cardiol. 2017; 69(13):1718–34. Epub 2017/04/01. <https://doi.org/10.1016/j.jacc.2017.01.051> PMID: 28359519.
- 24. Zhong X, Tang J, Jiang R, Yuan P, Zhao Q, Gong S, et al. The predictive value of minute ventilation versus carbon dioxide production in pulmonary hypertension associated with left heart disease. Ann Transl

Med. 2021; 9(4):351. Epub 2021/03/13. <https://doi.org/10.21037/atm-21-366> PMID: 33708978; PubMed Central PMCID: PMC7944330.

- 25. Arena R, Guazzi M, Myers J. Prognostic value of end-tidal carbon dioxide during exercise testing in heart failure. *Int J Cardiol*. 2007; 117(1):103–8. Epub 2006/07/18. <https://doi.org/10.1016/j.ijcard.2006.04.058> PMID: 16843545.
- 26. Matsumoto A, Itoh H, Eto Y, Kobayashi T, Kato M, Omata M, et al. End-tidal CO₂ pressure decreases during exercise in cardiac patients. *Journal of the American College of Cardiology*. 2000; 36(1):242–9. [https://doi.org/10.1016/s0735-1097\(00\)00702-6](https://doi.org/10.1016/s0735-1097(00)00702-6) PMID: 10898441.
- 27. Tanabe Y, Hosaka Y, Ito M, Ito E, Suzuki K. Significance of end-tidal P(CO₂) response to exercise and its relation to functional capacity in patients with chronic heart failure. *Chest*. 2001; 119(3):811–7. Epub 2001/03/13. <https://doi.org/10.1378/chest.119.3.811> PMID: 11243962.
- 28. Hansen JE, Ulubay G, Chow BF, Sun XG, Wasserman K. Mixed-expired and end-tidal CO₂ distinguish between ventilation and perfusion defects during exercise testing in patients with lung and heart diseases. *Chest*. 2007; 132(3):977–83. Epub 2007/06/19. doi: S0012-3692(15)36666-6 [pii] <https://doi.org/10.1378/chest.07-0619> PMID: 17573506.
- 29. Hemnes AR, Pugh ME, Newman AL, Robbins IM, Tolle J, Austin ED, et al. End tidal CO₂ tension: pulmonary arterial hypertension vs pulmonary venous hypertension and response to treatment. *Chest*. 2011; 140(5):1267–73. Epub 2011/05/31. <https://doi.org/10.1378/chest.11-0155> PMID: 21622547; PubMed Central PMCID: PMC4694178.
- 30. Welch CE, Brittain EL, Newman AL, Robbins IM, Pugh ME, Newman JH, et al. End-Tidal Carbon Dioxide as a Prognostic Feature in Pulmonary Arterial Hypertension. *Ann Am Thorac Soc*. 2017; 14(6):896–902. Epub 2017/03/28. <https://doi.org/10.1513/AnnalsATS.201612-951OC> PMID: 28345964; PubMed Central PMCID: PMC6850742.
- 31. Agostoni P, Bussotti M, Cattadori G, Margutti E, Contini M, Muratori M, et al. Gas diffusion and alveolar-capillary unit in chronic heart failure. *Eur Heart J*. 2006; 27(21):2538–43. Epub 2006/10/10. <https://doi.org/10.1093/eurheartj/ehl302> PMID: 17028107.
- 32. Popovic D, Arena R, Guazzi M. A flattening oxygen consumption trajectory phenotypes disease severity and poor prognosis in patients with heart failure with reduced, mid-range, and preserved ejection fraction. *Eur J Heart Fail*. 2018; 20(7):1115–24. Epub 20180206. <https://doi.org/10.1002/ejhf.1140> PMID: 29405511.
- 33. Tanabe Y, Nakagawa I, Ito E, Suzuki K. Hemodynamic basis of the reduced oxygen uptake relative to work rate during incremental exercise in patients with chronic heart failure. *Int J Cardiol*. 2002; 83(1):57–62. [https://doi.org/10.1016/s0167-5273\(02\)00013-x](https://doi.org/10.1016/s0167-5273(02)00013-x) PMID: 11959385.
- 34. Bandera F, Generati G, Pellegrino M, Donghi V, Alfonzetti E, Gaeta M, et al. Role of right ventricle and dynamic pulmonary hypertension on determining DeltaVO₂/DeltaWork Rate flattening: insights from cardiopulmonary exercise test combined with exercise echocardiography. *Circ Heart Fail*. 2014; 7(5):782–90. Epub 20140626. <https://doi.org/10.1161/CIRCHEARTFAILURE.113.001061> PMID: 24970467.