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Abstract

Identifying essential targets in the genome-scale metabolic networks of cancer cells is a

time-consuming process. The present study proposed a fuzzy hierarchical optimization

framework for identifying essential genes, metabolites and reactions. On the basis of four

objectives, the present study developed a framework for identifying essential targets that

lead to cancer cell death and evaluating metabolic flux perturbations in normal cells that

have been caused by cancer treatment. Through fuzzy set theory, a multiobjective optimiza-

tion problem was converted into a trilevel maximizing decision-making (MDM) problem. We

applied nested hybrid differential evolution to solve the trilevel MDM problem to identify

essential targets in genome-scale metabolic models for five consensus molecular subtypes

(CMSs) of colorectal cancer. We used various media to identify essential targets for each

CMS and discovered that most targets affected all five CMSs and that some genes were

CMS-specific. We obtained experimental data on the lethality of cancer cell lines from the

DepMap database to validate the identified essential genes. The results reveal that most of

the identified essential genes were compatible with the colorectal cancer cell lines obtained

from DepMap and that these genes, with the exception of EBP, LSS, and SLC7A6, could

generate a high level of cell death when knocked out. The identified essential genes were

mostly involved in cholesterol biosynthesis, nucleotide metabolisms, and the glyceropho-

spholipid biosynthetic pathway. The genes involved in the cholesterol biosynthetic pathway

were also revealed to be determinable, if a cholesterol uptake reaction was not induced

when the cells were in the culture medium. However, the genes involved in the cholesterol

biosynthetic pathway became non-essential if such a reaction was induced. Furthermore,

the essential gene CRLS1 was revealed as a medium-independent target for all CMSs.
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Introduction

Colorectal cancer (CRC) is a major health burden worldwide, and among cancers, it ranks

third and second in terms of its incidence and mortality, respectively [1], indicating the global

need for improved prognoses and treatment strategies. More than 1.9 million new CRC

(including anal cancer) cases and 935000 deaths were estimated to have occurred in 2020; indi-

cating CRC was responsible for approximately 1 in 10 cancer cases and deaths [1]. The classifi-

cation of CRC plays a pivotal role in predicting a patient’s prognosis and determining

treatment strategies. The tumor, node, and metastasis classification system is commonly used

to determine the progression of CRC. However, in-depth characterization is required to

improve the assessment of treatment strategies and prognoses. The consensus molecular sub-

type (CMS) system is an RNA expression-based classification system for CRC. It was devel-

oped using 18 CRC data sets and, as of 2015, contains 4151 CRC samples [2]. CRC can be

classified into four subtypes, and each subtype exhibits distinct molecular and biological char-

acteristics and pathological and genetic signatures. The development of molecular subtype-

based therapies has provided a new framework for implementing preferred and precise medi-

cal treatments. Several studies have used CMS classification to predict the prognosis of patients

with CRC and to determine treatment strategies [3–9].

Tissue-specific genome-scale metabolic models (GSMMs) are frequently applied to identify

anticancer targets and obtain insight into the metabolic bases of physiological and pathological

processes [10–30]. The Cancer Genome Atlas (TCGA) [31] and Human Protein Atlas (HPA)

[32] have been incorporated into models of human metabolic networks, such as Recon X [32–

37] and Human-GEM [24, 38], to reconstruct tissue-specific GSMMs to investigate metabolic

processes. However, neither TCGA and HPA has been used to reconstruct CMS-based tissue-

specific GSMMs. Furthermore, a literature review revealed that no study has identified targets

for CRC by integrating CMS classification with GSMMs. The present study incorporated CMS

classification data for CRC samples from TCGA [2, 31] into Recon3D to reconstruct the CMS-

specific GSMMs of CRC. We applied these CMSs to identify essential genes, metabolites, and

reactions and used a fuzzy decision-making method to evaluate the cancer cell mortality,

healthy cell viability, and metabolic perturbation effects resulting from the blockage of the cor-

responding fluxes.

The present study proposed a fuzzy hierarchical optimization framework for identifying

essential genes for the treatment of each CMS of CRC. The framework of the present study is

an extension of the identifying anticancer targets framework [25, 26]; it provides RNA-

sequencing (RNA-seq) expression in inner optimization problems and yields uniform flux pat-

terns for treated and perturbed cells. Traditional cell culture media (i.e., Dulbecco’s Modified

Eagle Medium [DMEM] and Ham’s medium), were prepared to ensure continuous cancer cell

proliferation in vitro. However, the composition of these media may not fulfill the nutritional

requirements of tumor cells. Studies have demonstrated that the use of specific medium com-

ponents can yield cell culture results that evidence alternations in tumor metabolism [39–41].

Therefore, the present study used various media that induced uptake reactions to investigate

the influence of nutritional components on tumor cell growth and identify essential targets for

the CMSs of CRC.

Materials and methods

Essential genes, when deleted or knocked out, lead to cancer cell death or severe proliferation

defects. However, healthy cells are unlikely to be affected by deletion of such genes. The pres-

ent study developed an anticancer target discovery (ACTD) platform for identifying essential

genes, the deletion of which causes cancer cell death while allowing healthy cells to survive
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with a few side effects. Fig 1 presents the workflow of the ACTD platform, which was designed

to mimic a wet-lab process for identifying essential genes.

Tissue-specific genome-scale metabolic models

The present study integrated CMS classification data [2] for CRC samples from TCGA

[31] with the human metabolic network Recon3D [37] to reconstruct CMS-based tissue-

specific GSMMs for CRC and healthy cell (Fig 1A–1C). The RNA-seq expression data of 51

healthy colorectal samples (41 colon and 10 rectum samples) were downloaded from

TCGA. A total 478 colonic adenocarcinoma and 166 rectal adenocarcinoma samples were

obtained.

We retrieved the CMS classification criteria for the CRC samples of TCGA from the supple-

mentary information in [2]. Table 1 presents the CMS classification of the CRC samples of

TCGA. Four subtypes with distinct molecular and biological characteristics and pathological

Fig 1. Framework for identifying essential anticancer genes. (A) Biological data, such as those on RNA-sequencing (RNA-seq) expression levels for

cancerous (CA) cells and healthy (HT) cells, and human genome-scale metabolic networks, are retrieved. (B) Statistical analysis of the accessed RNA-seq

expression data to performed to yield high, medium, low, and undetected enzyme encoding genes. (C) Tissue-specific genome-scale metabolic models and

gene-protein-reaction models are reconstructed for each consensus molecular subtype (CMS) and HT models, respectively. (D) Flux distribution patterns for

each CMS are derived from clinical data (if available); otherwise a CA template is computed through flux balance analysis (FBA) and uniform flux distribution

(UFD) problems without consideration of dysregulated restriction. (E) The flux distribution patterns of HT cells can be derived from clinical data (if available);

otherwise, an HT template is constructed using FBA and UFD problems without consideration of dysregulated restriction. (F) A set of candidate genes is

identified using the nested hybrid differential evolution (NHDE) algorithm and used in the FBA and UFD models for each CMS to compute the treatment

fluxes. (G) Flux distribution and metabolite flow rates for each candidate treatment are obtained. (H) Identical genes are used in the FBA and UFD problems

for the HT cells during treatment. (I) The flux distribution and metabolite flow rates of perturbed HT cells for each candidate treatment are obtained. (J) Fuzzy

membership functions for each fuzzy objective are defined to enable the evaluation of a decision criterion. (K) A multiobjective optimization problem is

converted into a maximizing decision-making problem, which is solved using the NHDE algorithm. (L) Optimal essential genes are identified on the basis of

the decision criterion; otherwise, Steps (F) to (L) are repeated for the subsequent set of candidate genes generated by the NHDE algorithm.

https://doi.org/10.1371/journal.pone.0286032.g001
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and genetic signatures were identified, namely CMS1 (microsatellite instability immune),

CMS2 (canonical), CMS3 (metabolic), and CMS4 (mesenchymal). The samples that could not

be classified into one of the four aforementioned subtypes were categorized as CMS5

(unknown).

Tissue-specific GSMMs can be used to understand the metabolic behaviors of various phys-

iological and pathological processes and to investigate specific cell phenotypes. Available auto-

mated reconstruction algorithms can be broadly categorized as employing flux-dependent or

pruning methods [42]. Flux-dependent methods [10, 43–45] identify an optimal genome-scale

metabolic network through general reconstruction and provide the maximum number of

high-confidence reactions (i.e., reactions whose presence is supported by substantial experi-

mental data). By contrast, for pruning methods [21, 46, 47], a core set of reactions is obtained

from literature reviews or experimental data, and the remaining reactions in the general recon-

struction are removed as functionality is maintained in the core set. The aim for both types of

algorithm is to ensure the final tissue-specific reconstruction is as concise as possible. The cost

optimization reaction dependency assessment (CORDA) algorithm [48] is based on the

dependency assessment method, which involves identifying the dependency of desirable reac-

tions (i.e., reactions with high experimental evidence) on undesirable reactions (i.e. reactions

with no experimental evidence). We used the CORDA algorithm to reconstructed CMS-spe-

cific GSMMs and healthy model by using their corresponding RNA-seq expression data

(Table 1).

Each CMS and healthy samples was analyzed using the following statistical methods to

determine desirability of reactions that could be used in the CORDA algorithm. Quantile nor-

malization was applied to normalize the raw data from healthy and CMS samples to compute

the mean, confidence interval, and coefficients of dispersion (COD) for each gene. The CODs

were then used to identify supportive genes and determine the differential expression of

enzyme-encoding genes between each CMS and its healthy cell counterpart. The quartile

method was applied to categorize the means of RNA-seq expression into four levels. Recon3D

contains 2247 enzyme-encoding genes, which were classified into four levels on the basis of

their participation levels (i.e., high, medium, low, and undetected). Confidence reactions were

also divided into four groups (i.e., high, medium, negative, and others) on the basis of the

gene-protein-reaction (GPR) association in Recon3D and their corresponding participation

levels. This classification of confidence reactions was used in the CORDA algorithm [48] to

reconstruct each CMS-specific and its HT GSMM.

Completing genome-scale reconstructions by using stoichiometric models for metabolites

and reactions can be used to reveal mechanistic links between genotypes and phenotypes. GPR

associations are typically implemented by applying Boolean rules, which enables the metabolic

reactions in stoichiometric models to be linked to the gene-encoded enzymes in cells. A reac-

tion can be catalyzed by an enzyme or isozymes. Moreover, reactions may be regulated by

duplicate enzymes; that is, more than one enzyme can catalyze the same reactions. The dupli-

cate enzymes in a GSMM can be omitted to obtain a weaker GPR association and to thereby

avoid the numerous computation steps of evolutionary optimization procedures. Moreover,

we use one of duplicate enzymes as a representative enzyme in the computation. Deletion of

Table 1. Classification of colorectal cancer samples accessed from The Cancer Genome Atlas by consensus molecular subtype (CMS). CMS classification is based on

literature [2]. Samples that could not be classified under one of the four subtypes were classified as CMS5.

CMS1 CMS2 CMS3 CMS4 CMS5

No. Samples 83 226 72 151 112

https://doi.org/10.1371/journal.pone.0286032.t001
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the representative enzyme in a weaker GPR association reveals that all identical duplicate

enzymes are knock-out simultaneously in its original GPR association. Fig 2 depicts the pro-

cess of forming a reduced gene association through duplicate gene omission in a simple net-

work. The reaction r1 is modulated by the genes G1 and G2 in the original GPR association of

Fig 2. Reduced gene association in a simple network. (A) Four reactions and their gene associations. (B) Reduced

model obtained by omitting duplicate genes. (C) Boolean rules for gene association. The genes G1 and G2 are duplicate

genes that regulate the same reactions (r1 and r2). Therefore, one can be omitted to form a reduced gene association.

https://doi.org/10.1371/journal.pone.0286032.g002

PLOS ONE Essential genes of consensus molecular subtypes of colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0286032 May 19, 2023 5 / 23

https://doi.org/10.1371/journal.pone.0286032.g002
https://doi.org/10.1371/journal.pone.0286032


Fig 2A. Deletion of G1 is unable to block the reaction r1 because the reaction is still modulated

by the isozyme G2 in Fig 2A. However, in the computation, we can use the reduced GPR asso-

ciation in Fig 2B to block the reaction r1 through deletion of G1 (indicated deletion of both G1

and G2). We developed a systems biology program that automatically builds stoichiometric

and reduced GPR models in the files of the General Algebraic Modeling System (GAMS,

https://www.gams.com/) for computation. The procedures were detailed in another study

[25].

Discovery of essential genes

This study presents a fuzzy hierarchical optimization ACTD framework, which was developed

to mimic a wet-lab process for identifying essential genes (Fig 1D–1M; Table 2).

The ACTD platform was directly used to compute fluxes and metabolite flow rates for

evaluating the fuzzy objectives. The method of the present study differs from that of the

identifying anticancer targets framework, which involves logarithmic fold changes between

dysregulated distribution and template levels. Evaluations using the identifying anticancer

targets framework may produce numerical inaccuracies if an evaluated value is close to

zero. Furthermore, in the ACTD platform, by targeting cancerous (CA) cell mortality,

both the cell growth rate and adenosine triphosphate (ATP) production rate can be

minimized.

The primary objective of the present study’s proposed framework is to evaluate whether the

growth rate of cancer cells identified for treatment (treated CA cells, denoted by TR cells) is as

low as possible, which is a common requirement for discovering target problems [13, 17]. We

also sought to ensure that the ATP production rate of TR cells was as low as possible. These

objectives can be achieved through the fuzzy minimization of the growth rate and ATP pro-

duction rate of TR cells as follows:

gminz vTRbiomass � 0

gminz vTRATP � 0
ð1Þ

(

An anticancer target may interfere with HT cells (perturbed HT cells, denoted as PH cells)

and cause toxicity-induced tumorigenesis and harmful metabolic perturbations in HT cells.

The growth rate of PH cells should be as low as possible. Perturbations in HT cells can lead to

superior cell viability, which in turn maximizes the ATP production rate. The objectives can

be expressed through the fuzzy minimization of the growth rate and fuzzy maximization of the

Table 2. Optimization platform for anticancer target discovery for evaluating the performance of identified

essential genes on basis of four fuzzy objectives.

Objectives for the outer optimization problem

1. To evaluate the cell mortality of cancer cells following gene knockout or deletion.

2. To maximize the cell viability of perturbed healthy cells during gene knockout or deletion.

3. To evaluate the metabolic deviation of the perturbation of healthy cells as a large dissimilarity relative to that

of the cancer template.

4. To evaluate the metabolic deviation of perturbation as a close similarity relative to that of the healthy template.

subject to constraint-based models for inner optimization problems

1. FBA and UFD problems for treating cancer cells

2. FBA and UFD problems for evaluating the perturbation of healthy cells because of treatment

https://doi.org/10.1371/journal.pone.0286032.t002
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ATP production rate of PH cells as follows:

gminz vPHbiomass � 0

gmaxz vPHATP � vmax
ATP

ð2Þ

(

The metabolic flux distributions of PH cells may be altered by cancer treatment. This side

effect is evidenced by metabolic deviations, which can be verified through an evaluation of the

dissimilarity of PH flux distribution relative to that of a CA template and an evaluation of simi-

larity of PH flux distribution relative to the flux distribution of an HT counterpart. Therefore,

to evaluate the grade of side effects, we defined two types of metabolic deviations for PH cells:

differences in flux distributions in PH cells relative to those of a CA template and those of an

HT template, respectively.

The third goal of the proposed framework was to identify the metabolic deviations of PH

cells that were the most dissimilar to the CA template. This was expressed through the fuzzy

dissimilarity of fluxes and metabolite flow rates of PH cells relative to those of the CA template

as follows:

gdissimilarityz v
PH
j � vCAj

gdissimilarityz r
PH
m � rCAm

ð3Þ

8
<

:

The fourth goal of the proposed framework was to determine the fuzzy similarity of the

fluxes and metabolite flow rates of the PH cells relative to those of the HT template, which was

expressed as follows:

gsimilarityz vPHj � vHTj
gsimilarityz r

PH
m � rHTm

ð4Þ

8
<

:

In the aforementioned equations, the decision variable z represents the gene encoding

enzymes, as determined using the NHDE algorithm for knockout. Fuzzy minimization (i.e.,

gmin) is used to evaluate the minimum cell growth rate and ATP production rate of the TR

cells. By contrast, fuzzy maximization (i.e., gmax) is used to evaluate the maximum ATP pro-

duction rate of the PH cells. Fuzzy dissimilarity (i.e., gdissimilarity) is used to determine the dis-

parity between the fluxes (i.e., vPHj ) and metabolite flow rates (i.e., rPHm ) of the PH cells relative

to those of the CA template. A substantial disparity indicates that the flux changes in the PH

cells are considerably different from those in the CA template, indicating that the perturbation

of HT cells cannot lead to tumorigenesis during treatment. Fuzzy similarity (i.e., gsimilarity) is

used to evaluate the metabolic deviation between the PH cells and HT template. The flow rate

of the mth metabolite is computed using the following equation:

rm ¼
X

i2Oc

X

Nij>0;j

Nijvf ;j�
X

Nij<0;j

Nijvb;j
� �

;m 2 Om
ð5Þ

where Oc is the set of metabolites located in various compartments of a cell and Nij is a stoi-

chiometric coefficient of the ith metabolite in the jth reaction of a GSMM. The forward flux vf,j
and backward flux vb,j of the jth reaction are calculated by applying FBA and UFD models to
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the inner optimization problem as follows:

Treated CMS� specific model :

FBA problem : UFD problem :

(
max
vf =b

vbiomass

subject to

NCAðvf � vbÞ ¼ 0

vf =b;i ¼ 0; i 2 OKO

vLBf =b;j � vf =b;j � vUBf =b;j; j∉O
KO

(min
vf=b

X

k2OInt

cCAk ððvf ;kÞ
2
þ ðvb;kÞ

2
Þ

subject to

NCAðvf � vbÞ ¼ 0

vf =b;i ¼ 0; i 2 OKO

vLBf =b;j � vf =b;j � vUBf =b;j; j∉O
KO

vbiomass � v∗biomass;CA
Perturbed HT model :

FBA problem : UFD problem :

(
max
vf =b

vATP

subject to

NHTðvf � vbÞ ¼ 0

vf =b;i ¼ 0; i 2 OKO

vLBf =b;j � vf =b;j � vUBf =b;j; j∉O
KO

(min
vf=b

X

k2OInt

cHTk ððvf ;kÞ
2
þ ðvb;kÞ

2
Þ

subject to

NHTðvf � vbÞ ¼ 0

vf =b;i ¼ 0; i 2 OKO

vLBf =b;j � vf =b;j � vUBf =b;j; j∉O
KO

vATP � v∗ATP;HT

ð6Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

In the aforementioned equations, NCA and NHT are the stoichiometric matrices for each

CMS-specific and HT model, respectively, and they are reconstructed from the models pre-

sented in the previous subsection; vLBf =b;j and vUBf =b;j are the positive lower bound (LB) and positive

upper bound (UB) of the jth forward flux and jth backward flux, respectively. The RNA-seq

expression data for the CA and HT cells and GPR associations in Recon3D were used to recon-

struct GSMMs as well as to set the weighting factors cCAk and cHTk for the UFD problems; the

four groups of confidence reactions are assigned as follows:

cCA=HTk ¼

1

4
; k 2 high confidence

1

2
; k 2 medium confidence

3

4
; k 2 negativec confidence

1; k 2 other confidence or non� gene� expression

ð7Þ

8
>>>>>>>>><

>>>>>>>>>:
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For a high-confidence reaction, the weighting factor is set to the lowest value to enable a

higher flux value to be obtained from the UFD problem. Forward and backward fluxes are set

as zero if their corresponding gene encoding enzymes are knocked out. A reaction may be cat-

alyzed by isozymes, which indicates that it is still active. GPR associations are used to set up

the knockout reactions as follows:

vf ;i ¼ vb;i ¼ 0; zi 2 O
KO
nO

IZ

(
ð1 � εÞvbasalf ;i � vf ;i � ð1þ εÞvbasalf ;i

ð1 � εÞvbasalb;i � vb;i � ð1þ εÞvbasalb;i ; zi 2 O
KO
\ O

IZ

ð8Þ

where OIZ is a set of reactions regulated by isozymes represented in the GPR model.

Maximizing decision-making problem

The ACTD problem expressed in Eqs (1) to (8) is a hierarchical multiobjective optimization

problem (MOOP). Numerous methods have been employed for solving hierarchical

MOOPs and to obtain a Pareto optimal solution [25, 49, 50]. These methods are generally

classified into two categories: generating methods and preference-based methods [49, 50].

For generating methods, a scalarization approach is employed to convert a hierarchical

MOOP into a single-objective optimization problem with multiple weighting factors to

identify a Pareto optimal solution. By contrast, preference-based methods require a decision

maker to indicate preferences in advance before a satisfactory solution can be identified.

The present study used CA and HT templates (Fig 1D and 1E) as preferences to convert an

ACTD problem into a maximizing decision-making (MDM) problem through the applica-

tion of fuzzy set theory (Fig 1J and 1K). One-sided linear membership functions are applied

to attribute fuzzy minimization (red line in Fig 1J) and fuzzy maximization (brown line in

Fig 1J) as follows:

Zmin ¼

1; if FV < LB
UB � FV
UB � LB

; if LB � FV � UB

0; if FV > UB

8
>><

>>:

Zmax ¼

0; if FV < LB
FV � LB
UB � LB

; ifLB � FV � UB

1; ifFV > UB

ð9Þ

8
>><

>>:

where FV represents the flux values computed using the TR or PH model. The lower bound

(LB) and upper bound (UB) are obtained using the corresponding CA and HT templates,

(i.e., LB = ST/4 and UB = 4ST; ST is the standard value for a CA or HT template) used in the

present study. Two-sided linear membership functions are used to attribute fuzzy dissimi-

larity (blue line in Fig 1J) and fuzzy similarity (green line in Fig 1J). Fuzzy dissimilarity is a

complement of fuzzy similarity; therefore, the fuzzy similarity grade is derived using the
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equation as follows:

Left� hand side membership function :

ZPHSTL ¼

(
0; ifFV < LB

FV � LB
ST � LB

; if LB � FV � ST

1; if FV ¼ ST

Right� hand side membership function :

ZPHSTR ¼

(
1; if FV ¼ ST

UB � FV
UB � ST

; if ST � FV � UB

0; if FV > UB

ð10Þ

The fuzzy similarity grade can be calculated using the equation

ZSI ¼ maxfminfZPHSTL ; ZPHSTR ; 1g; 0g, and its complement, fuzzy dissimilarity, can be obtained

using the equation ZDS ¼ 1 � ZSI .

The ACTD problem in Eqs (1) to (8) can be transformed into an MDM problem by apply-

ing the membership functions as follows:

max
z
ZD ¼ max

z
ðZTR þminfZTR; ZCV ; ZMDgÞ=2

subject to inner optimization problems

1:FBA and UFD problems for treated CMS cells

2:FBA and UFD problems for perturbed HT cells

ð11Þ

8
>>>>><

>>>>>:

where the decision objective ηD is a hierarchical criterion, and the cell mortality grade ηTR is

used to achieve the first objective of Eq (1) with respect to the outer optimization problem and

is considered the first priority in the fuzzy decision-making problem. The cell viability grade

ηCV is applied to achieve the second objective of Eq (2), and the metabolic deviation grade ηMD

is used to achieve the third and fourth goals. The second priority of the decision objective is

used to evaluate the lowest grade in the set {ηTR, ηCV, ηMD} when the cell viability or metabolic

deviation grade is less than the cell mortality grade. We introduce a mean-min operation to

compute the cell mortality grade (ηTR), cell viability grade (ηCV), and metabolic deviation

grade (ηMD) as follows:

ZTR ¼ ððZ
TR
ATP þ Z

TR
biomassÞ=2þminfZTRATP; Z

TR
biomassgÞ=2 ð12Þ

ZCV ¼ ððZ
PH
ATP þ Z

PH
biomassÞ=2þminfZPHATP; Z

PH
biomassgÞ=2 ð13Þ

ZMD ¼ ððZDS þ ZSIÞ=2þminfZDS; ZSIgÞ=2 ð14Þ

where the membership grades (ZTRATP; :::; ZSI) are obtained from the membership functions

defined in Eqs (9) and (10).

The MDM problem of Eq (11) is a mixed-integer optimization problem with linear and

quadratic programming problems in its inner loop. It is a high-dimensional, nondeterministic,

polynomial-time hard problem that cannot be solved using currently available commercial

software. We employed the NHDE algorithm to solve this MDM problem. The NHDE
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algorithm is a parallel direct search procedure and an extension of the hybrid differential algo-

rithm [51]. The computational procedures are detailed in the supporting information (S1

Text). The source programs of the ACTD platform for identifying the anticancer genes, metab-

olites, and reactions of CMSs are available at http://doi.org/10.5281/zenodo.7136561.

Results

CMS-specific metabolic models

We used RNA-seq expression data for each CMS and its HT counterpart to reconstruct corre-

sponding CMS-specific and healthy GSMMs (Fig 1A–1C). Fig 3 presents the numbers of

metabolites, reactions, genes, and feasible encoded enzymes for each reconstructed model. As

indicated by the blue regions in Fig 3, five CMSs and HT models shared numerous similarities

in terms of their metabolites, reactions, genes, and enzymes. The orange regions indicate addi-

tional shared items in the five CMSs, and the grey regions illustrates the items that are specific

to each CMS and HT model. Fig 4 illustrates the top 10 metabolites and reaction classifications

for each CMS and HT model. Most metabolites in the fatty acyl groups and high percentages

of organooxygen compounds, carboxylic acids, and steroids are shared by the CMSs and HT

model (Fig 4A). The metabolites that are specific to CMS2 to CMS5 comprise numerous ste-

roid derivatives. Furthermore, extracellular transport reactions accounted for the highest per-

centage of reactions in the CMSs and HT model. More than 800 fatty acid oxidation reactions

were shared by the CMSs and HT model (Fig 4B).

Fig 3. Number of metabolites, reactions, genes, and feasible enzymes for each consensus molecular subtype and its healthy counterpart.

https://doi.org/10.1371/journal.pone.0286032.g003
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Identifying single essential genes

We used Dulbecco’s Modified Eagle Medium (DMEM) (S1 Table) and set 51 uptake reactions

in DMEM as reversible exchangeable reactions in our computations. Secretion reactions for

each model were set as irreversible reactions. The NHDE algorithm [25–29, 49] was used to

perform a series of computations to solve the MDM problem and identify a set of essential

Fig 4. Classification of species and reactions in Recon3D, consensus molecular subtypes and its healthy counterpart.

The numbers above the blue and orange bars represent the total numbers of metabolites and reactions for Recon3D and that

of those shared between the CMSs and HT models.

https://doi.org/10.1371/journal.pone.0286032.g004
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genes for each CMS (Table 3). The computational procedures of the NHDE algorithm are

described in the supporting information (S1 Text). The performance and solution quality of

the NHDE algorithm are dependent on three key setting factors: the tolerance ratio used in

migration, population size, and maximum number of iterations. In the present study, a toler-

ance ratio of 0.05, a population size of 50, and 50 maximum iterations were used. Moreover,

10 random seeds were used for each run to obtain optimal solutions.

Through the computation, we identified 26 essential genes for the CMSs (Table 3), of which

20 were shared by the CMSs and 6 were CMS-specific. We also used a brute-force enumeration

algorithm to individually identify essential genes to validate our computations, and the results

were identical to those obtained using the NHDE algorithm. With 3.7 GHz processor and 64

GB RAM on an i9 local computer, the enumeration method demanded ~8 CPU hours, while

the NHDE algorithm ~6 CPU hours. STRING (https://string-db.org/) and GeneCards https://

www.genecards.org/) were used to classify the protein–protein interaction (PPI) networks

encoded by the 26 genes into five classes (Fig 5A). The first class comprised 12 genes involved

in cholesterol biosynthesis. The second class comprised six genes that participate in nucleotide

metabolism (specifically purine and pyrimidine metabolism) and one gene involved in the

Table 3. Cell mortality grades and metabolic deviation grades of essential genes for each consensus molecular subtype, obtained using DMEM medium. N/D is

obtained from the DepMap portal (https://depmap.org/portal/) and is defined as the ratio of the cell death number (N) and the total number of colon cancer cell lines (D)

used in the experimental test. “No.Drugs” denotes the number of drugs retrieved from DrugBank (https://go.drugbank.com/) that modulate each gene. “SE.Score” denotes

the side effect score, calculated using average adverse events. “—” indicates that data were not available on the databases. “*” indicates that ADSS2 and CTPS1 are the repre-

sentative of duplicate enzymes (ADSS1 and ADSS2) and (CTPS1 and CTPS2), respectively.

Cell Mortality Grade Metabolic Deviation Grade

Gene CMS1 CMS2 CMS3 CMS4 CMS5 CMS1 CMS2 CMS3 CMS4 CMS5 N/D No. Drugs SE. Score

DHODH 0.660 0.705 0.670 0.606 0.691 0.658 0.682 0.498 0.404 0.508 17/54 26 0.351

CAD 0.660 0.705 0.670 0.606 0.691 0.654 0.696 0.508 0.385 0.500 27/54 3 --

RPIA 0.660 0.705 0.670 0.606 0.691 0.638 0.611 0.549 0.512 0.516 6/54 1 --

SQLE 0.660 0.705 0.670 0.606 0.691 0.575 0.693 0.548 0.489 0.488 2/54 4 0.415

ADSS2* 0.660 0.705 0.670 0.606 0.691 0.569 0.680 0.464 0.499 0.504 31/54 2 --

EBP 0.660 0.705 0.670 0.606 0.691 0.568 0.668 0.450 0.566 0.504 0/54 1 0.412

TM7SF2 0.660 0.705 0.670 0.606 0.691 0.558 0.702 0.496 0.496 0.507 1/54 -- --

MVD 0.660 0.705 0.670 0.606 0.691 0.557 0.628 0.509 0.480 0.495 49/54 -- --

MVK 0.660 0.705 0.670 0.606 0.691 0.557 0.628 0.509 0.482 0.495 52/54 1 --

PMVK 0.660 0.705 0.670 0.606 0.691 0.557 0.681 0.509 0.480 0.495 19/54 -- --

LSS 0.660 0.705 0.670 0.606 0.691 0.556 0.693 0.547 0.488 0.489 0/54 2 --

UMPS 0.660 0.705 0.670 0.606 0.691 0.554 0.547 0.546 0.470 0.532 29/54 2 --

FDFT1 0.660 0.705 0.670 0.606 0.691 0.553 0.617 0.494 0.496 0.503 7/54 1 --

HMGCR 0.660 0.705 0.670 0.606 0.691 0.543 0.625 0.469 0.485 0.544 52/54 20 0.413

CRLS1 0.660 0.705 0.670 0.606 0.691 0.539 0.667 0.469 0.572 0.494 35/54 -- --

SLC7A6 0.657 0.704 0.668 0.605 0.690 0.536 0.598 0.443 0.491 0.485 0/54 1 --

PGS1 0.660 0.705 0.670 0.606 0.691 0.488 0.596 0.482 0.498 0.501 52/54 -- --

SC5D 0.660 0.705 0.670 0.606 0.691 0.485 0.696 0.486 0.503 0.501 0/54 -- --

ADSL 0.660 0.705 0.670 0.606 0.691 0.470 0.701 0.469 0.502 0.517 51/54 -- --

NSDHL 0.660 0.705 0.670 0.606 0.691 0.433 0.588 0.526 0.489 0.499 0/54 1 --

SLC2A13 0.660 -- -- 0.606 -- 0.448 -- -- 0.528 -- 0/54 -- --

CYP51A1 0.660 -- -- -- 0.691 0.435 -- -- -- 0.495 0/54 5 0.359

CTPS1* -- 0.705 -- -- 0.691 -- 0.653 -- -- 0.495 44/54 1 --

SLC5A3 -- -- 0.670 -- -- -- -- 0.541 -- -- 2/54 1 --

PTPMT1 -- -- -- 0.606 -- -- -- -- 0.502 -- 28/54 -- --

PTDSS1 -- -- -- 0.606 -- -- -- -- 0.488 -- 8/54 1 --

https://doi.org/10.1371/journal.pone.0286032.t003
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pentose phosphate pathway. The third class comprised four genes involved in the glyceropho-

spholipid biosynthetic pathway and other myo-inositol and ornithine transporters.

The computational results may be affected by different weighting factors assigned by Eq

(6). In this study, we also considered two additional weighting factors, i.e. the weighting factors

Fig 5. Protein–protein interactions of identified essential genes for the union set of five consensus molecular subtypes in

various media. (A) DMEM: Dulbecco’s Modified Eagle Medium. (B) HAM: Ham’s medium. (C) VMH: Uptake reactions obtained

from the VMH database (https://www.vmh.life/#home). (D) DMEM+Cholesterol: DMEM medium with cholesterol uptake. (E)

HAM-Cholesterol: Ham’s medium without cholesterol uptake. (F) VMH-Cholesterol: VMH medium without cholesterol uptake.

https://doi.org/10.1371/journal.pone.0286032.g005
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based on gene expression levels from zero to one and equal weighting factors, to compute the

corresponding flux distributions, and compared them with that using Eq (7). The ACTD plat-

form used the DMEM medium and different weighting factors to identify a set of single essen-

tial genes as shown in S2 Table, respectively. The results reveal that the identified essential

genes are irrespective to the assigned weighting factors (S2 Table). However, the cell mortality

grades and metabolic deviation grades are different a little. An essential gene is influenced by

the topology of a metabolic network, that is a stoichiometric matrix reconstructed from gene

expression data. However, weighting factors could make to obtain different flux values, not

influence the network structure.

For each essential gene, the proliferation of cancer cells under all CMS models could be ter-

minated (cell growth rate� 10−8), and the ATP production rate of these cells decreased by

approximately 60% relative to their maximum levels. As a result, the cell mortality grade of the

cancer cells was more than 0.6 (Table 3), indicating that the first fuzzy objective of Eq (1) was

achieved with a 60% satisfaction level. On the basis of this computation, we assumed that the

genes in the HT cells were also blocked and investigated the cell viability and metabolic devia-

tion of the PH cells. We discovered a cell maintenance rate of 10−8 in the PH cells and that

these cells had the highest ATP production rate; thus, the second fuzzy objective was achieved

with a 100% satisfaction level. The metabolic deviation grade ηMD was used to perform mean–

min calculations to achieve the third and fourth objectives of Eq (1), that is, to evaluate the flux

perturbation and metabolite flow rates in the PH cells relative to those of the CA and HT tem-

plates, respectively. For the CMS1 model, the highest metabolic deviation grade (ηMD) of 0.658

was achieved with the knockout of dihydroorotate dehydrogenase DHODH, and the lowest

ηMD value of 0.433 was achieved with the knockout of sterol-4-alpha-carboxylate 3-dehydroge-

nase NSDHL. A higher grade was considered to indicate fewer predicted metabolic perturba-

tions. For the models for CMS2 to CMS5, the height of the metabolic deviation grade varied

with the gene that was knocked out (e.g., TM7SF2, RPIA, CRLS1, and HMGCR; Table 3).

A survey of a cancer dependency map (DepMap, https://depmap.org/portal/) revealed that

most of the identified genes were compatible with the colon cancer cell lines obtained from

DepMap and that the knockout of these genes (except for SLC7A6, SC5D, LSS, EBP, NSDHL,

and SLC2A13) resulted in a high amount of cell death (Table 3). Some of the identified essen-

tial genes can be modulated using drugs that have been approved and are listed on DrugBank

[52]. For example, 26 and 20 of the drugs on DrugBank that were surveyed can modulate the

expression of DHODH and HMGCR, respectively [52]. To investigate the grades of adverse

events (AEs), the aforementioned approved drugs were used in a SIDER survey (http://

sideeffects.embl.de/) conducted using the ADDReSS (http://www.bio-add.org/ADReCS/)

database. The National Cancer Institute Common Terminology Criteria for Adverse Events

provides precise clinical descriptions of AE severity ranging from mild to associated with

death and grades AE on a scale of 1, 2, 3, 4, and 5. We used the scale to calculate the average

AE (Ave.AE) and converted it into a side effect score (i.e., SE.Score = 1 − Ave.AE) that corre-

lates with the corresponding metabolic deviation grade (Table 3).

Uptake reactions

We used Ham’s medium as a nutrient, and the 63 uptake reactions (S1 Table) that occurred in

this medium were used to identify the essential genes for each CMS. The computational results

(S3 Table) revealed that the cell viability and metabolic deviation grades obtained using Ham’s

medium were almost identical to those obtained using DMEM. The union set of CMSs com-

prised 14 identified essential genes, of which nine were shared by CMSs and five were CMS-

specific. The union set was used to categorize PPIs into four classes (Fig 5B), and the results
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revealed that the identified essential genes are not involved in the cholesterol biosynthetic

pathway. The 14 essential genes identified using Ham’s medium form a subset of those identi-

fied using DMEM. We discovered that six genes (UMPS, CAD, DHODH, ADSS2, ADSL, and

CTPS1) participate in purine and pyrimidine metabolism, RPIA participates in the pentose

phosphate pathway, four genes (PGS1, CRLS1, PTPMT1, and PTDSS1) participate in the gly-

cerophospholipid biosynthetic pathway, SLC7A6 participates in ornithine transport, and two

genes (SLC5A3 and SLC2A13) participate in the nuclear receptor meta-pathway.

The VMH database (https://www.vmh.life/#home) published data on 91 uptake reactions

that are involved in human nutrient uptake. We used the data of these uptake reactions to

investigate the effects of such reactions on essential genes. Some of the uptake reactions were

not present in the reconstructed GSMMs of the CMSs; thus, they were excluded from the com-

putations. In total, 83 uptake reactions (S1 Table) were included in the computations. The

NHDE algorithm revealed that 15 essential genes were shared by the CMSs and 9 genes were

CMS-specific (S3 Table). The union set of the 24 essential genes of the CMSs was used to dis-

tinguish the PPIs into four classes (Fig 5C), and the results revealed that the identified essential

genes are not involved in the cholesterol biosynthetic pathway. The aforementioned findings

indicate that these genes are nonessential when Ham’s medium or VMH medium are used

because the cancer cells of all CMSs continue to survive if the genes involved in cholesterol bio-

synthesis are knocked out.

A comparison of the uptake reactions for the DMEM, Ham’s medium, and VMH revealed

that no cholesterol uptake reaction occurred when DMEM was used. We used three additional

media to investigate the relationship of tumor cell growth with nutrient components and

essential genes. Therefore, DMEM was used to create another medium in which a cholesterol

uptake reaction was induced (DMEM+Cholesterol). Ham’s medium and VMH medium in

which a cholesterol uptake reaction was not induced (denoted as the HAM-Cholesterol and

VMH-Cholesterol, respectively) were used as the second and third media, respectively. On the

ACTD platform, each medium was used to identify the essential genes for each CMS. Fig 5D–

5F illustrates the PPI networks of the union set of essential genes that were identified using the

three additional media. The results are presented in S3 Table. When the DMEM+Cholesterol

was used, the essential genes involved in the cholesterol biosynthetic pathway could not be

determined (Fig 5D). However, the essential genes in the cholesterol biosynthetic pathway

could be identified using the HAM-Cholesterol and VMH-Cholesterol. This finding reveals

that the essential genes in the cholesterol biosynthetic pathway can be determined if a choles-

terol uptake reaction is not induced in media (Fig 5A, 5E, and 5F). The genes in the cholesterol

biosynthetic pathway became nonessential if a cholesterol uptake reaction was induced in a

medium (Fig 5B–5D). Our simulation results are consistent with those reported by other stud-

ies [38–40]; that is, medium components can influence cell growth associated with tumor

metabolism. We additionally set all exchange reactions (�782 reactions) for each CMS as

reversible uptake reactions to enable identification of essential genes; the results indicated that

only CRLS1 was determinable for all CMSs, indicating that CRLS1 is a medium-independent

essential gene.

The metabolite flow distributions for CMS1 that were evaluated using the DMEM and the

DMEM+Cholesterol are illustrated in Fig 6. These distribution findings explained the relation-

ship between the cholesterol uptake reactions and essential genes; the HT cells metabolized

glucose to pyruvate with a flux of 13.649 mmol/gDW h (first column in the data box of Fig 6)

when DMEM was used and with a flux of 13.650 mmol/gDW h (second column in the data

box of Fig 6) when the DMEM+Cholesterol was used. Pyruvate then entered the TCA cycle to

generate ATP, which is required for cell survival. The Warburg hypothesis posits that cancer

cells rewire their metabolism to promote growth, survival, proliferation, and long-term
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maintenance. Through the CMS1 model, we discovered that the CA template metabolizes

large amounts of glucose to pyruvate (23.059 for DMEM and 23.046 for DMEM+Cholesterol),

which is then mostly converted to lactic acid (7.625 for both media). Thereafter, glutamine is

replenished in the cycle to meet the proliferation requirement. These results are consistent

with the Warburg hypothesis [53–55]. We blocked HMGCR and other genes, such as PMVK

and MVK in the cholesterol biosynthetic pathway (Fig 6) to evaluate specific metabolite flow

rates (listed in the third row of data boxes in Fig 6). The results revealed that the metabolite

flow rate of mev-R was 0.0001 for both DMEM and DMEM+Cholesterol and that a series reac-

tion produced intracellular cholesterol at a level of 0.0003 for DMEM and of 0.0012 for

DMEM+Cholesterol. Cholesterol production occurred not only because of intracellular bio-

synthesis but also because of an uptake reaction induced by an extracellular medium. No extra-

cellular cholesterol uptake was observed when DMEM was used (Fig 6) because this uptake

reaction was not induced in the medium. This rendered the genes in the cholesterol biosyn-

thetic pathway essential. By contrast, when the DMEM+Cholesterol was used, the deletion of

HMGCR prevented intracellular biosynthesis; however, cholesterol was still supplied at a level

of 0.001 through the extracellular uptake reaction that occurred in the medium. Consequently,

HMGCR became a nonessential gene when the DMEM+Cholesterol was used.

Fig 6. Metabolite flow rates for CMS1 obtained using DMEM (first column in matrix of data) and DMEM+Cholesterol (second column). The first

column in each data box presents the computational results obtained using DMEM; the second column presents the results obtained using the DMEM

+Cholesterol. The first and second rows of each data box present the CA and HT templates, respectively; the third row presents the genes that are knocked out

in the cholesterol biosynthetic pathway (e.g., HMGCR and PMVK).

https://doi.org/10.1371/journal.pone.0286032.g006
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Combination of essential genes

Conducting an enumerative search for identifying combinations of two target essential genes

is time consuming because it requires computations to be performed for more than 4,800,000

combinations for each CMS. We are difficult to use an enumerative search for identifying

combinations of two targets. The ACTD platform can be used to reduce the computational

burden associated with performing evolutionary procedures. Accordingly, we employed the

ACTD platform to identify gene combinations for various uptake reactions (S1 Table) by

using two candidate groups obtained using the NHDE algorithm. The first candidate group

comprised the union set of essential genes shared by CMSs (Table 3), and the second group

comprised the other candidate genes from feasible encoding enzymes. This strategy substan-

tially reduced the computational time and reduced the search space to approximately 86,000

possible combinations for the two candidate groups. Our computational results revealed that

the metabolic deviation grades for most two-target combinations (S4 Table) were superior to

those for their corresponding one-target essential genes (S3 Table) and that each combination

involved at least one essential gene. Moreover, the results for the one-target essential genes pre-

sented in Fig 5 indicate that a medium in which cholesterol uptake occurs cannot be used to

identify a one-target essential gene in the cholesterol biosynthetic pathway; however, a one-tar-

get essential gene can be combined with another essential gene to improve the metabolic devi-

ation grade of the combination.

Essential metabolites and reactions

The presence of essential metabolites and reactions indicates that cancer cells will terminate to

grow and normal cells will survive if all metabolite synthesis reactions are blocked. We applied

metabolite- and reaction-centric approaches on the ACTD platform to identify essential

metabolites and reactions, respectively, for various media (S1 Table). We compared the

computational results between various media with or without cholesterol uptake reactions and

discovered that most of the essential metabolites were shared by CMSs irrespective of the pres-

ence or absence of a cholesterol uptake reaction (S5 Table). The computational results also

revealed that the essential metabolites farnesyl diphosphate (abbreviated as frdp in Fig 6) and

formate can be identified in a medium without a cholesterol uptake reaction. The only excep-

tion to this occurred in the CMS5 model with VMH-Cholesterol. Farnesyl diphosphate is a

chemical compound in prenol lipids that participates in the mevalonate metabolic pathway,

and it is catalyzed by FDFT1 to form squalene (sql) and to progressively synthesize cholesterol

(Fig 6). Formate is a crucial molecule in one-carbon metabolism that it serves as an intermedi-

ate in is a series of biochemical reactions, including the biosynthesis of cholesterol, nucleotides

and amino acids [56]. Specifically, formate is used as a one-carbon donor in the conversion of

acetyl-CoA to mevalonate, which is a key intermediate in the cholesterol biosynthetic pathway.

In the present study, the inhibition of formate production rate reduced intracellular choles-

terol synthesis and thereby eliminated the growth of cancer cells.

The essential reactions for all CMSs were identified using various media (S1 Table). No

essential reaction was identified in the cholesterol biosynthetic pathway irrespective of whether

a cholesterol uptake reaction occurred in a medium (S6 Table). This finding differs from that

obtained using a gene-centric approach (Table 3). This different finding may have occurred

because each essential gene that is involved in the cholesterol biosynthetic pathway through

GPR association can regulate at least two reactions. We used two-reaction combinations cata-

lyzed by HMGCR to compute the cell mortality and metabolic deviation grades, and the results

were consistent with those obtained when HMGCR was knocked out. Table 4 reveals that the

reactions R_DHORD9, R_ADSL1, and R_ADSS were regulated by their corresponding genes,
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namely DHODH, ADSL, and ADSS1, respectively. Consequently, the blockage of each reac-

tion matched with the corresponding gene knockout (Table 4). The essential gene CAD

(Table 3) catalyzed three sequential reactions, namely R_CBPS, R_ASPCTr, and R_DHORTS.

Therefore, the blockage of each reaction inhibited the growth and proliferation of the cancer

cells of each CMS and yielded a satisfactory metabolic deviation grade (Table 4). The essential

gene UMPS regulated two sequential reactions, namely R_OMPDC and R_ORPT, in the

pyrimidine metabolic pathway, and similar results were obtained.

Discussion

CRC is a major disease burden worldwide, and improved prognoses and treatment strategies

are urgently required. The development of molecular subtype–based therapies has provided a

new potential framework for implementing preferred and precise medical treatments. CRC

samples obtained from patients can be categorized into five subtypes through CMS classifica-

tion, which is based on RNA expression in CRC. Several studies have used CMS classification

to predict a patient’s prognosis and determine treatment strategies for CRC. However, few

studies have assessed the use of CMS classification to reconstruct CMS-specific GSMMs and

to analyze the metabolic characteristics of these GSMMs. The present study used RNA-seq

expression data of CRC retrieved from TCGA to reconstruct five CMS-specific GSMMs. We

discovered that the five CMSs and HT model had numerous similarities with respect to metab-

olites, reactions, genes, and enzymes. The CMSs and HT shared the most metabolites in the

fatty acyl groups and more than 800 fatty acid oxidation reactions.

The proposed fuzzy hierarchical optimization framework can be used to identify essential

genes, metabolites, and reactions for treating each CMS of CRC. The optimization framework

can be applied to identify essential targets that lead to termination of cancer cell growth and to

evaluate metabolic flux perturbations in normal cells caused by cancer treatment. In addition,

metabolic deviation grades and two-sided fuzzy membership functions were used to evaluate

Table 4. Cell mortality grades and metabolic deviation grades of essential reactions for each consensus molecular subtype, obtained using DMEM. Setting the flux

value of an essential reaction to zero leads to termination of cancer cell growth and proliferation.

Cell Mortality Grade Metabolic Deviation Grade

ID CMS1 CMS2 CMS3 CMS4 CMS5 CMS1 CMS2 CMS3 CMS4 CMS5 Name

R_ASPCTr 0.660 0.705 0.670 0.606 0.691 0.663 0.632 0.520 0.504 0.532 Aspartate Carbamoyltransferase

R_DHORD9 0.660 0.705 0.670 0.606 0.691 0.658 0.682 0.498 0.404 0.508 Dihydoorotic Acid Dehydrogenase

R_OMPDC 0.660 0.705 0.670 0.606 0.691 0.655 0.555 0.530 0.499 0.526 Orotidine-5’-Phosphate Decarboxylase

R_ORPT 0.660 0.705 0.670 0.606 0.691 0.618 0.687 0.524 0.496 0.532 Orotate Phosphoribosyltransferase

R_CBPS 0.660 0.705 0.670 0.606 0.691 0.594 0.527 0.422 0.513 0.500 Carbamoyl-Phosphate Synthase

R_ADSL1 0.660 0.705 0.670 0.606 0.691 0.569 0.680 0.464 0.499 0.504 Adenylosuccinate Lyase

R_ADSS 0.660 0.705 0.670 0.606 0.691 0.569 0.680 0.464 0.499 0.504 Adenylosuccinate Synthase

R_DHORTS 0.660 0.705 0.670 0.606 0.691 0.552 0.551 0.497 0.513 0.520 Dihydroorotase

R_DATPtn 0.660 0.705 0.670 0.606 0.691 0.504 0.681 0.498 0.528 0.547 DATP Diffusion in Nucleus

R_DGTPtn 0.660 0.705 0.670 0.606 0.691 0.459 0.702 0.532 0.574 0.493 DGTP Diffusion in Nucleus

R_DSAT 0.660 0.705 0.670 0.606 0.691 0.449 0.677 0.452 0.503 0.546 Dihydrosphingosine N-Acyltransferase

R_INSTt2r 0.660 -- -- 0.606 -- 0.448 -- -- 0.528 -- Transport of Inositol via Proton Symport

R_TRDR 0.660 -- 0.670 -- -- 0.510 -- 0.545 -- -- Thioredoxin Reductase (NADPH)

R_INSTt4 -- -- 0.670 -- -- -- -- 0.534 -- -- Transport of Inositol via Sodium Symport

R_PEt -- -- 0.510 -- 0.560 -- -- 0.512 -- 0.477 Phosphatidylethanolamine Transport

R_PGPP_hs -- -- -- 0.606 -- -- -- -- 0.502 -- Phosphatidylglycerol Phosphate Phosphatase

R_PSSA1_hs -- -- -- 0.606 -- -- -- -- 0.488 -- Phosphatidylserine Synthase

https://doi.org/10.1371/journal.pone.0286032.t004
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the flux perturbations and metabolite flow rates in perturbed HT cells relative to those in HT

and CA templates, respectively. A smaller metabolic deviation was considered to indicate

fewer adverse effects. We used various media to identify essential targets for each CMS and

discovered that most targets were shared by the five CMSs and that some genes were CMS-spe-

cific. Furthermore, essential genes in the cholesterol biosynthetic pathway can be identified if a

cholesterol uptake reaction does not occur in the medium used. By contrast, the genes in the

cholesterol biosynthetic pathway were determined to be nonessential if a cholesterol uptake

reaction occurred in the medium used.
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